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Abstract: The analysis of textures is an important task in image processing and computer vision
because it provides significant data for image retrieval, synthesis, segmentation, and classification.
Automatic texture recognition is difficult, however, and necessitates advanced computational
techniques due to the complexity and diversity of natural textures. This paper presents a method
for classifying textures using graphs; specifically, natural and horizontal visibility graphs. The
related image natural visibility graph (INVG) and image horizontal visibility graph (IHVG) are
used to obtain features for classifying textures. These features are the clustering coefficient and the
degree distribution. The suggested outcomes show that the aforementioned technique outperforms
traditional ones and even comes close to matching the performance of convolutional neural networks
(CNNs). Classifiers such as the support vector machine (SVM), K-nearest neighbor (KNN), decision
tree (DT), and random forest (RF) are utilized for the categorization. The suggested method is tested
on well-known image datasets like the Brodatz texture and the Salzburg texture image (STex) datasets.
The results are positive, showing the potential of graph methods for texture classification.

Keywords: texture classification; horizontal visibility graph; natural visibility graph; feature extraction;
image natural visibility graph; classifiers; machine learning

1. Introduction

Texture has useful features that can be used to research various image processing
and machine vision tasks, including image retrieval, classification, segmentation, and
synthesis. Texture analysis is still a difficult subject because real textures are not always
easy to understand. In computer vision, "texture" can mean a lot of different things. One
idea says that texture comprises changes in visual sharpness that make patterns that
appear over and over again [1]. The surface’s physical characteristics might be to blame
for these patterns, which reflect different wavelengths of light. Smooth surfaces project
light at a predetermined angle, while uneven surfaces reflect light everywhere. Humans
can recognize texture, but automatic systems sometimes need specialized computational
approaches. The way pixel brightness and intensity shift across a picture defines texture in
image analysis [2]. The term "texture" is commonly employed as the principal adjective to
characterize the basic elements of an image. Texture analysis plays a crucial role in various
computer vision applications, including object recognition, surface defect detection, pattern
recognition, and medical image analysis. Texture analysis is a fundamental component of
computer vision, wherein the initial step involves extracting pertinent data from an image
in order to characterize its texture. Various methods and strategies are employed in this
operation [3]. Any number that describes the texture of an image should not be affected by
changes in scale, rotation, or any other smooth change in pixel strength. Because changes
in rotation, translation, or scale do not affect how people see the texture, this is the case.
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Obtaining the features and choosing the classifier are the two most important parts of
texture classification.

Several methods for extracting features have been created in the last few decades,
and many attributes have been studied to better describe the texture information in an
image [4]. A number of old and new techniques have been used to do this, including the
gray-level co-occurrence matrix (GLCM) [5], Haralik descriptors [6], wavelet transform [7],
Markov random fields [8], Gabor texture discriminator [9], local binary patterns (LBP) [10],
and bioinspired texture descriptor (BiT) [11]. In computer vision, natural language pro-
cessing, pattern identification, speech recognition, picture recognition, self-driving cars,
and recommendation systems, deep learning has a wide range of uses. One deep learn-
ing model in particular, the convolutional neural network (CNN) model, has excelled at
pattern recognition and image classification. It can learn attributes from datasets without
human interaction [12]. An alternative approach combines a CNN with handmade features
from standard methods [13,14]. Thus, experts have started studying compact and reliable
texture descriptors.

A modified visibility graph (VG) was used to classify a texture dataset in this work.
The degree distribution was obtained using the image natural visibility graph (INVG) and
image horizontal visibility graph (IHVG) [15] and fed into a classifier for classification.
This study processed images using the Lacasa et al. [16] approach for the image visibility
graph (IVG). The degree distribution and clustering coefficients using the IHVG and INVG
were found to be essential for capturing minor graph substructures [16]. The primary
contributions of this study are delineated as follows:

• This study employed a modified visibility graph to classify a texture dataset using a
graph-based classification method.

• The degree distribution information extracted from the IHVG and INVG was used as
the input for a specialized classifier.

• This analysis primarily focused on capturing minor substructures by examining the
clustering coefficient with the degree distribution for the IHVG and INVG.

In Section 2, a quick and concise analysis of texture feature extraction using the
conventional approach and convolution neural networks is presented. In Section 3, several
strategies for representing time series as graphs are discussed, and the concept of complex
networks is introduced briefly. Section 3.3 elaborates on the NVG and HVG in images,
also known as the image natural and the image horizontal visibility graph, and on the
procedure for generating graphs from images. Section 3.4, which also includes methods for
feature extraction, briefly discusses the degree distribution and clustering coefficient of a
graph. Section 3.5 discusses the standard classifiers that were used in this investigation,
such as SVM, DT, KNN, and RF. The results, suggestions, and plans for future work are
explained in Section 4. There is a thorough flowchart of the algorithm and an analysis of
the standard texture dataset that was used in the study.

2. Related Work

This section summarizes the background of texture classification techniques, including
both classical approaches and deep learning applications.

2.1. Texture Classification Based on Traditional Methods

Several feature extraction approaches have been discovered and applied to texture
classification challenges. The GLCM introduced by Haralicket et al. [6] is an old texture
categorization feature extraction approach. The texture information generated by GLCM is
dependent on grayscale, kernel size, and direction. Haralick developed fourteen texture
elements that offer spatial context information, such as contrast, homogeneity, dissimilarity,
angular second moment, energy, and correlation [5,6,17–19]. Following GLCM, the most
commonly used LBP is used to extract textural features [20]. Ojala and Pietikainen presented
the original LBP in 1999 [21] based on the statistical distribution of the uniform local binary
pattern rotation and histogram equalization invariants [22]. The MRF statistical feature
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extraction approach is employed for pixel or other spatial correlation properties [8]. Wavelet-
transform [23] divides pictures into four sub-bands. These four sub-bands indicate the
finest scale wavelet coefficient, which we divide into four parts again to create the coarse
level coefficient, and so on, until we reach the ultimate scale [7]. In Table 1, we summarize
the accuracy of classical approaches applied to various texture datasets.

Table 1. Summary of texture classification based on traditional methods.

References Purpose Features Model Dataset Accuracy (%)

[5,24] Image texture
classification

Statistical features,
correlation GLCM Brodatz texture

images 99.043

[7] Texture classification Wavelet statistical
features Wavelet transform VisTex image dataset Mean-97.80

[10] Texture classification SNELBP features SNELBP KTH-TIPS 95.97

[1] Texture
characterization

GLCM
Haralick CatBoost classifier Outex 99.30

99.84%

[1] Texture
characterization

GLCM
Haralick

CatBoost classifier
LDA classifier KTH-TIPS 92.01

98.35

[8] Texture classification
Order statistics,

histogram of
configuration

Markov random field Brodatz texture
database 87

[9] Color texture
classification Local class GaRCIA VisTex Train-98.4

Test-89.2

[11]
Texture

descriptor
quantify

BiT descriptor SVM classifier
Salzburg

Outex
KTH-TIPS

92.33
99.88
97.87

2.2. Texture Classification Based on CNN

CNNs are extensively employed in the domain of image classification. To separate the
texture image, its ability to capture high-level features is crucial [25]. CNNs collect m on
basic visual properties in the first convolution layer, then use this information to construct
more complex features in the deepest layer [12]. The effectiveness of CNN algorithms is
summarized in Table 2 when used on various texture datasets.

Handcrafted texture classification uses feature extraction methods like GLCM, MRF,
LBP, wavelet transform, and BiT for classifiers like SVM or KNN. The basic method extracts
and categorizes features with a few lines of code and is simple to use. Traditional methods
cannot be scaled to large datasets because they look at every image separately and pull
out traits from each one, which takes time and resources. CNNs learn properties from
images directly and outperform older methods on complex datasets. However, CNN
models demand large datasets and are hard to identify with categorization features. The
visibility graph is generated using time series or image data, and then features are selected
based on difficulties utilizing graph properties. Graphs have global and local features.
Lacasa et al. [16,26] suggest that visibility graphs can help with image processing and
classification because they show small parts of a graph’s structure, while global features
show how the graph is put together as a whole.

Table 2. Summary of texture classification based on CNNs.

References Purpose Features Model Dataset Accuracy (%)

[27] Land use classification
from satellite images Image texture features Depth feature extraction

using customized CNN
PaviaU dataset, Salinas

dataset, Indian Pines CNN ELEM 90

[28] Texture classification Feature optimization CNN optimized
through WOA

Kylberg
Brodatz

OutexTC00012

99.71
97.43
97.70



Electronics 2023, 12, 4626 4 of 18

Table 2. Cont.

References Purpose Features Model Dataset Accuracy (%)

[29] Texture classification Fusion of AlexNet and
VGG

AlexNet layer
VGG net layer

Brodatz
KTH-TIPS

CUReT

98.76
100

99.76

[13] Texture classification CNN features and
Gabor features CaffeNet Cifar10 dataset 79.16

[30] Texture classification CNN features New CNN proposed Brodatz texture
database Error rate (mean) 17.2

[31] Classification of
different ship types

Multiscale rotation
invariance CNN

features

New CNN developed
based on CaffeNet BCCT200- RESIZE data 98.33

[32] Classify benign and
malignant masses Deep texture features SVM classifier and ELM Breast CAD of 400 cases 80.6 to 91

[12] Texture classification CNN features Pre-trained CNN model KTH-TIPS
CURET-Gray

ResNet
98.75, 97.22
DenseNet

99.35, 98.06

2.3. Limitations of Traditional and CNN-Based Texture Classification

Texture classification using standard methods has a number of drawbacks, such
as the fact that traditional methods rely on kernel size, direction, and threshold values,
all of which might have an effect on the performance of the method. In conventional
approaches, determining which parameters are ideal can be a difficult and time-consuming
process. Traditional approaches concentrate on low-level elements; they may have difficulty
capturing the intricate and high-level details that are present in textures. In order to achieve
a high level of accuracy with CNN-based texture classification, a large dataset is required for
training. It is essential that the training data be of high quality. Data that are noisy or have
been incorrectly labeled can have a detrimental effect on the performance of CNN-based
texture classification.

To extract important regions, edges, and textures from images for segmentation,
classification, and object recognition [33], INVG and IHVG algorithms are effective and
simple. Laifan et al. [15] used degree distribution measures to sort textures into groups
on a well-known dataset. The degree distribution feature checks the strength of edges
to find important edges and features in an image for classifying it. However, the degree
distribution feature only reflects image edge connectivity, not spatial relationships between
regions. Small differences in pixel values that affect degree distribution may also impair
model accuracy. The clustering coefficient feature shows an image’s local structure and can
find pixel clusters or related regions. It finds texture-matched spots in images. To grasp
an image’s structure, we need global and local relationships. In this work, we classified
textures using degree distribution, the clustering coefficient, and a combination of both.
Putting together degree distribution and clustering coefficient data to make a feature
vector that shows the overall and detailed structure of a picture might help with accurately
classifying textures. Together, these two traits often show less noise than either one by itself.
This is because they show both how an image is put together overall and how pixels are
connected locally. In this study, information was obtained from both merged and separate
INVG and IHVG graphs. When you combine INVG and IHVG graphs, you obtain a clearer
image structure description, which makes texture recognition more accurate.

3. Methodology
3.1. Complex Network

A graph that contains non-trivial topology properties of the real system is referred to
as a complex network. It is difficult to predict the collective behavior of complex systems
from their individual components, but the complex network (graph) of a system makes us
capable of understanding them. Complex networks are used to represent many different
kinds of complicated systems because of their properties, which include the prediction
of time series and the classification of images. Because they have such a wide range of
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applications, time series and image analysis are both extremely significant in a variety
of fields. Complex networks are a useful tool for understanding the characteristics of
both time series and images. This is because the visibility graph technique establishes
strong links between complex networks, time series, and images. There are different types
of visibility graphs, like horizontal visibility graphs, natural visibility graphs, multiplex
visibility graphs, image horizontal visibility graphs, and image natural visibility graphs,
that can be used to map time series and images into complex networks [34].

3.2. Visibility Graph (VG)

In a visibility graph, every entity is denoted as a node, and the existence of a connection
between any two nodes indicates that the entity can be seen by the other nodes within the
graphical representation. In a two-dimensional space, objects are frequently represented
as line segments. There is a direct line of sight between the endpoints of two segments
connected by an edge. Applications for visibility graphs include things like route planning,
robot navigation, and computer graphics. Several algorithms, including proximity net-
works, visibility graphs, and transition networks, have been devised to create complicated
networks out of time series [35]. The visibility graph method is a useful tool for going from
time series and image data to a graphical representation. As mentioned by Lacasa et al. [36],
the visibility graph is a simple way to add time series to the network. First, we will discuss
two types of visibility graphs that can be made from a single-variable time series and one
way that they could be expanded to images.

3.2.1. Natural Visibility Graph

The NVG is a type of visibility graph that is constructed using time series data. It is
a method of describing a time series underlying the relationship architecture. Each time
series data point is represented as a node in an NVG, and an edge between two nodes
indicates that the related data points are mutually observable. In particular, two data points
are deemed mutually observable if no other data point lies on the straight line segment that
connects them. An NVG is built by computing the pairwise visibility between all pairs of
data points in the time series data. Many intriguing aspects and uses of NVGs have been
discovered, including the characterization of chaotic systems, the discovery of patterns and
trends in time series data, and the detection of abnormalities or outliers. They have also
been utilized in the development of time series analysis machine learning techniques, such
as those based on graph neural networks. Figure 1 depicts an illustration utilising the same
time series data as the natural visibility graph.

For the time series data s = f (r), let S = s1, s2, ..., sN be an ordered series of N
real-valued data. A undirected VG is a type of undirected graph that comprises a set of
N nodes, with each node a ∈ [1, N] assigned a label based on the chronological sequence
of its corresponding datum, sa. Consequently, the variable s1 is assigned to the node with
index a = 1, s2 is assigned to the node with index b = 2, and so forth. Subsequently, a pair
of nodes denoted as a and b (with the assumption that a < b without loss of generality) are
deemed to be interconnected by an undirected link if it is feasible to create a straight line
that connects sa and sb without crossing any intervening datum sc in Equation (1), where
a < b < c. The following convexity visibility criteria must be satisfied for the nodes a and b
to be connected.

sc < sa +
c− a
b− a

(sb − xa), ∀(a < c < b). (1)

The undirected and unweighted visibility graph can be represented by the adjacency
matrix (Aab) in Equation (2).

A(VG)
ab = A(VG)

ba =
b−1

∏
c=a+1

f
(

sb + (sa − sb)
rb − rc

rb − ra
− sc

)
(2)

where f is a Heaviside function.
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Figure 1. Natural visibility graph from time series data.

3.2.2. Horizontal Visibility Graph

An HVG is a type of visibility graph that is created with time series data [37]. Each
time series data point is represented as a node in a horizontal visibility graph, and an edge
is drawn between two nodes if the line connecting them is strictly horizontal and does
not intersect any other data points in the time series data. This means that if two data
points on the horizontal axis have a clear line of sight, an edge in the HVG connects them.
Figure 2 depicts an illustration utilising the same time series data as the horizontal visibility
graph. The horizontal visibility graph is a sub-graph of the natural visibility graph. The
construction of a horizontal visibility graph involves the application of a restricted visibility
criterion and the imposition of horizontal visibility. The connection between nodes a and
b is established if and only if it is possible to draw a horizontal line that links sa and sb,
without intersecting any intermediate datum sc, where a < c < b. Alternatively, it can be
observed that the connection between a and b in the HVG is dependent upon satisfying the
following ordering criterion in Equation (3):

sc < inf(sa, sb), ∀(a < c < b). (3)

There is an edge (a, b) if sc < inf(sa, sb) for all c with a < c < b, so the adjacency
matrix (AHVG

ab ) for horizontal visibility graph is mentioned in Equation (4),

A(HVG)
ab = A(HVG)

ba =
b−1

∏
c=a+1

f (sa − sc) f (sb − sc). (4)

where f is a Heaviside function.
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Figure 2. Horizontal visibility graph from time series data.

Various graph-theoretical techniques can be employed to examine the resulting HVG
and extract information regarding the fundamental time series data. HVGs have been
employed in various disciplines such as neuroscience, meteorology, economics, and mu-
sic analysis.

3.3. Image Visibility Graph

In an IVG, every pixel is called a node, and lines connect two nodes if the line joining
them does not collide with any other pixels. An IVG edge connects pixels with a clear
line of sight. For the purpose of assessing image features such as pattern recognition,
texture classification, and filters, a direct approach that is used to transform scalar data
into graphs is the family of image visibility graphs. This method is used to turn scalar
data into graphs. The idea of the visibility graph is developed even further when viewed
in conjunction with its corresponding visual representation [16]. The generated IVG
can then be analyzed to obtain information about the underlying image using various
graph-theoretical metrics. Image analysis, texture identification, and pattern recognition
are just a few of the disciplines for which IVGs have been used.

3.3.1. Image Natural Visibility Graph

An INVG is a form of visibility graph that is built using an image’s attributes. Each
pixel in the image is represented as a node in an INVG, and an edge is drawn between
two nodes if the line joining them does not cross with any other pixels in the image and
their grayscale values meet certain conditions. A pixel’s grayscale value must be either
a local maximum or a local minimum in the row or column to which it belongs, and the
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grayscale values of two pixels joined by an edge must be either both local maxima or both
local minima.

An INVG is a graph with N2 nodes, each identified by its datum indices, denoted as
Iab. The nodes ab and a′b′ are connected if

• a = a′ OR b = b′ OR [a = b± t AND b = b± t] for some integer t and
• the NVG definition algorithm establishes a connection between Iab and Ia′b′ . This

algorithm is executed on an ordered sequence that comprises Iab and Ia′b′ .

3.3.2. Image Horizontal Visibility Graph

IHVGs are produced using image attributes. An edge is drawn between two nodes in
an IHVG if the line connecting them is strictly horizontal, does not collide with any other
pixels in the image, and the grayscale values of the two pixels accomplish specific criteria
(the image must be grayscale, and each row must contain the local maxima and minima).

An IHVG is a graph consisting of N2 nodes, where each node in the graph is identified
by the indices of its corresponding datum, denoted as Iab. The nodes ab and a′b′ are
connected if

• a = a′ OR b = b′ OR [a = b± t AND b = b± t] for some integer t and
• the HVG definition algorithm establishes a connection between Iab and Ia′b′ , both of

which are included in an ordered sequence.

Graph-theoretical metrics can be used to analyze INVGs and IHVGs to learn about
the image. Both are used for texture recognition, image segmentation, image retrieval, etc.

3.4. Feature Extraction

A graph is generated from the INVG and IHVG, which include rooted data about
that image. The INVG and IHVG can extract graph attributes such as topological plots,
global and local features, and multiplex features [16]. Global features offer topological
information about the entire graph, while local attributes consider small substructures [34].
The INVG and IHVG both calculate each pixel’s degree and clustering coefficient. In order
to calculate the degree and the clustering coefficient for each pixel, a graph employing the
INVG and IHVG is generated.

3.4.1. Degree Distribution

The probability distribution of the degree throughout the entire network is known
as the degree distribution. According to the [38] theorem, the HVG of N vertices is in
bijection with their degree distribution, indicating that degree distribution is important for
understanding global properties. Additionally, paper [26] mentions that degree distribution
is a good feature by which to study different spatiotemporal dynamical systems.

3.4.2. Clustering Coefficient

The graph’s structure can be seen in the vertex’s immediate surroundings. While
performing classification tasks, the local clustering coefficient measures clique proximity.
The clustering coefficient [27] indicates the degree of network node grouping. Xi is the
vertex clustering coefficient. The local clustering coefficient is defined in Equation (5),

Xi =
2(Number of connected triangles, including node i)

xi(xi − 1)
(5)

where xi denotes the number of the vertex’s neighbors.
This study presents the computation of a degree distribution and clustering coef-

ficient, which are used as input vectors for the classifier. Furthermore, the process of
generating a novel feature vector involves the combination of both degree distribution
and clustering coefficients for the purpose of classification. The combination of both
features is generally more robust to noise in the image than either feature alone, as the
two features provide more information about both the overall structure of the images and
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the local connectivity of pixels. Also, the combination of an INVG and IHVG captures
different aspects of the image structure and allows for a more complete and enhanced
representation of the image. Therefore, features are extracted from the combination of
these graphs, which can improve the accuracy of image texture classification tasks.

Accuracy is one way to measure how well a classification model works. In the context
of binary classification, it is also possible to evaluate accuracy based on the positives and
negatives as shown in Equation (6).

Accuracy =
True Positive + True Negative

True Positive + False Positive + False Negative + True Negative
(6)

3.5. Classifiers for Texture Classification

A specific type of machine learning system used to categorize incoming data is called a
classifier. After extracting features using an INVG and IHVG, associating them with a class
label enables rapid classification of texture images based on their class titles. Regression
and classification are carried out using a decision tree (DT), a supervised machine learning
method. The objective is to construct a model that categories the label class value through
acquiring simple decision rules from the feature. The SVM is a prevalent and extensively
employed supervised machine learning method that is applied for both classification and
regression tasks. Establishing a decision boundary that can classify n-dimensional space
is the goal of the SVM algorithm. It is a better classifier than others for identifying and
categorizing different textures [32]. RF is the most used technique for categorization issues.
Random forest builds a decision tree from the different samples, using the average for
regression and the majority vote for classification. Other machine learning classifiers
include KNN, LDA, and others. In this study, the SVM, RF, DT, and KNN classifiers were
employed for texture classification.

4. Experimental Results and Discussion

The performance of the suggested approach was evaluated by conducting an analy-
sis on grayscale images from two distinct datasets; namely, the Brodatz texture image and
Salzburg texture image (STex) datasets. The Brodatz texture database contains 24 differ-
ent textures, with the first 12 being natural textures and the last 12 being artificial textures.
More details about the datasets can be found in [39]. Some examples of these texture
images are shown in Figure 3. The STex dataset [40] has 476 color texture images. How-
ever, STex has many classes of texture images but only two classes, i.e., miscellaneous
(misc) and wood, are taken into account for texture image classification. It contains 85
different texture images and the examples of these texture images are shown in Figure 4.
The cv2 Python package was used to convert texture images to 64× 64 pixels so that they
could work with different dataset sizes and computing needs. Using the NaturalVG and
HorizontalVG methods from the ts2vg Python library, texture images were converted to
INVG and IHVG graphs [41]. For each image, pixel degrees were extracted and a degree
distribution feature was constructed. The source code for extracting the features can be
found on github (https://github.com/rahulpaljrf/graph_features/tree/main, accessed
on 1 October 2023). For image texture classification, the degree distribution feature
collects edge strengths and can identify relevant edges and features. Furthermore, the
clustering coefficient for every pixel in each image is calculated for both of the graphs.
The clustering coefficient feature captures the local structure of an image, which can
be used to identify regions that are highly connected, and it is used for identifying
regions in an image that belong to the same texture. To make our model more robust,
the degree distribution and the clustering coefficient features from both the graphs were
combined into a single feature vector; the resulting feature vector captures both the
global and local structure of an image, which helps to increase the accuracy of texture
classification tasks. Once more, the degree distribution and clustering coefficient are
extracted using a combination of INVG and IHVG graphs in order to increase the feature
vector. A more thorough and improved depiction of the picture structure is possible

https://github.com/rahulpaljrf/graph_features/tree/main
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because of the combination of the INVG and IHVG graphs, which capture many facets
of the image structure. These feature vectors are created, and then they are fed into
different classifiers including SVM, DT, KNN, and RF.

Based on an IVG algorithm, a methodology was created for classifying texture im-
ages. Using this standardized method, classification tasks were carried out on databases of
grayscale images. The process is explained in detail in Figure 5. The results of the catego-
rization experiments are presented in Tables 3 and 4 for the Brodatz and Salzburg texture
picture datasets, respectively. This investigation allowed us to assess the IVG algorithm’s
performance in precisely identifying textures based on the underlying graphs.

D1 D101 D102 D5

D11 D15 D20 D26

D47 D48 D49 D51

D68 D71 D72 D106

Figure 3. Sample texture images from the Brodatz texture image dataset.
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Figure 4. Sample texture images from the Salzburg texture image dataset.

Input Texture Image

Pre-processing (Image resizing)

INVG and IHVG graph

extracted degree and clustering Coefficient

Classification by ML Classifiers

Figure 5. Flowchart of the proposed method.
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Table 3. The classification outcomes for the Brodatz texture image dataset.

Dataset Graph Feature
Machine Learning Classifier

RF (%) DT (%) KNN (%) SVM (%)

Brodatz

INVG

Degree
distribution 80 80 60 60

Clustering
coefficient 80 60 60 60

Combination of
both 80 80 60 60

IHVG

Degree
distribution 100 80 100 80

Clustering
coefficient 80 80 60 60

Combination of
both 100 80 100 80

INVG+IHVG

Degree
distribution 80 80 80 80

Clustering
coefficient 80 80 60 60

Combination of
both 80 80 80 80

Table 4. The classification outcomes for the Salzburg texture image dataset.

Dataset Graph Feature
Machine Learning Classifier

RF (%) DT (%) KNN (%) SVM (%)

STex

INVG

Degree
distribution 81.81 68.18 63.63 72.72

Clustering
coefficient 82.35 70.58 70.58 88.23

Combination of
both 76.47 76.47 70.58 70.58

IHVG

Degree
distribution 63.63 63.64 68.18 54.54

Clustering
coefficient 76.58 76.47 68.88 58.88

Combination of
both 82.35 77.77 76.47 68.18

INVG+IHVG

Degree
distribution 81.81 77.27 68.81 72.72

Clustering
coefficient 82.35 76.47 68.18 72.27

Combination of
both 82.35 76.47 70.47 74.71

4.1. Classification Results on Brodatz Texture Image Dataset

Table 3 illustrates the classification accuracy of four distinct machine learning
classifiers, i.e., RF, DT, KNN, and SVM, on the Brodatz texture image dataset. These
classifiers were applied to three separate graph features; primarily, INVG, IHVG, and a
feature combining INVG and IHVG. The degree distribution and clustering coefficient
characteristics of the INVG graph reached an accuracy of 80% for RF and 60% for DT,
KNN, and SVM. The accuracy of RF and DT increased to 80% when the two features were
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integrated, whereas KNN and SVM continued to be accurate just 60% of the time. This
lends credence to the idea that the degree distribution feature is a more informative one for
this dataset. The degree distribution feature alone is able to reach an accuracy of 100% for
the RF and KNN graphs, but the DT and SVM graphs are only able to achieve an accuracy
of 80%. The accuracy of all classifiers can be increased to 80% by utilizing the clustering
coefficient feature. The accuracy of RF and KNN once again improves to 100% when
both characteristics are merged; however, DT and SVM maintain their previous accuracy
level of 80%. It can be deduced that the degree distribution feature is quite useful for
this dataset and that combining both features can improve the performance of the model.
When the INVG and IHVG are combined, all classifiers reach an accuracy of 80%, which is
consistent regardless of the types of features they employ. This leads one to believe that the
features contained within this dataset are well-balanced and offer the classifiers comparable
quantities of information.

Overall, these results emphasize the significance of selecting informative graph fea-
tures for machine learning classification tasks on texture image datasets, as well as the
benefits of combining various graph features to improve a model’s performance.

Figure 6a shows the accuracy of the different machine learning classifiers on three
features extracted from the INVG graph. It shows that clustering coefficients and combined
features are very useful for the INVG graph for analyzing grayscale image attributes.

(a) (b) (c)

Figure 6. Accuracy of (a) INVG, (b) IHVG, and (c) combined graphs on Brodatz dataset.

Figure 6b shows the accuracy of the different machine learning classifiers on three
features extracted from the IHVG graph. It shows that degree distribution and combined
features are useful for the IHVG graph for analyzing grayscale image properties.

Figure 6c shows the accuracy of different machine learning classifiers on three features
extracted from the combined graph. It also suggests that the degree distribution and
combined features are more useful in analyzing grayscale images for the combined graph.

Figure 7a shows the accuracy of the degree distribution feature on different machine
learning classifiers applied on the INVG, IHVG, and a combination of both graphs. RF
and DT classifiers achieved 80% accuracy for the INVG graph, while KNN and SVM
classifiers achieved 60%. The KNN classifier achieved the highest accuracy of 100% for the
IHVG graph, while DT, RF, and SVM classifiers achieved 80%. For the combined graph all
classifiers achieved the same accuracy of 80%. These results suggest that degree distribution
helps train machine learning classifiers to analyze graph features from diverse graphs. The
performance of the classifiers changed depending on the graphs.

Figure 7b shows the accuracy of the clustering coefficient feature on different machine
learning classifiers applied on the INVG, IHVG, and a combination of both graphs. The RF
classifier achieved the highest accuracy of 80% for the INVG graph, while DT, KNN, and
SVM classifiers achieved 60%. For the IHVG and combined graph, RF and DT classifiers
both had the highest accuracy of 80%, while KNN and SVM classifiers had 60% accuracy.
These results suggest that the clustering coefficient is a moderately useful feature for
analyzing graph features.
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(a) (b) (c)

Figure 7. Accuracy of (a) degree distribution, (b) clustering coefficient, and (c) combined features on
Brodatz dataset.

Figure 7c shows the accuracy of the combination of both degree and clustering coeffi-
cient features on different machine learning classifiers applied on the INVG, IHVG, and a
combination of both graphs. RF and DT classifiers achieved 80% accuracy for the INVG
graph, while KNN and SVM classifiers achieved 60%. RF and KNN classifiers achieved
an accuracy of 100% for the IHVG graph, while DT and SVM classifiers had 80% accuracy.
For the combined graph, all classifiers achieved the same accuracy of 80%. These results
suggest that combined features are useful for analyzing graph features.

4.2. Classification Results on Salzburg Texture Image Dataset

In the same way, Table 4 shows the classification accuracy of four different machine
learning classifiers (RF, DT, KNN, and SVM) on three different graph features (mainly INVG,
IHVG, and features from the combined INVG and IHVG graph) from the STex dataset.

RF, SVM, and KNN classifiers all performed better on the degree distribution feature of
the INVG graph, whereas the DT classifier performed the best on the clustering coefficient
feature, with an accuracy of 70.58%. The accuracy of DT and SVM classifiers increased
when both features were used together, but that of the RF and KNN classifiers dropped
significantly. The DT classifier, when trained on the combined features, had the greatest
accuracy of 76.47%. The degree distribution feature was less accurate than the clustering
coefficient feature for the IHVG graph for all classifiers except KNN. All classifiers became
more accurate when the two features were merged, with the RF classifier having the
best accuracy (82.35%). The degree distribution feature achieved greater accuracy on the
RF, DT, and SVM classifiers when INVG and IHVG graphs were combined, while the
clustering coefficient feature achieved greater accuracy on KNN classifiers. The accuracy of
all classifiers increased when the two features were merged, with the RF classifier achieving
the best accuracy of 82.35%.

Overall, these results show that the choice of feature depends on the graphs and
that different features have different levels of importance for different classifiers. The
combination of features can enhance the accuracy of classification, but the benefit is
dependent on the graphs and classifier used.

Figure 8a shows the accuracy of the degree distribution feature on the different ma-
chine learning classifiers applied on the INVG, IHVG, and a combination of both graphs.
For the INVG graph, RF and SVM classifiers were more accurate than DT and KNN classi-
fiers. The accuracy of all classifiers slightly decreased for the IHVG graph. On a combined
graph, RF and DT classifiers were more accurate than KNN and SVM. These results suggest
that degree distribution is a moderate feature for training machine learning classifiers to
analyze graph features made from different graphs on the STex dataset.
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(a) (b) (c)

Figure 8. Accuracy of (a) degree distribution, (b) clustering coefficient, and (c) combined features on
STex dataset.

Figure 8b shows the accuracy of the clustering coefficient feature on the different
machine learning classifiers applied on the INVG, IHVG, and a combination of both graphs.
SVM and RF classifiers performed better compared to KNN and DT classifiers for the INVG
graph. For the IHVG and combined graph, RF and DT classifiers performed better than
KNN and SVM.

Figure 8c shows the accuracy of the combination of both degree and clustering coef-
ficient features on different machine learning classifiers applied on INVG, IHVG, and a
combination of both graphs. All classifiers achieved similar accuracy for all graphs, which
means they suggest that the combined features are also very useful for analyzing the graph.

Figure 9a compares machine learning classifier accuracy on three features extracted
from the INVG graph. It also shows that the clustering coefficients and combined features
are very useful for the INVG graph for analyzing grayscale image structures.

(a) (b) (c)

Figure 9. Accuracy of (a) INVG, (b) IHVG, and (c) combined graphs on STex dataset.

Figure 9b compares machine learning classifier accuracy on three features extracted
from the IHVG graph. It also suggests that the clustering coefficient and combined features
are very useful for the IHVG graph for analyzing grayscale images.

Figure 9c compares machine learning classifier accuracy on three features extracted
from the combined graph. It also suggests that combined features enhance the accuracy
and are useful in analyzing grayscale image properties.

4.3. Comparison with Some Existing Methods

This section compares the classification results obtained using various existing meth-
ods (Table 5). These methods encompass Gabor, GLCM, hybrid features [42], and CNN
features such as MobileNetV3, InceptionV3, VGG-M-FC, and VGG-VD-16-FC. The findings
of the investigation indicate that IHVG graphs, particularly those that include degree
features and a combination of degree and clustering coefficient features, provide superior
performance compared to traditional and CNN features when applied to the Brodatz
texture image dataset. Moreover, the INVG graph, when using clustering coefficient fea-
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tures, demonstrates superior accuracy compared to CNN features when applied to the
Salzburg texture image dataset.

Table 5. Comparison results with some existing features.

Dataset Feature Accuracy (%)

Brodatz

Gabor [24] 43.429

Gabor and GLCM [24] 48.995

Hybrid feature [42] 89.28

MobileNetV3 [43] 99.67

InceptionV3 [43] 99.33

IHVG (degree feature) 100

IHVG (combination of degree and clustering) 100

Salzburg

VGG-M-FC [44] 82.5

IHVG (combination of degree and clustering) 82.35

VGG-VD-16-FC [44] 83.3

INVG (clustering feature) 88.23

5. Conclusions and Future Work

In the process of texture classification, the NVG and HVG feature extraction
methods are utilized. They have the capability of capturing crucial information as well as
complicated patterns in texture data, which may assist in obtaining additional
discriminative features. The efficiency of this method will vary depending on the compre-
hensiveness and type of texture collection. Additionally, the construction of these graphs is
computationally intensive, which is especially problematic for large datasets. VG and its
derivatives are often used to turn temporal data into complex networks. This technology
has been successfully applied to image processing. This paper has presented a novel
methodology for classifying textures in the Brodatz and Salzburg texture image databases.
The suggested strategy involves the development of image visibility graphs, with the
utilization of degree distribution and clustering coefficients as key aspects. This method
can be extended to the color image algorithm, which may aid intelligent medical image
assessment. This will enable microstructure discovery in complex 3D scenes. Images can be
analyzed using NVGs and HVGs for spatial relationships, contours, and object recognition.
The method can extract features for machine learning tasks like pattern identification and
anomaly detection beyond texture classification. Graph neural networks’ visible graph
approach will also be improved. Thus, a robust color image method could aid image
classification and processing. NVGs and HVGs are useful in many domains that study
patterns, visibility, and time series relationships due to their adaptability and versatility.
The possible applications of these methods are continually expanding as researchers delve
into their applicability across many scientific and technical domains.
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