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Abstract: In this paper, we consider the cooperative decision-making problem for multi-target
tracking in multi-agent systems using multi-agent deep reinforcement learning algorithms. Multi-
agent multi-target pursuit has faced new challenges in practical applications, where pursuers need to
plan collision-free paths and appropriate multi-target allocation strategies to determine which target
to track at the current time for each pursuer. We design three feasible multi-target allocation strategies
from different perspectives. We compare our allocation strategies in the multi-agent multi-target
pursuit environment that models collision risk and verify the superiority of the allocation strategy
marked as POLICY3, considering the overall perspective of agents and targets. We also find that
there is a significant gap in the tracking policies learned by agents when using the multi-agent
reinforcement learning algorithm MATD3. We propose an improved algorithm, DAO-MATD3, based
on dynamic actor network optimization. The simulation results show that the proposed POLICY3-
DAO-MATD3 method effectively improves the efficiency of completing multi-agent multi-target
pursuit tasks.

Keywords: multi-agent; deep reinforcement learning; multi-target; allocation strategy

1. Introduction

Pursuit-evasion has been an extensively studied problem where multiple pursuers
aim to capture multiple moving evaders. This problem has faced new challenges as the
applications of robots and UAVs have become ubiquitous. In these scenarios, the pursuers
are equipped with advanced control system hardware and algorithms, and assume a great
degree of autonomy.

As a result, these pursuers are modeled as independent agents, and decentralized
multi-agent pursuit eliminates single point failures while requiring sufficient and effective
coordination to capture targets collaboratively. Constraints in the pursuers’ maneuvers (e.g.,
non-holonomic constraints [1]) render some classical approaches based on omni-directional
pursuers or simple geometry (such as [2–4]) ineffective because of their inability to adapt to
the evader’s changes in behavior. In addition, multiple evaders are modeled as targets that
can move irregularly to simulate a more realistic environment. So, we need an appropriate
allocation strategy [5] for all agents to determine which target to track at the current time.

Decentralized multi-agent pursuit benefits from recent advances in deep reinforcement
learning (DRL) [6–10]. However, these works do not take into consideration some important
real-world limitations in motion constraints. Souza et. al. address such issues in [1] by
introducing non-holonomic pursuers in bounded arenas to capture an evader. Though
their results based on the twin delayed deep deterministic policy gradient (TD3) are
promising, the collision of agents was not investigated, and they did not continue to
study the environment where the multiple targets existed. In [5], the authors introduced
a suboptimal but scalable approach that assigned individual agents to individual targets
and could dynamically re-compute such assignments. This is called the universal target

Electronics 2023, 12, 4613. https://doi.org/10.3390/electronics12224613 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12224613
https://doi.org/10.3390/electronics12224613
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4621-8166
https://doi.org/10.3390/electronics12224613
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12224613?type=check_update&version=1


Electronics 2023, 12, 4613 2 of 18

allocation method, but it has not yet been validated in a multi-agent reinforcement learning
framework. In addition, when tasks are executed under the centralized evaluation and
decentralized execution of a multi-agent deep reinforcement learning algorithm, there is a
significant gap in the policies learned by each agent. This is also an urgent problem that
needs to be solved.

Facing these difficulties, we considered a decentralized multi-agent multi target pur-
suit problem where multiple UAVs worked together to find more efficient collision-free
paths to capture all evaders. Then, the problem was transformed into a Markov decision
process (MDP) and we combined MATD3 with a novel reward function and artificial
potential field (APF) to solve the collision avoidance problem. Next, we specifically stud-
ied how to determine the current target that needed to be tracked for each agent. We
designed two general allocation strategies, POLICY1 and POLICY2, as well as an alloca-
tion strategy, POLICY3, that considered agents and targets as a whole. In addition, we
proposed an improved method, DAO-MATD3, for addressing the imbalance problem of
agents’ policies in the MATD3 algorithm. At last, we analyzed the design space (number of
agents and targets, evaders’ behavior and speed) and demonstrated the effectiveness of the
proposed approach.

We make the following contributions in this paper:

• We design different trajectories for multiple moving targets and devise various dy-
namic multi-target allocation strategies from different perspectives to guide multi-
agent multi-target pursuit.

• We reveal the problem of the agents’ policy gaps in existing solutions and propose the
dynamic actor network optimization to effectively address this issue.

• We retain the conflicts between agents and conduct comprehensive experiments to
compare our proposed methods to demonstrate their effectiveness.

This paper is organized as follows: Section 2 introduces related work. In Section 3,
the problem of multi-agent multi-target pursuit is defined in a formal manner. Section 4
describes the multi-agent deep reinforcement learning algorithm with collision avoidance,
allocation strategies and dynamic actor network optimization, in detail. The methodology
of experiments is presented in Section 5. The experimental results are discussed in Section 6.
Finally, the paper is concluded in Section 7.

2. Related Work
2.1. Multi-Agent Deep Reinforcement Learning

Multi-agent reinforcement learning is an important branch in the field of multi-agent
system research. By applying reinforcement learning technology, game theory, etc., to multi-
agent systems, multi-agents can complete more complex tasks via interactions and decision
making in a higher dimensional and more realistic scenario. In recent years, researchers
have combined multi-agent reinforcement learning with other technologies to improve and
innovate the algorithm from different aspects, such as pursuit-evasion[1,11,12], multi-agent
control [13–15], swarm systems[16–18], scalability[19,20] and collision avoidance [21–23].
These studies have provided us with sufficient inspiration for multi-agent mobility control,
physical constraints and conflict avoidance, but further research is needed to solve the
problem of tracking multiple targets.

2.2. Multi-Target Pursuit

Different methods have been developed in the literature for multi-agent cooperation to
achieve multiple goals, such as the task removal inference strategy [24], a shared Q-table for
all agents [25] and the cooperative co-evolutionary multi-agent system [26]. However, these
methods mainly focus on the completion of multiple tasks rather than having multiple
targets within a pursuing task.

Multi-target pursuit has also been taken into account in multi-UAV scenarios. For
example, in [27], an algorithm combining heuristic particle swarm optimization and a
decentralized cooperative auction was proposed. However, this research was not conducted
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on the basis of deep reinforcement learning. The authors in [28] proposed a max-consensus
protocol to guarantee the consistency of the joint multi-target probability distribution
(JMTPD). Then, a distributed partially observable Markov decision algorithm was used to
make tracking decisions. However, this method was considered from the perspective of the
agent itself, rather than an overall consideration of agents and targets. The authors in [29]
proposed a simultaneous solution to these problems based on the probabilistic navigation
function (PNF). The PNF provides an analytic solution, and guarantees the simultaneous
interception of all targets while limiting the risk of agents to a given value. However,
this method was not implemented within the framework of multi-agent reinforcement
learning algorithms, and its performance was not optimal. In contrast to these studies,
our method compares multiple dynamic target allocation strategies and addresses the
policy gaps of agents when tracking multiple targets under a multi-agent reinforcement
learning algorithm.

3. Multi-Agent Multi-Target Pursuit: Problem Definition

The multi-agent multi-target pursuing problem is defined as follows (scenario based
on [1]):

• Multiple homogeneous pursuers i(i ∈ {1, 2, . . . , nmax}) chase multiple homogeneous
evaders t(t ∈ {1, 2, . . . , mmax});

• The pursuers are subject to non-holonomic kinematic constraints, whereas the evaders
face no constraints and are omni-directional;

• Each pursuer only tracks one target for a given moment;
• A successful capture is defined as one evader(t) being in close proximity to one of

the pursuers (i.e., di,t < Dcap), and a successful task is defined as all evaders being
successfully captured;

• The goal of the trials is to minimize the capture time;
• If the evaders are not completely captured within Ttimeout, the trial is deemed unsuc-

cessful;
• Based on a globally observable environment, each pursuer can obtain all informa-

tion from the environment, and all information can be directly obtained by sensors,
with no communication between pursuers. The introduction of sensors is detailed
in Section 5.2.

Specifically, the pursuers are assumed to move in a way that follows a unicycle model:

xi = v cos φi (1)

yi = v sin φi (2)

φi = ω : (ωmin ≤ ω ≤ ωmax) (3)

where (x, y) is the position, φ is the heading angle, v is the linear velocity and w is the
angular velocity bounded in range [ωmin, ωmax]. Note that w is the only controllable variable
determined by the policy of an agent.

The arena is a circular area with radius Rarena. Neither the pursuer nor the evader can
leave the arena. Actions that would lead them outside the arena cause them to stay close to
the border.

3.1. Evader Policies

As shown in Figure 1 the evaders move along one of the three different combination
paths (single circle, concentric circles or under the repulsive influence of the pursuers). In
the path of a single circle, all evaders move in the same direction on a circle of the same
radius, and the initial positions of the evaders on the path are randomly chosen. In the
path of concentric circles, each evader moves in the same direction on circles of different
radii, and the initial positions of the evaders are randomly chosen on their own path. In the
case of a repulsive path, we apply the repulsive force from the pursuers onto each evader.
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The scene boundary also applies a repulsive force to the evaders. As a result, the evader’s
path is determined by the combined forces from both the pursuers and the scene boundary.
The force is modeled in Equation (4).

~v = ∑
j

(−−→pose −−−→posj

d2
j

)
+ η

τ̂/2 ∗ Rscene −−−→pose

d2
w

(4)

where pose and posj are the coordinates of an evader and agent j, respectively, dj is the
distance between them, dw is the distance of the evader to the scene boundary, τ is the
angular speed of one evader toward the closest point on the boundary and the value of
η for each evader is not the same to keep their movement paths different. If an evader
passes the boundary during a time step, we reset its coordinates to its prior location and its
linear velocity direction toward a pursuer, so that any invalid computations by the neural
network on the boundary point can be avoided.

Figure 1. Three policies of the three evaders. (Blue: single circle; Orange: concentric circles; Black:
under the repulsive influence of the pursuers).

3.2. Collision of Agents

Unlike evaders, the behaviors of pursuers are determined by the reinforcement learn-
ing strategy network, which assigns different angular velocities to each pursuer at a given
moment, forming different individual and collective strategies and behaviors.

In the scenario of multi-agent multi-target tracking, we retain the possibility of colli-
sions between agents. When the distance between pursuing agents is less than the collision
threshold Dcollide, the pursuing agents will collide. If there is a collision before all the
evaders are captured, the trial is declared to be a "fail" and terminates. Although this
assumption could be relaxed in some real-world scenarios, our work strives to completely
avoid collisions. Our collision avoidance method is presented in next section.

Table 1 summarizes the parameters used to define the problem.

Table 1. Problem definition.

i Pursuer agent
t Evader target

nmax Number of pursuer agents
mmax Number of evader targets
Dcap Distance threshold to capture
Di,t Distance between pursuer i and current target t

Dcollide
Distance threshold for collisions between

pursuers

4. Deep Reinforcement Learning with Multi-Agent Multi-Target Pursuit

In this section, we first convert the multi-UAV path planning problem into a Markov
decision process (MDP), and then provide a detailed introduction to our collision avoidance
method. Then, we present the multi-agent reinforcement learning algorithm used in
this study. Finally, we introduce the relevant methods of the multi-agent multi-target
pursuit problem in detail, including multi-target allocation strategies and dynamic actor
network optimization.
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4.1. MDP Formulation

The multi-UAV path planning problem, as a sequential decision-making problem, can
be formulated as an MDP [30], which is described by the tuple 〈S ,A,P ,R, γ〉, where S
is the state space, A is the action space, P is the state-transition model, R is the reward
function and γ ∈ [0, 1] is a discount factor that trades off the importance of immediate vs.
future rewards.

4.1.1. State Space S
Assuming the ith pursuer is tracking the kth evader, T ∈ t. In contrast to when there is

only a single evader, we added labels for different evaders to the state space S when there
were multiple evaders. The state of the ith pursuer is defined as si = [k, ψi, ψ̇i, si,T , sjn

i,N ],
which consists of following four parts:

• k is the index of the evader tracked by the current pursuer, i. In order to reduce the
instability of neural networks in training, the numerical magnitudes of k and other
parameters in the state space should be kept consistent. So, we normalize k using

this formula: k =
k + 1

m
, where m is the maximum number of evaders that need to

be tracked.
• ψi is the heading of the pursuer i with respect to a fixed world frame.
• ψ̇i is the ith pursuer’s angular velocity wi.
• si,T = [di,T , ~di,T , αi,T ,~αi,T ] is the relative state of the evader with respect to pursuer i,

where di,T is the distance between the evader and the pursuer, ~di,T is the vector from
pursuer i to the evader,~αi,T is the angular difference between the heading of pursuer i
and the vector between pursuer i and the evader and αi,T is the absolute value of~αi,T .

• sjn
i,N = [si,j, ∀j, j 6= i] is the joint vector of the relative state of the pursuer j with respect

to pursuer i. In addition, si,j = [di,j, αi,j], where di,j is the Euclidean distance between
pursuer i and j, and αi,j is the heading error defined as the angle between the heading
of pursuer i and the vector between pursuer i and j.

The representation of some notations in the state space is displayed in Figure 2.

Figure 2. The state space for each pursuer i. T denotes the evader and j denotes one other agent, i.e.,
the pursuer j.

4.1.2. Action Space A
Each pursuer’s action a ∈ A is the angular velocity w, which is saturated to be in the

interval [wmin, wmax].

4.1.3. State-Transition Model P
In an MDP, the state transition of an agent follows a Markov chain. Each agent takes

action according to the current state, and then turns into the next state after interacting with
the environment. The transition probability distribution is related to the applied algorithm.
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4.1.4. Reward FunctionR
As the evader moves continuously, leading to a dynamically changing environment,

sparse rewards do not enable pursuers to learn the tracking strategy. Therefore, a dense
reward function needed to be designed in this work, and the details are as follows:

ri =


rcaptor, if diT ≤ dcap

rhelper, if djT ≤ dcap and diT > dcap, ∃j 6= i
rins,i + rrep,i, otherwise

(5)

where diT and djT are the distances from pursuer i and pursuer j to the evader, respectively.
dcap is a distance threshold for capture, i.e., if diT ≤ dcap, pursuer i successfully catches the
evader. rcaptor is a large positive reward for successful evader capture, which is used to
encourage each pursuer to catch the evader. rhelper is a positive reward for helping other
pursuers capture the evader. In addition, rins,i is designed to encourage the pursuer to
move closer to the evader, and can be expressed as

rins,i =

{
(Rscene − diT,t), if diT,t < diT,t−1
−diT,t, if diT,t ≥ diT,t−1

(6)

where Rscene is the width of the considered area, diT,t and diT,t−1 are the distances between
pursuer i and the evader at time step t and t− 1, respectively. rrep,i is the reward term
designed to avoid collision. More specifically, we include two distance thresholds, i.e,
the sum of the radii of two pursuers’ physical bodies, Ri, and the radius of the collision
avoidance zone, Dcz, which can be found in Figure 3. If the distance between two pursuers,
dij is smaller than Ri, the two pursuers will collide and pursuer i will receive a big penalty,
rcollide . If Ri < dij ≤ Dcz, pursuer i does not collide with pursuer j, but it steps into pursuer
j’s collision avoidance zone, and pursuer i will receive a dij-based penalty. Otherwise, the
pursuer is safe, and rrep,i = 0. This reward term can be mathematically expressed as

rrep,i =


rcollide , if dij ≤ Ri, ∃j 6= i

rcollide ×
(

Dcz − dij
)

(Dcz − Ri)
, if Ri < dij ≤ Dcz, ∃j 6= i

0, otherwise.

(7)

4.2. Multi-Agent Pursuit with Collision Avoidance

We designed a modified artificial potential field (APF) method to adapt to the multi-
agent cooperative multiple moving evaders tracking scenario. Our goal was to plan
collision-free paths for the pursuers to capture all the evaders. Therefore, to avoid collisions
among agents, a potential field was added for each pursuer. The potential field was
modeled as an effective area, and simplified to a circular region with radius Dcz. The
potential field of all pursuers were designed to be the same size; an illustration can be
found in Figure 3. From this figure, we observe that if the distance between two pursuers
dij > Dcz, the pursuer is in a safe zone. If the pursuer enters into another agent’s potential
field (named the collision avoidance zone), i.e, Ri < dij ≤ Dcz, this pursuer receives a force
from the other pursuer and should perform collision avoidance actions. The influence of
this force on the pursuer’s action is denoted as ~̂eij. In addition, we designed an attractive
potential field around the evader, the influence of which is denoted as ~̂eTi. Thus, the
influence of all forces can be summarized as

−→rp i = α×~̂eij + β×~̂eTi (8)
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where α and β are constants. For a pursuer, the action chosen by the reinforcement learning
policy can be formulated as

−→
Aq = [cos ϕt+1, sin ϕt+1] (9)

where ϕt+1 = ~w× dt + ϕt and ϕt is the orientation of the pursuer at time step t. ~w is the
output of the policy. Influenced by the APF, the pursuer’s final velocity is modified to

A =
(

γ×−→Aq +
−̂→rp i

)
× vbase (10)

where vbase is a fixed speed and γ is a constant.

Figure 3. Illustration of the artificial potential field around a pursuer.

4.3. Multi-Agent Deep Reinforcement Learning Algorithm

A multi-agent twin delayed deep deterministic policy gradient (MATD3 [31]) was
used to learn the policy via centralized learning and distributed execution. Particularly,
the cooperation among multiple pursuers was encouraged through centralized evaluation,
and each pursuer executed its own distributed action according to its own observations.
Note that we treated all agents as homogeneous, and each agent’s experience was used for
the learning of its own policy.

4.4. Multi-Agent Multi-Target Pursuit

In this section, we explore the problems faced by multi-agent multi-target pursuit
tasks and demonstrate our solutions. One of the problems is that when there are multiple
targets, it is necessary to determine which target to track currently for each pursuer, as
each pursuer can only track a single target at a time. Another problem is that during the
experimental process of the cooperative task of multiple agents pursuing multiple targets,
there is a significant gap in the performance of each pursuer’s strategy. This is because the
decentralized execution architecture of the current off-policy MADRL algorithm, MATD3,
allows each pursuer to have its own action network. The details of our method are
presented below.

4.4.1. Allocation Strategy of Multi-Target Pursuit

In this part, we provide various tracking methods for pursuers when multiple targets
exist. We needed to find a suitable allocation strategy to determine which target should
be tracked by each pursuer in a given moment, which would affect the efficiency of multi-
agent multi-target task completion. We considered the current positions of agents and
targets for this task, but not their potential future positions. For multiple pursuers and
targets, we focused on the scenarios where the number of pursuers was equal to or greater
than the number of targets. When the number of pursuers was less than the number of
targets, our approach allowed for a simple solution. All pursuers focused on the portion of
targets with an equal number. Then, if a target was captured, another target was assigned
to the pursuer. We studied three different allocation strategies (POLICY1, POLICY2 and
POLICY3) and the specific details are shown in Figure 4.
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Figure 4. Presentation of three policies under the task of two agents pursuing two targets. (Black
circle: the pursuer; Blue circle: the evader; a, b: the serial number of the pursuer or evader; Orange
line: the actual target selection of the pursuer; Blue line: the possible target selection of the pursuer;
Number: the distance cost).

POLICY1: This allocation strategy inherits its idea from the task of multiple agents
tracking a single target. Even if there are multiple targets, all pursuers will only track
one target at a given moment. When this target is captured, a new one will be selected
from the remaining targets for all pursuers to track. Selecting a target requires calculating
the average distance between each target and all pursuers at the current moment, then
determining the target that needs to be tracked based on the shortest average distance.
From Figure 4, we see that the average distance between evader a and pursuers a and b
is (10 + 12)/2, which is greater than the average distance between evader b and pursuers
a and b, which is (6 + 7)/2. So, at the moment shown in the figure, all pursuers choose
evader b as the current target.

POLICY2: This allocation strategy originates from the general idea of a single agent
tracking multiple targets. When multiple targets exist, from the perspective of each agent,
each pursuers will choose to track the closest target to themselves. If a target has already
been assigned to a pursuer, other pursuers cannot choose this target, and they will choose
the next closest target from those remaining. When a target is captured, the redundant
pursuer will be assigned to one of the selected targets based on the nearest distance criterion.
From Figure 4, it can be clearly seen that the distances between pursuer a and evaders a
and b are 3 and 5, respectively. So, pursuer a will track the closest evader a, and similarly,
evader b will be assigned to pursuer b.

POLICY3: We observe that the pairing of a pursuing agent and target is limited to
nmax ×mmax, given nmax agents and mmax targets. Therefore, by traversing, we can obtain
all possible allocation combinations between agents and targets. Then, by evaluating the
suitability of each allocation combination, the optimal allocation combination between
agents and targets at the current moment can be obtained. From a general perspective, our
method uses the distance between the agent and the target as the evaluation criterion, also
known as cost. The distance between each agent and target is called individual cost, and
the sum of individual costs included in an allocation combination is called the summation
cost. The larger the distance between the agent and the target, the longer the tracking time,
and the completion time of the entire task also increases. Thus, when comparing various
allocation combinations, individual cost is the main basis of evaluation, and summation
cost is the secondary factor. When calculating, it is necessary to find the maximum value
of individual costs contained in each allocation combination, and then find the allocation
combination corresponding to the minimum value from these values. If there is are multiple
allocation combinations with a minimum value of equal size, then we would select the
one with the smallest summation cost as the optimal allocation combination at the current
time. In Figure 4, we define pursuer a tracking evader a and pursuer b tracking evader b
as an allocation combination, denoted as (a, a; b, b). The individual costs included in this
allocation combination are recorded as (7, 3). Obviously, the summation cost is 10. Similarly,
the allocation combination (a, b; b, a) has the individual costs (6, 8) and a summation cost
of 14. We can calculate the maximum individual costs for the two allocation combinations
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as 7 and 8, respectively. Thus, we choose the combination (a, a; b, b), corresponding to the
minimum value of 7, as the optimal allocation combination.

4.4.2. Dynamic Actor Network Optimization of MATD3

During our study, we noticed that there was significant performance disparity among
the policies of the agents during the training process, as illustrated in Figure 5.

Figure 5. The average rewards of each pursuer in a task of three pursuers tracking three evaders.

It can be clearly seen from the figure that there is no significant difference in the average
rewards received by the three pursuers at the beginning of the training phase. However, in
the subsequent training process, the average reward received by pursuer 2 continued to
increase, whereas the average reward received by pursuer 0 basically did not increase. The
average reward received by pursuer 1 was between the other two pursuers. In other words,
most of the targets in this task were captured by pursuer 2, and the other two pursuers’
strategies were lackluster compared with the strategy of pursuer 2.

In collaborative tasks, an imbalance between the strategies of multiple agents can
reduce the efficiency of completing the entire task. When using the MATD3 algorithm, this
can be attributed to the imbalanced performance of each agent’s actor network. We made
adjustments to the execution process of the original algorithm, and the structure of our
method is shown in Figure 6.

Figure 6. Overview of the proposed algorithm.

There are n agents and each agent has its own actor network and critic network. At
the beginning of training, each agent obtains the current state of the environment as input
to the actor network and returns the action to be executed. Then, through the interaction of
action information with the environment, the agent obtains experience information, such
as the next moment’s state and the reward, which is stored in the experience replay buffer.
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The critic network takes not only the current agent experience as input, but also obtains
experience from all other agents. This is the classic centralized evaluation decentralized
execution architecture. When the experience replay buffer does not meet the training
requirements, our method is the same as the original algorithm, MATD3, and the network
does not change at this stage. After the experience replay buffer is full, every ε episode
interval, we compare the average reward received by each agent in the previous ε episode,
and in this paper, we used the experience value ε = 100. We assume that agent m, with
the highest average reward, has the optimal actor network strategy, and then the states
of all agents in the current ε episode will be inputted to actor m to select actions for all
agents, which becomes a centralized execution architecture. However, we do not remove
the dispersed actor networks, and all actor networks are still updated, dynamically selected
and optimized during the training process. We called this method the dynamic actor
network optimization of MATD3 (DAO-MATD3). And the pseudo code of Algorithm 1 is
as follows.

Algorithm 1: Dynamic actor network optimization of MATD3 (DAO-MATD3)

1 Initailize. Actor network parameters θ, critic network parameters φ, target
network parameters φ

′
and experience replay buffer D;

2 for episodes← 1 to M do
3 Reset environment;
4 Receive all agents’ joint local state s;
5 for timestep← 1 to M

′
do

6 while replay buffer D is not full do
7 For each agent i, select action ai from the actori(si);
8 Execute joint action a to receive joint environmental immediate reward

r and the next moment joint state st+1;
9 Store (s, a, r, st+1) into replay buffer D;

10 end
11 if episodes % ε = 0 then
12 For each agent i, calculate the average reward obtained from the

previous ε episodes Ri;
13 Select the maximum one from R and mark it as Rm;
14 end
15 For each agent i, select action ai from the actorm(si);
16 Execute joint action a to receive joint environmental immediate reward r

and the next moment joint state st+1;
17 Replace experience in replay buffer D with new (s, a, r, st+1);
18 //Update actor and critic network;
19 Randomly sample B samples (sk, ak, rk, st+1

k ) from buffer D;
20 Set yk1 = rk + γQ

′
φ′1
(s
′
k, a

′
k)|a′k=πθ(s

′
k)

;

21 Set yk2 = rk + γQ
′
φ′2
(s
′
k, a

′
k)|a′k=πθ(s

′
k)

;

22 Set ymin = Min(yk1, yk2);

23 Update φ by minimizing 1
B ∑k

(
ymin −Qφ(sk, ak)

)2;
24 Update θ by the sampled policy gradient 1

B ∑k∇θπθ(sk)∇ak Qφ(sk, ak);
25 if update target network then
26 φ

′ ← τφ + (1− τ)φ
′

27 end
28 end
29 end
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5. Experiments

In this section, we introduce the specific parameters of our environment and the
relevant parameters of the neural network. We also provide some explanations on how to
achieve this environment in practical scenarios of UAVs. Finally, we specify the various
methods that are presented in Section 6.

5.1. Environments and Parameters

We designed a framework to simulate the environments of multiple pursuers tracking
multiple evaders using the MADRL algorithm being studied. We modeled the position and
speed (both linear and angular) of the agents and evaders at each time step, implemented
the MADRL algorithm and our improved algorithm, and evaluated performance in the
same framework. The performance indicators used mainly included the success rate,
average time steps and average rewards.

Specifically, we adopted the following environmental parameters: All the environ-
ments were episodic. When the number of agents and targets was between 2 and 6, the
maximum number of episodes was 10,000, and the maximum sustainable time steps for
each episode was 500. The radius of the collision avoidance zone (Dcz) was 0.14 and the
parameter γ in Equation (10) was set as 1/2. As the number of agents and targets continues
to increase to between 7 and 9, in order to maintain convergence in training, we adjusted
the maximum number of episodes and maximum sustainable time steps for each episode to
15,000 and 1000, respectively. At the same time, in order to reduce the collision risk between
pursuers and ensure the effectiveness of the collision avoidance method, we adjusted
parameters Dcz and γ to 0.1 and 1/10, respectively. The parameters, rcaptor and rhelper in
the reward function (Equation (5)) were set as 300 and 30, respectively. The parameter,
rcollide in the reward function (Equation (7)) was set to a smaller value of −0.1 to reduce the
impact on tracking strategy convergence. We assumed the pursuers and evaders were the
same size of 0.04, and the diameter of the scene was 2. The capture radius was 0.07. The
speed of pursuers vp was 0.116/time step. We varied the evaders’ speed between 0.093
and 0.139 per time step (0.8× through 1.2× the pursuers’ speed). The pursuers’ maximum
angular speed was set as π/10 per time step. The number of pursuers varied from 2 to 9,
and their locations were initialized randomly in a circular area with a radius of 0.35. The
evaders were initialized at a random location between the scene boundary and a circle with
a radius of 0.8.

We adopted the following network hyperparameters: When the number of agents and
targets was between 2 and 6, the length of the replay buffer was 1× 105. As the number
of agents and targets continued to increase to between 7 and 9, the length of the replay
buffer was adjusted to 2× 105. The discount factor, batch size and learning rate were set as
0.95, 1024 and 1× 10−3, respectively. In addition, the higher the updating frequency of the
allocation strategy, the closer it was to the performance of the strategy itself; however, it also
increased the computational workload. To balance performance with the computational
workload of the allocation strategy, we performed reassignment every 10 time steps, which
was an experience value. Due to the complexity of the allocation strategy and adjustment
of the network structure, our method usually required twice as much computation and
training time as the general MATD3 method. On the RTX3090 graphics card, the program
running through our algorithm for three agents pursuing three targets condition typically
took 200 to 300 s per 100 episodes.

5.2. Practical Scenario Application

Our approach simulates a scenario where three autonomous four-axis UAVs attempt
to capture three moving target UAVs. The UAVs fly in a circular area with a radius of
5 m, and both pursuer and evader UAVs are limited to the same altitude. The pursuer
UAVs are provided with RTK (real-time kinematic) technology to achieve real-time position
information of all UAVs. Different from ordinary GPS positioning, RTK positioning can
reach an accuracy of less than 1 cm and the measurement has delays at the millisecond
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level. While in flight, the pursuer UAVs obtain their respective motion directions with
an on-board IMU tilt angle sensor, which has a three-axis accelerometer and a three-axis
gyroscope module and supports a feedback rate of milliseconds. Therefore, the UAV can
obtain the current angle and angular velocity in real-time.

5.3. Method Statements

In summary, we conducted extensive experiments to compare the performance of the
following approaches. The basic algorithm for all experiments was MATD3, so its labeling
is omitted.

• POLICY1 and POLICY2: These two allocation strategies were general methods and
we mainly used them as the baseline methods for POLICY3.

• POLICY3-optimal and POLICY3-sample: Assuming the number of pursuers and
evaders at the current moment were n and m, respectively, when m = n, we paired
pursuers and evaders one to one. So, the number of allocation combinations could be
calculated as the factorial of n (denoted as n!).
However, when m < n, in order to compare the most combinations, we allowed
multiple pursuers to track the same target. The number of allocation combinations
could be calculated as mn. If we chose to traverse all allocation combinations, we
called this approach POLICY3-optimal.
As n and m increased, the computational workload required to compare all com-
binations also greatly increased. When n > 6, we randomly selected a portion of
the obtained combinations to participate in the calculation to reduce computational
workload. We called this approach POLICY3-sample. In next section, the number of
combinations we sample is 500.

• POLICY3-no: When n > 6, we still used POLICY3-sample, but with the collision
avoidance parameter when n ≤ 6.

• POLICY1-DAO and POLICY3-optimal-DAO: These two methods refer to a combina-
tion of an allocation strategy and our improved algorithm.

6. Results

In this section, we compare the various methods introduced in Section 5 through
extensive experiments. The evaluation metrics mainly included the success rate, average
time steps and average rewards. Due to the fact that the evader policy of the repulsive
path was more general and the model trained in this environment could migrate well to
the fixed path environments, we will mainly demonstrate the results obtained from the
repulsive path environment.

We provide details of the evaluation results in the following subsections: Specifically,
in Section 6.1, we evaluate the pros and cons of the three allocation strategies in the
environment where the evaders are repulsive to pursuers. We evaluate with both a small
and larger number of agents and targets with the relative speed of 0.8. In addition, we also
provide the performance of the three allocation strategies under different relative speeds
with three agents and three targets. In Section 6.2, we demonstrate the performance of
our improved algorithm under the same allocation strategy to address the problem of
imbalanced learning strategies among multiple pursuers, and we also demonstrate the
impact of our improved algorithm on task completion efficiency. Finally, in Section 6.3,
we validate the effectiveness of each part of our proposed improvement method in the
same experimental environment. Furthermore, if n < m at the initial stage, we only need
to randomly and dynamically select n targets from m targets to execute our method until
all targets are captured.

6.1. Performance of Allocation Strategy

The first set of experiments showed how the allocation strategies performed when
the number and relative speed of the agents and targets changed. For the repulsive path
environment, we studied the success rate and average time steps spent on successful tasks.
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When the number of agents and targets n is between 2 and 6, the collision avoidance
parameters of the environment remain unchanged. Figure 7 shows that when n > 3,
the success rate of POLICY1 significantly decreases. The success rate of POLICY2 also
decreases, but the magnitude is smaller than that of POLICY1. Through our experiments,
90 and 80% of the declining success rates of POLICY1 and POLICY2, respectively, were
due to collisions. POLICY1 had the greatest risk of collisions between agents, whereas
POLICY2 also had a certain risk of collision between agents. POLICY3-optimal maintained
the lowest risk of collisions between agents and achieved the highest success rate; As the
number of agents and targets increased, the agents under POLICY1 maintained a relatively
large task completion time, but the overall change in their time spent was stable, indicating
a certain balance between the number of agents and task difficulty under this method.
When n ≤ 4, the task completion time of POLICY2 was close to that of POLICY3-optimal.
However, when n > 4, the time spent by POLICY2 increased significantly, indicating that
as the number of agents increased, the effectiveness of each agent using a locally optimal
strategy to select one target decreased. By leveraging a strategy that considers both agents
and targets as a whole, POLICY3-optimal always maintained the lowest task completion
time under changes in the number of agents and targets.

Figure 7. Success rate and average time steps for different numbers of agents and targets (when
evaders followed repulsive path).

When n > 6, we adjusted the collision avoidance parameters of the environment to
eliminate the risk of collision between agents. Figure 8 shows that when n = 7, all the
three allocation strategies can achieve the highest success rate. However, as n continues to
increase, the success rates of POLICY1 and POLICY2 decrease to a certain extent, and their
task completion time also increases significantly. This indicates that as task complexity
increases, the astringency of the two general allocation strategies continues to decrease.
Although we adopted a random selection approach to implement POLICY3 while maintain-
ing a small computational cost, POLICY3-sample still maintained the highest success rate
and a stable task completion time when there were a large number of agents and targets.
POLICY3-no, with no modifying collision avoidance parameters, could not solve direct
conflicts between agents in more complex environments. Its success rate decreased with
the increase in the number of agents and always maintained a larger task completion time.

Figure 9 shows that (a) As the relative speed increases, the success rates of all the three
allocation strategies show a downward trend, while POLICY3-optimal shows a slightly
smaller decline compared to the other two methods, indicating that POLICY3-optimal
has better stability at different relative speeds; (b) As the relative speed increases, the task
completion time of the three allocation strategies increases to varying degrees, indicating
that the difficulty of the task is constantly increasing. At the same time, the difference in time
spent by the three strategies is gradually narrowing. This indicates that the performance
improvement of individual allocation strategy cannot effectively combat the increase in
difficulty caused by the increase in relative speed.
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These results demonstrate that regardless of the number of agents and targets and
different relative speeds, the performance of the POLICY3 method in tasks of multi-agent
pursuing multi-target surpasses the other two general methods.

Figure 8. Success rate and average time steps for more agents and targets (when evaders follow
repulsive path).

Figure 9. Success rate and average time steps with respect to relative speed (when three agents and
three targets follow repulsive path).

6.2. Performance of DAO-MATD3

This set of experiments show how our improved algorithm performs when all experi-
mental parameters are the same except for the algorithm used. The allocation strategies
used was POLICY3-optimal. For the repulsive path environment, we studied the average
rewards of each agent and average time steps spent on successful tasks.

Figures 10 and 11 illustrate that: (a) The method supported by only one allocation
strategy always exhibits a phenomenon where there is a significant gap in the policies
learned by each agent during training. According to the average rewards of each agent, it
can be seen that the pursuing enthusiasm of the agents varies. After adding our improved
algorithm, DAO-MATD3, the average rewards received by each agent were basically the
same, indicating that the gap in the pursuing policies of agents had basically disappeared.
(b) From the average rewards received by each agent, agent 2 received the most rewards,
indicating that it had the highest pursuing motivation and longest total distance traveled
in the task. However, the longest moving distance of all agents determines the completion
time of the entire task. So, when using the DAO-MATD3 algorithm, the average time steps
spent on tasks of multiple agent pursuing multiple targets can converge to within 100,
whereas the average time steps spent by the MATD3 method are stable at over 200.
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(a) (b)

Figure 10. Reward comparison between our algorithm and MATD3 in task of three agents tracking
three targets (when relative speed is 1): (a) Average rewards of each agent using MATD3; (b) Average
rewards of each agent using DAO-MATD3.

(a) (b)

Figure 11. Time step comparison between our algorithm and MATD3 in task of three agents tracking
three targets (when relative speed is 1): (a) Average time steps spent using MATD3; (b) Average time
steps spent using DAO-MATD3.

6.3. Performance of Ablation

This set of experiments shows how the various parts of our complete method perform
when other conditions are the same. For the repulsive path environment, we studied the
success rate and average time steps spent on successful tasks.

Figure 12 shows that: (a) At most relative speeds, our method POLICY3-optimal-DAO
achieved the highest success rate, and after replacing POLICY3-optimal with the weaker
performance of POLICY1 in our method, the success rate only showed a slight decrease.
When we did not retain our improved algorithm and only use the allocation strategy
and MATD3 algorithm to execute tasks, the success rate was significantly reduced. This
indicates that our improved algorithm could have a positive effect on the success rate of
tasks of multiple agents pursuing multiple targets. (b) At all relative speeds, our method
took significantly lower average time steps than other methods. After replacing the best
allocation strategy, the average time steps taken increased to a certain extent, but were still
much lower than when DAO-MATD3 was not used.

These results demonstrate that both the allocation strategy POLICY3, which con-
siders the overall cost, and the DAO-MATD3 algorithm, which reduces the policy gap
between agents, have important and positive effects on the efficiency of multi-agent
multi-target pursuit tasks.
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Figure 12. Ablation study on success rate and average time steps with respect to relative speed
(when three agents and three targets follow repulsive path).

7. Conclusions

In this paper, we have proposed a deep reinforcement learning method called POLICY3-
DAO-MATD3 to solve the problem of target allocation and imbalanced agent policies in
multi-agent multi-target pursuit tasks. This approach leverages a strategy that considers
agents and targets as a whole, as well as dynamic actor network optimization, effectively
improving the task execution efficiency when multiple agents track multiple targets. The
extensive evaluation results have demonstrated the performance advantages of POLICY3-
DAO-MATD3, including reducing the risk of collision between agents, improving the
success rate of pursuit, and effectively reducing the time spent on pursuing tasks. These
are essential for real-world pursuit-evasion applications. In addition, our research can
be further developed by further optimizing algorithms to reduce computational costs
when there are more agents and targets, determining how to validate more multi-agent
algorithms in more complex environments, etc.
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8. Hüttenrauch, M.; Šošić, A.; Neumann, G. Deep Reinforcement Learning for Swarm Systems. J. Mach. Learn. Res. 2019,
20, 1966–1996.

9. Xu, L.; Hu, B.; Guan, Z.; Cheng, X.; Li, T.; Xiao, J. Multi-agent Deep Reinforcement Learning for Pursuit-Evasion Game Scalability.
In Proceedings of the 2019 Chinese Intelligent Systems Conference, Shanghai, China, 29–31 May 2019; pp. 658–669.

10. Yan, F.; Wang, J.; Du, C.; Hua, M. Multi-Objective Energy Management Strategy for Hybrid Electric Vehicles Based on TD3 with
Non-Parametric Reward Function. Energies 2023, 16, 74. [CrossRef]

11. Zhang, R.; Zong, Q.; Zhang, X.; Dou, L.; Tian, B. Game of Drones: Multi-UAV Pursuit-Evasion Game With Online Motion
Planning by Deep Reinforcement Learning. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 7900. [CrossRef] [PubMed]

12. Wang, S.; Wang, B.; Han, Z.; Lin, Z. Local Sensing based Multi-agent Pursuit-evasion with Deep Reinforcement Learning. In
Proceedings of the 2022 China Automation Congress (CAC), Xiamen, China, 25–27 November 2022; pp. 6748–6752. [CrossRef]

13. Bai, W.; Cao, L.; Dong, G.; Li, H. Adaptive Reinforcement Learning Tracking Control for Second-Order Multi-Agent Systems. In
Proceedings of the 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), Dali, China, 24–27 May 2019;
pp. 202–207. [CrossRef]

14. Luo, Z.; Zhang, P.; Ding, X.; Tang, Z.; Wang, C.; Wang, J. Adaptive Affine Formation Maneuver Control of Second-Order
Multi-Agent Systems with Disturbances. In Proceedings of the 2020 16th International Conference on Control, Automation,
Robotics and Vision (ICARCV), Shenzhen, China, 13–15 December 2020; pp. 1071–1076. [CrossRef]

15. Wang, L.; Li, J.; Liu, X.; Fang, Y. Event-Triggered Fault-tolerant Model Predictive Control of Nonlinear Multi-agent System with
Time Delay and Parameter Uncertainty. In Proceedings of the 2021 40th Chinese Control Conference (CCC), Shanghai, China,
26–28 July 2021; pp. 5350–5355. [CrossRef]

16. Zuo, J.; Liu, Z.; Chen, J.; Li, Z.; Li, C. A Multi-agent Cluster Cooperative Confrontation Method Based on Swarm Intelligence
Optimization. In Proceedings of the 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of
Things Engineering (ICBAIE), Nanchang, China, 26–28 March 2021; pp. 668–672. [CrossRef]

17. Biswas, S.; Anavatti, S.G.; Garratt, M.A. Particle swarm optimization based co-operative task assignment and path planning for
multi-agent system. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI,
USA, 27 November–1 December 2017; pp. 1–6. [CrossRef]

18. Tahifa, M.; Boumhidi, J.; Yahyaouy, A. Swarm reinforcement learning for traffic signal control based on cooperative multi-agent
framework. In Proceedings of the 2015 Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 25–26 March 2015; pp. 1–6.
[CrossRef]

19. Andrade, C.; Garrido, C.; Peters, A.; Vargas, F. A low cost experimental platform for the study of scalability issues in multi-
agent systems. In Proceedings of the 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and
Communication Technologies (CHILECON), Valparaiso, Chile, 13–27 November 2019; pp. 1–6. [CrossRef]

20. Yang, N.; Ding, B.; Shi, P.; Feng, D. Improving scalability of multi-agent reinforcement learning with parameters sharing. In
Proceedings of the 2022 IEEE International Conference on Joint Cloud Computing (JCC), Fremont, CA, USA, 15–18 August 2022,
pp. 37–42. [CrossRef]

21. Basjaruddin, N.C.; Noor, Z.I.R.; Widyantoro, D.H. Multi Agent Protocol for Cooperative Rear-end Collision Avoidance System.
In Proceedings of the 2019 2nd International Conference on Applied Information Technology and Innovation (ICAITI), Denpasar,
Indonesia, 21–22 September 2019; pp. 23–26. [CrossRef]

22. Liu, J.; Zhang, C.; Huang, C.; Zhang, H.; Wang, Z.; Kong, D. Formation Control Strategy of Multi-agent Systems with Obstacle
Avoidance. In Proceedings of the 2020 12th International Conference on Advanced Computational Intelligence (ICACI), Dali,
China, 14–16 August 2020; pp. 138–143. [CrossRef]

23. Lu, M.; Zou, Y.; Li, S. Multi-agent formation control with obstacle avoidance based on receding horizon strategy. In Proceedings of
the 2019 IEEE 15th International Conference on Control and Automation (ICCA), Edinburgh, UK, 16–19 July 2019, pp. 1361–1366.
[CrossRef]

24. Li, J.; Chen, F.; Wang, C.; Chen, Y.; Huang, Y.; Wnag, X. A performance-impact based multi-task distributed scheduling algorithm
with task removal inference and deadlock avoidance. Auton. Agents Multi-Agent Syst. 2023, 37, 30. [CrossRef]

25. Daavarani Asl, Z.; Derhami, V.; Yazdian-Dehkordi, M. A new approach on multi-agent Multi-Objective Reinforcement Learning
based on agents’ preferences. In Proceedings of the 2017 Artificial Intelligence and Signal Processing Conference (AISP), Shiraz,
Iran, 25–27 October 2017; pp. 75–79. [CrossRef]

26. Zhang, Z.; Sun, X.; Hou, L.; Chen, W.; Shi, Y.; Cao, X. A cooperative co-evolutionary multi-agent system for multi-objective layout
optimization of satellite module. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), Banff, AB, Canada, 5–8 October 2017; pp. 147–151. [CrossRef]

http://dx.doi.org/10.3390/en16010074
http://dx.doi.org/10.1109/TNNLS.2022.3146976
http://www.ncbi.nlm.nih.gov/pubmed/35157597
http://dx.doi.org/10.1109/CAC57257.2022.10055841
http://dx.doi.org/10.1109/DDCLS.2019.8908978
http://dx.doi.org/10.1109/ICARCV50220.2020.9305372
http://dx.doi.org/10.23919/CCC52363.2021.9549839
http://dx.doi.org/10.1109/ICBAIE52039.2021.9390057
http://dx.doi.org/10.1109/SSCI.2017.8280872
http://dx.doi.org/10.1109/ISACV.2015.7105536
http://dx.doi.org/10.1109/CHILECON47746.2019.8988079
http://dx.doi.org/10.1109/JCC56315.2022.00013
http://dx.doi.org/10.1109/ICAITI48442.2019.8982117
http://dx.doi.org/10.1109/ICACI49185.2020.9177846
http://dx.doi.org/10.1109/ICCA.2019.8899605
http://dx.doi.org/10.1007/s10458-023-09611-y
http://dx.doi.org/10.1109/AISP.2017.8324111
http://dx.doi.org/10.1109/SMC.2017.8122593


Electronics 2023, 12, 4613 18 of 18

27. Liu, B.; Qin, Z.; Wang, R.; Gao, Y.b.; ping Shao, L. A hybrid heuristic particle swarm optimization for coordinated multi-target
assignment. In Proceedings of the 2009 4th IEEE Conference on Industrial Electronics and Applications, Xi’an, China, 25–27 May
2009; pp. 1929–1934. [CrossRef]

28. Zhao, Y.; Wang, X.; Wang, C.; Cong, Y.; Shen, L. Systemic design of distributed multi-UAV cooperative decision-making for
multi-target tracking. Auton. Agents Multi-Agent Syst. 2019, 33, 132–158. [CrossRef]

29. Hacohen, S.; Shoval, S.; Shvalb, N. Multi agents’ multi targets mission under uncertainty using probability navigation function.
In Proceedings of the 2017 13th IEEE International Conference on Control and Automation (ICCA), Ohrid, North Macedonia,
3–6 July 2017, pp. 845–850. [CrossRef]

30. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
31. Ackermann, J.; Gabler, V.; Osa, T.; Sugiyama, M. Reducing Overestimation Bias in Multi-Agent Domains Using Double Centralized

Critics. arXiv 2019, arXiv:1910.01465.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICIEA.2009.5138539
http://dx.doi.org/10.1007/s10458-019-09401-5
http://dx.doi.org/10.1109/ICCA.2017.8003170

	Introduction
	Related Work
	Multi-Agent Deep Reinforcement Learning
	Multi-Target Pursuit

	Multi-Agent Multi-Target Pursuit: Problem Definition
	Evader Policies
	Collision of Agents

	Deep Reinforcement Learning with Multi-Agent Multi-Target Pursuit
	MDP Formulation
	State Space S
	Action Space A
	State-Transition Model P
	Reward Function R

	Multi-Agent Pursuit with Collision Avoidance
	Multi-Agent Deep Reinforcement Learning Algorithm
	Multi-Agent Multi-Target Pursuit
	Allocation Strategy of Multi-Target Pursuit
	Dynamic Actor Network Optimization of MATD3


	Experiments
	Environments and Parameters
	Practical Scenario Application
	Method Statements

	Results
	Performance of Allocation Strategy
	Performance of DAO-MATD3
	Performance of Ablation

	Conclusions
	References

