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Abstract: Online judge (OJ) systems are essential in programming education as they efficiently
evaluate learners’ programming skills and reduce instructor workload. However, these systems often
overlook the importance of software-testing concepts. To address this gap, we developed a system
called Pytutor that integrates software-testing concepts to assess learners’ programming abilities
and proficiency by exploring students’ test cases and learning behaviors. Drawing on software
engineering theory and practical techniques, test capabilities are evaluated by analyzing the code
coverage and mutation testing of Defining Test Cases. Since our experiment is conducted in an
online environment, we can collect students’ learning behaviors and further analyze the relationship
between software engineering abilities and learning behaviors. We also analyzed the differences
in programming and testing abilities between computer science majors and non-computer-science
majors. Our findings suggest that better testing abilities may contribute to the improvement in
programming abilities, whereas in the current Taiwanese education context, computer science majors
do not necessarily have better testing abilities. This result provides suggestions for us to strengthen
software-testing education no matter which type of students it is targeted at.

Keywords: software testing; online judge

1. Introduction

In modern society, programming has become a fundamental skill. With advancements
in educational technology, many educational institutions have started adopting online
judge (OJ) systems as teaching tools [1–3] to assist learners in acquiring and improving
their programming abilities. OJ systems provide automated code evaluation and feedback,
offering assistance to learners throughout the learning process. These systems not only
accelerate the pace of instruction but also reduce the human and time costs associated
with manual grading by instructors. Additionally, they enhance learning outcomes and
effectively lower dropout rates [4]. Regarding OJ systems, Wasik mentioned the need
for the secure, reliable, and continuous evaluation of code submitted by users world-
wide. The systems can generally be categorized into two types based on their objectives.
Competition-oriented systems typically support a limited number of programming lan-
guages and primarily aim to provide users with a platform for programming competitions,
often including elements such as leaderboards. Educational systems, on the other hand,
support a wider range of programming languages and incorporate gamification elements to
engage users in problem-solving processes [5]. Qian et al. visualized and analyzed learners’
performance on OJ systems by using a dashboard that provides real-time insights into
the distribution of learners’ mistakes and their mastery of knowledge. This fine-grained
analysis assists teachers in monitoring and providing feedback on learners’ activities [6].

In the field of software engineering, software testing is also a critical component.
By writing test cases, software developers can ensure the correctness and reliability of their
code. In education, teaching learners about software testing can contribute to improving
the quality of their code [7]. Therefore, the ability to write test cases is crucial in the
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process of learning programming. However, the traditional OJ systems used for education
only focus on testing the code written by learners, neglecting the importance of test-case
development. Previous studies have taught learners about software-testing concepts
in courses and investigated their testing abilities or programming skills. Buffardi and
Edwards conducted research on the testing validity of novice programmers and found a
strong positive correlation between the quality and quantity of early testing and assignment
outcomes [8]. On the other hand, regarding the relationship between testing abilities and
programming skills, Spacco and Fossat demonstrated that testing practices can improve
learners’ programming abilities and habits [9]. Fidge and Hogan observed the relationship
between learners’ testing and programming abilities through code coverage and program
scores but found a suboptimal testing performance due to learners’ lack of awareness [10].
Yang and Liu, in addition to coverage, employed mutation testing to assess learners’ testing
abilities and demonstrated a moderate positive correlation between the test efficiency index
and programming abilities [11].

This study aims to explore learners’ abilities and learning behavior in software en-
gineering within an online Python programming course. We developed a system called
Pytutor, which is a programming-practice platform used to assist in assessing learners’
abilities. (our system’s name is similar to the well-known code-visualization platform
Python Tutor, https://pythontutor.com/, but we are totally different, because ours is an
online judge system, accessed on 5 November 2023). The distinguishing feature of Py-
tutor is its ability to test not only learners’ code but also provide practice opportunities
for writing test cases. In the learning process of software engineering, learners’ ability
indicators and learning behavior serve as important measures to evaluate their progress
and achievements. The ability indicators may include programming skills and testing
abilities, while learning behavior encompasses activities such as watching course videos.
Furthermore, there may be variations in programming and testing abilities among students
from different departments or with different learning outcomes. For example, learners
majoring in computer science may demonstrate better programming and testing abilities
compared to non-computer-science students, or high-scoring learners may outperform
low-scoring learners in programming and testing abilities. We compare these differences
to gain insights into learners’ performance in software engineering learning, which may
contribute to providing targeted learning support and guidance. Lastly, there may be a
correlation between learners’ ability indicators and their level of engagement in software
engineering learning with their final learning outcomes. We analyze data related to learners’
ability indicators, learning participation, and final learning outcomes to determine whether
there is a correlation among these variables. This will help us understand the relationship
between learning behavior and final learning outcomes and potentially provide guidance
on maximizing learners’ learning achievements.

We will focus on the following three aspects in our research:

• RQ1: What is the performance of learners in terms of ability indicators in software
engineering and learning behavior?

• RQ2: How do learners from different groups perform in terms of programming ability
and testing ability?

• RQ3: Is there a relationship between ability indicators and learning behavior?

2. Related Work

The online judge system has evolved from automatic assessment systems. It possesses
the capability to evaluate whether the program submitted by the user can pass a set
of test cases. Depending on the usage scenarios, different online judge systems exhibit
distinct characteristics.

Wasik classified online judge systems into four categories based on their purposes:
“online compilers”, “data mining, education, and competitive programming”, “recruit-
ment platforms”, and “development platforms” [5]. The category of data mining, educa-
tion, and competitive programming has piqued our interest. Therefore, we discuss three

https://pythontutor.com/
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research-related areas that provide the foundation for designing courses and the necessary
functionalities for platforms. Firstly, we explore the importance of testing capability for
programmers and found in previous research that testing capability helps learners under-
stand specifications and write more-robust programs. Next, we discuss which appropriate
functionalities should be incorporated into automated assessment systems that emphasize
testing capability.

2.1. Importance of Software-Testing Ability

In the current automated assessment systems, the emphasis is on evaluating learners’
programming abilities.Testing capability involves understanding and formulating appro-
priate specifications, which are then used as test cases to examine the programs. Edwards
observed that reinforcing test-driven development in the curriculum positively impacts
students’ ability to test programs [12]. Ala-Mutka pointed out that students must learn to
design test cases before submitting their code and then proceed with testing the code [13].
Cerioli and Cinelli mentioned that at the very least, students should be provided with a
partial set of tests to evaluate their projects as it helps improve their understanding of the
problem [14]. Fidge and Hogan stated that testing capability is the ability to understand
problems while programming capability is the ability to solve them, yet they found that
learners’ testing capability is significantly lower than their programming capability [10].
Fraser introduced gamification elements into the OJS in a software-testing course to enhance
students’ learning performance [15].

2.2. Programming Education and Assessment

We investigated the beneficial functionalities that automated assessment systems can
bring to learners in programming education. If an automated assessment is applied in
formative learning, the feedback provided to learners after they modify and resubmit their
programs is helpful. Sun designed an online judge system that enables teachers to assign
essential programming concepts to beginners for learning programming [16]. Suleman
mentioned that multiple submissions aid in iterative learning [17]. Carless et al. described
feedback as a key factor in developing high-quality learning [18]. Malmi et al. considered
that feedback on assignments allows students to modify their submissions [19]. When stu-
dents know what issues their submissions have and where their programs went wrong, they
can use this information to learn from their mistakes. Providing fully automated feedback
can be challenging, and many existing systems have room for improvement in this aspect.
Brito developed a system that enhances students’ programming competencies through
problem solving and the utilization of problem-type repositories. This system also incorpo-
rates competitive programming features, allowing students to assess their programming
skills in a timed environment [20]. Haynes-Magyar designed a self-directed learning envi-
ronment named “Codespec”. In this learning environment, students have the freedom to
choose from various problem-solving approaches, including pseudocode problems, Parsons
problems, Faded Parsons problems, fix-code problems, or write-code problems to tackle
practice exercises [21]. Xia et al. mentioned that traditional teaching methods encounter
challenges in conveying the complex internal processes of algorithms. To enhance the
effectiveness of classroom instruction, they introduced an interactive computer-algorithm
learning platform named “Progressive Blockly”. This platform’s main features include
visual programming, dynamic visual demonstrations of algorithmic steps, and interactive
instruction on the theoretical aspects of computer algorithms [22]. Polito introduced gami-
fication features into their 2TSW system. Gamification is already widely used and involves
integrating one or more game design elements and gameplay features into typically non-
competitive domains, such as the learning environment [23]. Swacha also performed a
comprehensive bibliometric survey on gamification education and found out that computer
science is the area presenting the most interest in the gamification area [24].
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2.3. Software-Testing Education and Assessment

In most automated assessment systems, learners submit their programs, and the sys-
tem uses a pre-established test dataset to test the functionality of the code. Ala-Mutka
pointed out that the scope of evaluation depends on the design of the test cases. The ac-
curacy of the assessment and the value of the formative evaluation heavily rely on the
design of the test cases used [13]. Vujosević-Janičić et al. stated that the grading is in-
fluenced by the test cases used [25]. Montoya-Dato et al. emphasized the need for the
careful construction of the test case set to prevent erroneous programs from passing the
tests. When incorrect programs are misjudged as correct, students who create erroneous
code may remain unaware of the errors [26]. Jiang developed an online practice system
that enables students to practice Selenium test scripts online and provides fair grading
and feedback [27]. Kasahara et al. mentioned that low-quality code can lead to issues
such as reduced productivity. Therefore, they propose the combination of gamification
and code assessment to motivate students to write high-quality code in assignments [28].
García-Magariño et al. introduced UnitJudge to address the limitations of traditional online
judges, which primarily focused on evaluating shorter code exercises and lacked feedback
on the causes of errors. This system can individually test different code segments to provide
valuable information for students to address errors in longer code practices [29].

3. Methods

Within this section, the developed OJ system for the study will be presented. Fur-
thermore, the evaluation of learners’ performance indicators will be elucidated, along
with an explication of the terminologies and parameters utilized in the computation of
these indicators.

3.1. System Design

In this section, we introduce our developed OJ system, Pytutor, including the key
design aspects, features, operation process, and security.

3.1.1. System Design Principles

As shown in Figure 1, our Pytutor is a web-based system based on the Django frame-
work, which follows the Model–View–Template architecture for easily extension. The tem-
plate module provides an interface for learners practicing the exercises in a Python-coding
editor. When learners submit their code, the view-control module will call the automated
assessment tool for automated evaluation. The software-testing module calculates the code
coverage, mutation scores, and our defined metrics (see Section 3.3). To make sure our
system is easily used and safe, we built the system by referencing the issues mentioned by
Ihantola [30].

Figure 1. The architecture of Pytutor.

The system interface includes a compile error feature that presents the compilation
error messages in their original form. Learners can refer to these messages to effectively
debug their code and learn how to correct errors directly.
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In terms of problem design, each problem is predesigned with a set of test cases known
as Hidden Test Cases (HTCs). Upon completing their program, learners can submit it for
evaluation, and the system will assess their programs by using these HTCs. Learners can
promptly view the scores obtained from the test results.

In addition to HTCs, the system offers Open Test Cases (OTCs). Learners can utilize
these OTCs to assess their programs. They also have the ability to design their own test
cases, referred to as Defining Test Cases (DTCs), and execute their programs to verify
the accuracy of their solutions under these DTCs. During the verification process using
DTCs, learners are required to ensure the correctness of the test outcomes. Once learners
believe that their programs are error-free following testing with the provided test cases,
they can proceed to submit their programs. At this stage, the system will evaluate the
learners’ programs by using HTCs and promptly display the obtained scores. In summary,
the system offers learners three categories of test cases: predesigned Hidden Test Cases,
open-ended Open Test Cases, and the flexibility to create their own custom Defining Test
Cases. This comprehensive approach enables learners to thoroughly test and refine their
programs prior to final submission.

The types of test cases are as follows:

• Open Test Case (OTC): The system provides the Open Test Cases (OTC). Learners
can test their program under these OTCs and see the result to evaluate their code
independently.

• Hidden Test Case (HTC): Each problem is predesigned with some test cases called
Hidden Test Cases (HTCs). After learners complete their program, they can submit
them to the system, which will then test the programs by using these HTCs. The sys-
tem will provide immediate feedback to learners in the form of scores based on the
test results.

• Defining Test Case (DTC): Learners also have the option to design additional test cases,
referred to as Defining Test Cases (DTCs). These test cases are the ones that learners
believe the code should pass. Once learners feel confident that their programs are
error-free under these test cases, they can submit their programs for further evaluation.

Moreover, learners are expected to adhere to two principles while answering questions.
Firstly, the “Completion Principle” allows learners to make multiple attempts until they
successfully pass all the HTCs. Secondly, the “Cautionary Principle” enforces a deduction
of 3 points for each formal submission made by learners, encouraging them to think
thoroughly before formally submitting and ensuring error-free programs.

In summary, this system provides features such as displaying compilation errors,
HTCs, OTCs, and DTCs in its interface. Learners can utilize these features to debug,
test, and evaluate their programs while following the “Completion Principle” and the
“Cautionary Principle” to improve their scores and testing proficiency.

3.1.2. System Interface

The answering page of the system comprises three main areas: the question-information
area, the answering area, and the result-display area. In the question-information area,
learners can find the question name, description, and OTC, all of which are illustrated in
Figure 2.

Our Pytutor offers two distinct interfaces, namely the testing mode and the formal
submission mode, in the answering area and result-display area. Figure 3 illustrates the
testing-mode interface, where the upper area serves as the code-writing section for learners
while the lower area allows them to design their DTC and view the output of their test
results, including the history of the last three results.

In formal mode, the system tests the code submitted by learners using HTCs. It then
displays the obtained score or error message based on the testing result. Additionally, to pre-
vent accidental submissions, we provide a confirmation mechanism where learners need to
check the “Confirm Submission” option before proceeding with the formal submission.
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Figure 2. The question-information area.

Figure 3. The result-display area in the testing mode.

3.1.3. Security

Due to security considerations [31,32], learners’ programs are submitted to the server
for execution and results retrieval. To prevent the submission of malicious programs or
those with infinite loops that could potentially harm the server, we implemented Docker
container technology [33]. Upon program submission, the system automatically creates
a dedicated virtual container for execution. After obtaining the output, the container
is promptly deleted. Consequently, any malicious program will only affect the specific
container, which the system deletes within seconds. This approach effectively mitigates
security risks.

3.2. Process

The workflow diagram of the system is illustrated in Figure 4. After writing their
program, learners can either test it by using the testing mode or directly submit it by using
the formal submission mode. In the testing mode, learners can design DTCs or use OTCs
to validate their code and observe the output results. If the output does not meet their
expectations or errors occur, they can revise the program and retest or formally submit
it after making corrections. Once the testing results match their expectations, learners
can choose to design additional DTCs for further testing or proceed directly to the formal
submission mode without additional testing.
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Figure 4. The workflow diagram of the system.

3.3. Indicators

Our research aimed to investigate whether students’ sensitivity to test cases during
the process of learning programming is related to their programming ability. Regarding the
assessment of programming ability, since we are in an online environment, we can evaluate
this ability based on system logs, not just the scores in student assignments. Our proposed
approach considers the number of submission attempts, the code complexity, and their
pass rate in the online system. This consideration is based on some previous work, our
observations, and practical knowledge of software engineering. If a learner achieves the
same score as others but with relatively fewer submission attempts, their programming
ability should be considered superior. Research by Xu Bin and others also shows that
students’ programming ability is related to the number of submissions in the online review
system. They used an exploratory factory analysis model to identify underlying variable
structures from log data submitted by students in an online assessment system and assess
students’ programming proficiency to predict “at-risk” learners [34]. In our approach, we
extend this model to consider the factor of program complexity because complex programs
need more tries and submissions. We standardized the number of submission attempts by
code complexity, which is based on the theory of cyclomatic complexity [35]. In addition to
the number of submission attempts, the pass rate is also a factor to judge the programming
capability. In Yang et al.’s work [11], the programming ability is evaluated by the pass
rate and code maintainability. In our model, we did not consider the code maintainability
issue because our model was targeted at new learners and the assignments were not
complex enough to consider this issue. We also introduced the concept of “resilience”
to explore whether attitude affects programming behavior. When the amount of code
submitted was significantly higher than the complexity of the assignment, students showed
higher “resilience (r)” in solving the problem. Pereira et al. also proposed the same term
“resilience” to refer to students who submitted more code than the median number of
attempts and analyzed its relationship with final grades [36]. The detailed of evaluation
approach is described in Sections 3.3.1 and 3.3.2.

As far as testing capability is concerned, it is seen as the ability to provide effective
test cases to explore code errors. The factors and techniques we take into concern in our
online context are program complexity, number of test cases and their code coverage, and
mutation scores. The basic principle is the higher the coverage of a test case, the higher the
testing efficiency [37], which also means the better the testing ability of the learner who
provides this test case. In Yang et al.’s work [11], the test ability is also evaluated by the
coverage rate and mutation score. We did not apply the other factors maintainability and
code efficiency because we think maintainability is suitable for capstone projects, not for
the small programs in our course setting. Regarding the issue of program code efficiency,
since our system provides timing constraints, if the program runs for too long, it will be
evaluated as a wrong answer. What is more interesting is that in our system, test cases can
be divided into Hidden Test Cases (HTCs), Open Test Cases (OTCs), and Defining Test
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Cases (DTCs). The first two test cases are provided by teachers, and the last DTC is defined
by students, so the test ability is mainly evaluated by DTCs. We will provide detailed
definitions in Section 3.3.3.

3.3.1. Resilience of Program Assignment (r)

The concept of resilience, represented by r, indicates that a learner should persist in
their efforts despite making mistakes or not obtaining the complete answer. This value is
associated with tr, which keeps track of how many times a learner attempts to respond
when facing challenges. Specifically, tr includes both syntax errors (in tests and official
submissions) and submissions that fail to meet all the requirements of the HTC tests.
Meanwhile, chp represents the challenge level of a given program, p. A higher chp implies
that p is more complex, making it more difficult to complete. The value of chp is determined
by the decision count in the p program, with each case being tested once. We assume that a
learner’s tr should be proportional to chp. So, if a student’s tr is higher than chp, it indicates
that the learner faced significant challenges with this problem but was willing to continue
trying. Therefore, we apply an exponential function to weight tr. The reason for using an
exponential function is that it increases the weighting when there is a substantial difference
between tr and chp but does not create a disproportionately large gap. The constant k
fine tunes the curve of our equation. The calculation of r can be expressed by using the
following equation:

r = ek×(tr−chp) (1)

Taking Figure 5 as an example, when the learner’s challenge count equals the expected
challenge count (i.e., tr = chp = 10 on the x-axis of the graph), it is referred to as the
“resilience origin”, and r = 1 at this point. Beyond the resilience origin, the learner’s r is
higher while it is lower below the origin. To control the magnitude of the weighting within
an appropriate range, we choose the coefficient k = 0.1.

Figure 5. The impact of the value of k on the resilience of answering questions.

3.3.2. Programming Ability Index (PAI)

The Programming Ability Index serves as an indicator for assessing the program-
ming proficiency, taking into account the differences in programming skills that arise from the
frequency of encountering setbacks under the same score. A higher PAI indicates that a learner
encounters fewer setbacks when achieving similar scores, thus reflecting a more-robust
programming ability.
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In our system evaluation, learners can continually submit their answers until they
attain perfection. However, the pure program score, denoted by s and derived from
the basic score and the HTC pass rate, does not sufficiently encapsulate the full scope
of a student’s programming competence. We consider that the learners’ r is quantified
by considering the number of submission attempts and instances of setbacks that they
experience. Therefore, the PAI is defined as the difference in r under similar scores, which
signifies the disparity in the programming proficiency. The PAI can be calculated as follows:

PAI =
s
r

(2)

Taking Figure 6 as an example, when r = 1, PAI = s, referred to as the “programming
ability origin”. When r < 1, it indicates that learners achieve higher scores with greater
efficiency than expected, resulting in the PAI being higher than the programming-ability
origin. Conversely, if r > 1, it implies lower efficiency and leads to a lower PAI.

Figure 6. The impact of the value of r on PAI.

The learner’s score, denoted as s, is formulated considering both the base score and
the proportion of HTCs successfully passed. Specifically, the base score, labeled as base,
represents the minimum attainable score when the submitted code clears at least one HTC.
On the other hand, p signifies the ratio of HTCs passed by the submitted program relative
to the total number of HTCs. With these components in mind, the score is determined by
the equation

s = base + (100 − base)× p (3)

Using the previously described method, when a learner’s r in answering is higher,
it indicates lower proficiency in solving problems quickly. Thus, the resilience (r) serves
as a dual indicator, representing both the learner’s programming ability and acting as an
inverse indicator of programming proficiency.

By applying this method to calculate the PAI for each learner, the average PAI is
determined to be 121.80, which exceeds the maximum score of 100 for the questions.
This suggests that learners achieve higher scores with greater efficiency than expected on
most questions.

3.3.3. Testing Efficiency Index (TEI)

Before discussing the Testing Efficiency Index (TEI), we define the Testing Quality
Index (TQI) as an indicator that measures the quality of the test case. To assess the quality of
the test case, we conduct code coverage and mutation testing, yielding two key parameters:
the branch coverage bt and mutation score mst. The branch coverage bt represents the
fraction of branches in the code that are executed or covered by the test case t. Meanwhile,
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the mutation score mst quantifies the fraction of mutants neutralized by the test case t
relative to the overall mutants produced. Recognizing the integral roles of both metrics,
the TQI for each test case t is computed as the geometric mean of bt and mst, with the index
ranging from 0 to 100. The formal representation of this relationship is

TQIt =
√

bt × mst (4)

In our analysis of each student, we integrated both their DTC and OTC. Following
this, we conducted code coverage and mutation tests anew to quantify any enhancement
in their TQI. Specifically, TQI+ stands for the outcome when learners incorporate DTCs
derived from OTCs. The numerator, TQIOD, represents the TQI calculated by combining
both the OTCs and the DTCs provided by the learners. In contrast, the denominator, TQIO,
strictly considers the TQI originating from the OTCs. The mathematical representation of
this approach is given by

TQI+ =
TQIOD
TQIO

(5)

However, TQI+ might not comprehensively encapsulate a learner’s Testing Efficiency
Index. For instance, if two learners possess identical TQI+ values but one creates fewer
test cases, it implies superior efficiency in the test-case quality for that learner. Recognizing
this, we factor in the number of test cases that each learner designs.

The Testing Efficiency Index (TEI), defined as the degree of enhancement in the software-
testing metrics of DTCs relative to OTCs, is determined for every learner for each question. In this
context, TEI quantifies the extent of improvement; te represents the collective number of
test cases during the testing phase, equating to the sum of DTCs and OTCs; and cht denotes
the anticipated test cases needed for a program—a number that invariably rises with the
program’s complexity. The corresponding TEI formula is expressed as

TEI =

{
1 , te = teo

TQI+ × (1 + e−k×(te−cht)) , te > teo
(6)

As the complexity of the program increases, the expected test-challenge index also
increases. The constant k is used to adjust the extent of the weighting. We assume that
learners who use OTCs for testing possess a basic testing ability. Therefore, we set the
TEI value of the learners who meet this assumption to 1 by default. Furthermore, we
believe that learners who have a willingness to design their DTCs should have their testing
ability built on top of their basic testing ability. However, since the value of the exponential
function may be less than 1, it could result in some learners having a lower TEI than those
who only possess a basic testing ability due to poor DTC quality. To avoid this situation,
we add 1 to the result of this exponential function.

Taking Figure 7 as an example, when the total number of test cases for a learner is
equal to the expected challenge index (i.e., n = ch = 10 on the x-axis of the graph), it is
referred to as the “testing ability origin”. When te < 10, it indicates that the learner can
achieve good testing quality with higher efficiency than expected, resulting in a higher TEI
than the testing ability origin. Conversely, if te is greater than or equal to 10, the TEI will
be lower. As for the coefficient k, to avoid drastic changes or unclear increments, we set
k = 0.1, which provides a moderate and discernible increase.

Using this approach, the average TEI for each learner is only 1.89, indicating that
many learners exhibit a low testing efficiency or a lack of a willingness to test, resulting in
a majority of the TEI values being 1 for most questions.
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Figure 7. The impact of the value of k on TEI.

4. Experiment

We conducted a study on the programming and testing abilities of learners, focusing
on whether they could design effective test cases to enhance their programming skills.
We designed an online course to evaluate learners’ sensitivity to test cases, even without
prior knowledge of software-testing concepts, as they started learning programming from
scratch. Additionally, we analyzed the relationship between learners’ backgrounds and
their learning outcomes based on their programming and testing abilities.

4.1. Course Design

This course is an online self-learning course, but we also planned five physical meet-
ings. Montoya-Dato et al. found that questions answered by instructors foster both
independent learning and reflective thinking, which are considered crucial for deep learn-
ing [26]. The purpose of these meetings is to allow learners to have face-to-face discussions
with classmates and teachers regarding course-related questions.

The course is designed to be conducted asynchronously online. Learners can watch
prerecorded course videos or practice programming on the Pytutor platform at any time.
If learners have any questions about the course content or programming, they can always
send inquiries through the Microsoft Teams course group to the teacher or teaching assistant.

The course consists of seven units, comprising 64 videos. The first five units cover the
fundamentals of programming, including an introduction to programming, basic structures
and operations, logical operations, and object-oriented programming. The last two chapters
focus on practical application examples, specifically data processing and object design.
There are a total of 50 exercises on the Pytutor platform, with 1 exercise in Unit 1, 9
exercises in Unit 2, 13 exercises in Unit 3, 18 exercises in Unit 4, and 9 exercises in Unit 5.
Among the 50 exercises, each exercise includes two Open Test Cases and five Hidden Test
Cases. The average cyclomatic complexity of all the exercises is 4.06. The average branch
coverage for exercises with Open Test Cases is 0.92, with an average mutation score of 0.75.
The distribution of the Test Quality Index (TQI) for each exercise is illustrated in Figure 8.

Our assessment methods consist of a formativeassessment and summative assessment.
The formative assessment is based on the scores that the learners achieve during the
learning process, calculated as the average score of all the exercises on Pytutor. On the
other hand, the summative assessment relies on the grades that the learners achieve in the
final programming exam.
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Figure 8. The distribution of the Test Quality Index (TQI) for each exercise. Some exercises have very
low TQI and need to be improved by learners.

4.2. Participants

The course had a total of 69 participants. Among them, 27 were computer-science-
department learners. In terms of programming-language experience, 54 learners had
previous programming experience, with 15 of them having learned Python. Regarding
their motivations for taking the course, 44 learners expressed an interest in programming,
30 learners wanted to acquire a second skill, and 21 learners chose the course because of
the convenience of online learning. Additionally, 13 learners mentioned that they enrolled
in the course together with their classmates and all expressed an interest in programming.

4.3. Procedure

At the beginning of our course, we do not make all the content available. Instead, we
progressively release the videos and exercises for each unit over a span of seven weeks.
Learners can watch the course videos to acquire knowledge and practice programming on
the Pytutor platform. There are no restrictions on accessing unit content, and learners do
not have to watch all the videos before engaging in programming exercises. The opened
content remains accessible without time limitations, allowing learners to review past videos
and resources at any time. Two weeks after the opening of the content for the seventh week,
learners undergo the summative assessment. The summative assessment consists of four
questions, with a total duration of 40 min for answering.

4.4. Measures

We collected data from three sources in our study:

• Questionnaires: at the beginning of the course, we conducted a survey that included
information such as the learners’ department, grade level, programming experience,
and motivations.

• Event logs: OpenEdu provided various behavior logs for video watching, including
load_video, play_video, seek_video, pause_video, and stop_video. We utilized these logs to
calculate the viewing time and completion rate of individual videos for each learner.
On the Pytutor platform, we collected the learners’ behavioral data while answering
the exercises. In the testing mode, we recorded the code, execution results, and test
data for each test attempt. In the formal submission mode, we recorded the learners’
code and the number of passed Hidden Test Cases. Additionally, we also recorded the
learners’ answering times for each exercise.

• Scores: We calculated the learners’ scores for each exercise and averaged them to obtain
the formative-assessment score. We also recorded the summative-assessment score.
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4.5. Result
4.5.1. The Engagement of Learners

We collected data on the learners’ behavior in terms of watching course videos and
answering exercises on OpenEdu and Pytutor. We conducted some descriptive analyses,
as shown in Table 1.

Table 1. Statistical data of learners’ engagement.

Pytutor

The average number of submissions per learner per question. 1.43 times
Proportion of learners who perform at least one public test case before submission. 59%
Proportion of learners who perform at least one Defining Test Case before submis-
sion.

44%

Proportion of learners who submit without performing any tests. 23%
The average number of attempts (tr) of learners. 3.23
The average number of test cases (te) of learners. 3.41
The average number of public test cases executed by each learner per question. 3.96 times
The average number of Defining Test Cases executed by each learner per question. 2.94 times
The average time spent by each learner on a question. 14.45 mins

OpenEdu

Average completion rate of video viewing by learners. 56%
Average playback speed of video viewing by learners. 2.08

In the logs of video-based learning, the average completion rate represents the propor-
tion of the total viewing time for course videos among all learners. In our experiment, each
learner watched an average of 56% of all course videos. The average video playback rate
refers to the average speed at which the learners watch videos. Our calculation yielded
the average playback speed is 2.08.

Regarding the behavior of exercise answering, we found that learners, on average,
made 1.43 formal submissions per exercise. This indicates that even with the cautious
grading approach we adopted in the course design, most learners made two or more
submissions. On average, learners spent 14.45 min on each exercise. The average value of
tr was 3.43, indicating that most learners encountered three or more frustrations but still
continued their attempts. The average value of te was 3.41, meaning that, besides OTCs,
learners added, on average, more than one DTC. The average number of times learners
used OTCs for testing was 3.96, showing that before conducting DTC testing, most learners
used public test cases to verify if their code met the requirements of the exercise before
proceeding to DTC testing. The proportion of exercises in which learners conducted at least
one OTC test before formal submission was 59%, indicating that the majority of learners
used the testing mode and OTC to evaluate their code before making a formal submission.
On average, learners conducted 2.94 DTC tests per exercise, taking into account the repeated
usage of the same DTC. The proportion of exercises with at least one added DTC test before
submission was 44%, indicating that more than half of the exercises, on average, did not
have an added DTC test before formal submission. The proportion of exercises that were
formally submitted without any OTC or DTC testing was 23%, indicating that, on average,
23% of the exercises were submitted without any testing by the learners.

4.5.2. The Indicators of Learners

Before analyzing the learners’ TEI and PAI, we excluded learners who had no activity
during the later stages of the experiment. In total, we had 61 learners remaining after the
exclusion. We calculated various indicators for these learners, including the PAI average
and TEI average, which represent the average performance and task engagement for each
learner across different exercises. The distribution of these indicators for all learners is
depicted in Figure 9. Descriptive statistics for the indicators are presented in Table 2.
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Figure 9. The box-and-whisker figure of indicators. The results showed that some students showed
unusually high resilience when resolving the program assignments.

Table 2. The descriptive table of indicators.

Average
Completion

Rate

Average
Playback

Speed
r The Average

of TEI
The Average

of PAI
Formative

Assessment
Summative
Assessment

mean 0.56 2.08 1.97 1.89 121.80 72.66 68.04
std 0.17 0.70 2.82 0.49 23.64 26.17 23.69
min 0.00 0.00 0.70 1.00 49.18 5.82 0.00
25% 0.44 1.64 0.81 1.55 110.52 59.86 51.09
50% 0.60 2.16 0.99 1.92 127.55 84.08 77.93
75% 0.69 2.63 1.85 2.29 138.75 93.18 87.61
max 0.83 2.92 17.53 2.99 157.19 99.64 100.00

5. Discussion

Our research began by defining the learners’ programming ability and testing ability,
and we used an OJ system with testing functionality in conjunction with an online course
to examine the correlation between our defined indicators and the learners’ engagement.
In this study, we collected data on the learners’ behaviors during the learning process,
including video viewing and completing practice exercises. After calculating the indicators
for each learner, we explored their correlation with the learners’ backgrounds and learning
outcomes. We will answer each RQ in this section.

5.1. RQ1: What Is the Performance of Learners in Terms of Their Ability Indicators in Software
Engineering and Learning Behavior?

We categorized the learners’ abilities into four types and grouped them based on their
backgrounds and learning achievements. We categorized each learner into four types based
on their PAI and TEI, using percentile ranks to determine their abilities relative to the entire
group. Learners with an ability index ranging from 1 to 50 were classified as low, while
those ranging from 51 to 99 were classified as high. The four types are as follows:

• High PAI and high TEI (HPHT)
• High PAI and low TEI (HPLT)
• Low PAI and high TEI (LPHT)
• Low PAI and low TEI (LPLT)

In Figure 10, among the 61 learners, 11 belong to the category of HPHT, 20 belong to
HPLT, 19 belong to LPHT, and 11 belong to LPLT.
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Figure 10. The bar plot of the learners in four categories.

Table 1 presents the learning behaviors of the participants gathered from the Pytutor
and OpenEdu platforms. According to the data in the table, we observed that even
when we imposed punitive deductions for multiple formal submissions, each learner,
on average, made 1.43 attempts per question. Based on the values in the table, including the
proportion of learners who perform at least one public test case before submission (59%),
proportion of learners who perform at least one Defining Test Case before submission
(44%), and proportion of learners who submit without performing any tests (23%), it is
evident that a majority of the formal submissions were made without sufficient testing.
The lack of testing resulting in the need for multiple formal submissions contributes to the
increase in the average number of formal submissions.

The value of the average number of attempts (tr) of learners is 3.23. The value of the
average number of public test cases executed by each learner per question is 3.96 times.
Based on these two values, the learners utilize OTCs to ensure the correct execution of their
code. Moreover, from the value of the average number of test cases (te) of the learners (3.43),
it can be determined that learners incorporate DTCs to test their code. It is evident from
the average number of DTCs executed by each learner per question (2.94 times) that DTCs
are used for multiple rounds of code testing, indicating that learners identify segments of
code requiring modification during DTC testing. On average, learners spend 14.45 min
on each question. Our summative assessment entails completing four programming
questions within a 40 min timeframe. Calculated proportionally, learners are expected to
complete 69% of the questions in the summative assessment. In Table 2, the average for the
summative assessment is 68.04, which closely aligns with the anticipated value. However,
the median is 77.93, indicating that a majority of students perform even better.

Regarding video-viewing behavior, the average completion rate stands at only 56%,
signifying that most learners do not watch all of the videos. Additionally, the average
playback speed is 2.08, indicating that learners tend to watch course videos at an accelerated
pace, reflecting a lower level of patience when it comes to learning with video content.

Based on the above experimental results, it was found that the majority of learners
have relatively low patience with course content. This is evident in the low viewership
of course videos, the use of high-speed video playback, and formal submissions on the
programming-practice platform without sufficient testing. However, it was also discovered
through the analysis of the DTC that Defining Test Cases can effectively identify segments
of code that require modification. We recommend that instructors and course designers
consider subdividing course materials or videos into smaller partitions based on specific
knowledge points. Furthermore, they can encourage learners to create additional Defining
Test Cases to improve their programming-practice scores.
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5.2. Rq2: How Do Learners from Different Groups Perform in Terms of Programming Ability and
Testing Ability?

In order to investigate whether learners’ PAI and TEI vary across different groups,
we categorized learners based on their backgrounds and learning outcomes. The groups
categorized by learning outcomes are divided into two types: scores from formative
assessments and scores from summative assessments, and we separated learners into high-
score and low-score groups based on the median. Since the distribution of the learners’
indicators did not follow a normal distribution, we employed the Mann–Whitney U test to
examine the differences.

Background

When considering the grouping based on the learners’ backgrounds, as shown in
Figure 11, among the 26 learners with a computer science (CS) background, 19 fall into
the High Programming Ability (HP) group while only 11 fall into the High Testing Ability
(HT) group. Among the 35 non-CS background learners, 12 fall into the HP group and 19
belong to the HT group. Based on our inference, CS learners mostly possess programming
backgrounds, leading to greater self-confidence in their code. Consequently, they tend
to conduct fewer tests, resulting in a relatively lower testing proficiency for the majority.
However, they excel in their programming ability. Conversely, non-CS learners tend to
conduct more tests to avoid error messages.

Figure 11. The learners categorized by departmental background across four learning-ability
categories.

Regarding resilience, the distributions for both groups are depicted in Figure 12a.
The Mann–Whitney U test resulted in a p-value of 0.001 < 0.05, indicating a significant
difference. The distribution of the PAI is presented in Figure 12b, with a p-value from the
test of 0.0003 < 0.05, demonstrating a significant difference. On the other hand, the dis-
tribution of the TEI, as shown in Figure 12c, yielded a p-value of 0.277 > 0.05, suggesting
no statistically significant difference. Based on the above results, there is a significant
difference in resilience and the PAI, while there is no significant difference in the TEI. We
speculate that CS learners can achieve high scores without the need for many test cases.
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Figure 12. The box-and-whisker plot of indicators for different backgrounds. CS students tend to
have more concentrated abilities. Non-computer science majors showed higher resilience, but they
also need more testing, resulting in higher TEI.

Formative assessment

Based on the median of 84.08 for the formative assessments, we divided learners
into two groups: 31 with a high score and 30 with a low score. The distribution of the
ability types categorized by the formative assessment is shown in Figure 13. Among the
31 learners in the high-scoring group, 21 possess higher testing abilities. This indicates
that having strong testing abilities is crucial for achieving relatively high scores in the
formative-learning process.

Figure 13. The learners are categorized based on the difference in formative-assessment results across
four learning-ability categories.

Regarding resilience, the distributions of the two groups are displayed in Figure 14a.
The p-value from the Mann–Whitney U test is 0.153, which is greater than 0.05, indicating
no significant difference. For the PAI, the distribution is shown in Figure 14b, and the
p-value from the test is 0.035, which is less than 0.05, indicating a significant difference.
Similarly, for the TEI, the distribution is presented in Figure 14c, and the p-value from the
test is 0.036, which is less than 0.05, also showing a significant difference.
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During the formative-learning process, the r does not affect the outcomes of the
learning process. However, the differences in the PAI and TEI are more significant in terms
of outcomes. Therefore, having a better programming ability or testing ability has a greater
impact on achieving excellent learning outcomes.

Figure 14. The box-and-whisker plot of indicators for formative assessments. For r, there was no
significant difference between the two groups of high and low groups. For the TEI index, the average
of the high group is significantly higher than that of the low group.

Summative assessment

Based on the median of 77.93 for the summative assessments, we divided the learners
into two groups: 31 high achievers and 30 low achievers. The distribution of the ability
types categorized by the summative assessments is shown in Figure 15. Among the
31 learners in the high-score group, there are 18 HP learners and 13 LP learners. Among the
30 learners in the low-score group, there are 13 HP learners and 17 LP learners.

Figure 15. The learners are categorized based on the difference in summative-assessment results
across four learning-ability categories.
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Regarding resilience, the distributions of the two groups are displayed in Figure 16a.
The p-value from the Mann–Whitney U test is 0.105, which is greater than 0.05, indicating
no significant difference. For the PAI, the distribution is shown in Figure 16b, and the
p-value from the test is 0.016, which is less than 0.05, indicating a significant difference.
Similarly, for the TEI, the distribution is presented in Figure 16c, and the p-value from the
test is 0.93, which is greater than 0.05, also showing no significant difference. In the analysis
of the summative assessment, there is no significant difference between r and the TEI, while
the PAI shows a significant difference. We speculate that due to the limited time available,
learners may not be able to design higher-quality test cases to thoroughly evaluate their
code. Therefore, learners with a superior PAI have a competitive advantage.

Figure 16. The box-and-whisker plot of indicators for summative assessments. Summative assess-
ment emphasizes conceptual understanding rather than actual coding. This results in students with
high scores not necessarily having high TEI.

We analyzed the differences in programming and testing abilities among the learners
based on their majors, formative assessment, and summative assessment. The experimental
results indicate that both programming and testing abilities influence learning outcomes.
The learners’ academic backgrounds to some extent affect their programming abilities.
However, many learners with lower programming abilities also exhibit high testing abilities
and achieve good results. We recommend that instructors of introductory programming
courses consider incorporating software-testing concepts into their teaching to help learners
write better programs.

5.3. Rq3: Is There a Relationship between Ability Indicators and Learning Behavior?

To analyze the relationships between the performance indicators, we conducted a
Spearman’s rank correlation coefficient analysis, as depicted in Figure 17. The correla-
tion coefficient between the learners’ PAI and r is −0.863, indicating a strong negative
correlation. The correlation between the PAI and TEI is −0.385, indicating a moderate
negative correlation. Conversely, there is a moderate positive correlation between r and
the TEI. In our defined indicators, a higher r corresponds to a lower PAI, as learners with
higher programming abilities are expected to encounter fewer setbacks. In the relation-
ship between the PAI and TEI, it is possible that learners have yet to acquire knowledge
related to software testing, and for many questions, high scores can be achieved without
comprehensive testing. Therefore, the impact of the PAI on scores becomes more significant.
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The moderate positive correlation between r and the TEI suggests that as the frequency of
program errors increases, learners are more likely to conduct multiple rounds of testing to
debug their code.

Figure 17. The correlation heatmap of the ability indicators.

In addition, we also investigated the correlations between ability indicators and learn-
ing behaviors, as well as between ability indicators and learning outcomes, as shown in
Figure 18. The correlation coefficient between the indicator r and video playback speed
is 0.203, suggesting that learners might struggle to grasp concepts while watching course
videos at high speeds, making them more likely to encounter errors when writing code.
The correlation coefficient between r and the video-completion rate is 0.111, indicating a
near lack of correlation. The indicator PAI exhibits a negative correlation with the video
playback speed, implying that learners may tend to quickly finish watching videos and pro-
ceed to the assignment phase, thus increasing the likelihood of errors. The PAI also shows
almost no correlation with the video-completion rate. The indicator TEI has a correlation
coefficient of 0.237 with the video playback speed, indicating a low positive correlation.
Learners may aim to enter the assignment phase quickly, leading them to conduct multiple
tests to ensure the correctness of their code. The TEI’s correlation coefficient with the
video-completion rate is 0.331, displaying a moderate positive correlation. Learners who
watch more videos tend to perform more tests to ensure the accuracy of their code.

Figure 18. The heatmap that illustrates the correlation between ability indicators and learning
behaviors.
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In the analysis of the correlation between learning outcomes and ability indicators, r
exhibits low negative correlations with both formative-assessment scores and summative-
assessment scores. The PAI shows a moderate positive correlation with both formative-
assessment scores and summative-assessment scores, suggesting a certain degree of a
relationship between programming ability and learning outcomes. As for the TEI, it shows
a low positive correlation with formative-assessment scores, indicating that testing ability
has some impact on achieving higher scores during the learning process. However, the TEI
displays no correlation with summative-assessment scores, suggesting that programming
ability becomes the dominant factor in achieving high scores under time pressure.

From the above analysis, it is evident that learners’ programming abilities are cor-
related with their programming-exercise scores. However, the playback speed at which
learners watch videos shows a negative correlation with programming abilities. This
suggests that learners may tend to quickly complete video viewing and move on to the
exercise phase. This behavior may lead to the incomplete acquisition of course knowledge
and an increased likelihood of errors. On the other hand, programming abilities show a
positive correlation with both formative-assessment and summative-assessment scores.
Additionally, testing abilities also exhibit a positive correlation with formative-assessment
scores. Therefore, testing abilities can help learners achieve a better performance during
their learning process. Consequently, emphasizing the importance of course materials and
the concept of software testing in the course can influence learning outcomes.

5.4. Comparison

There have been many excellent studies in the field of programming education in
the past. Compared with their studies, we focus more on the assessment of students’
programming and testing abilities. Suleman introduced an automated assessment system to
address the challenges of code compilation, execution, and testing commonly encountered
in introductory computer science classes. Despite the need for improvements highlighted
in learners’ feedback, it underscores the necessity of automating code assessments [17]. Sun
developed a system named YOJ to support the teaching of introductory computer science
courses. This system enables students to practice programming independently and assists
instructors in assigning homework related to key programming concepts. Furthermore,
the system can be adapted for use in other courses [16]. Within the Pytutor system, we
created an environment that allows instructors to design questions of varying levels of
difficulty. To tackle questions of different complexities, learners are required to use a larger
number of test cases to evaluate their code and meet the requirements of the questions.
Therefore, we developed a feature that enables learners to add Defining Test Cases to assess
whether their code meets the specified criteria.

Brito emphasized that hands-on practice is one of the means to solidify programming
skills, but issues such as an inadequate number of practice problems and excessive time
spent evaluating student-submitted solutions needed to be addressed. Therefore, they
implemented an online platform to serve as a repository for problems and to automatically
assess student-submitted code [20]. Haynes-Magyar mentioned that learning programming
requires the development of at least four skills: code reading and comprehension, code writ-
ing, pattern understanding, and pattern application. Developing these skills necessitates
specialized task-oriented practice to enhance specific abilities. A web-based interactive
programming-practice environment was designed to empower learners to decide what and
when to learn. Consequently, they created a self-directed learning environment named
Codespec. It provides learners with exercises on the same problems but with different solu-
tion approaches to enhance the cultivation of various skills [21]. In the Pytutor, instructors
have the capability to add sample code when designing questions. This provides significant
flexibility for instructors to design questions according to the specific learning approaches
they wish to employ. For example, if an instructor wants to design a coding exercise that
focuses on debugging skills, they can insert erroneous code into the default code, allowing
learners to identify the faulty sections of the code through error messages or test cases.
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Yang et al.’s study also emphasized the assessment of students’ programming/testing
abilities. Yang et al. conducted a study with the objective of assessing the programming
and testing abilities though indicators such as students’ programming proficiency, code
maintainability, and coding efficiency. Their methodology involved the creation of three
programming assignments, the utilization of an automated assessment tool for computing
the indicators of abilities, and the application of the Pearson correlation coefficient to
examine the relationship between these abilities. The study’s participants were students
with prior programming experience and knowledge of software-testing concepts. Notably,
Yang et al. found that strong programming skills do not guarantee strong testing abilities,
and conversely, individuals with weaker programming skills can excel in testing capabilities.
Compared with their research, the similarities and differences are summarized as follows:

• Yang et al. used three programming tasks to assess students’ abilities. On Pytutor, we
provided 50 questions for students to practice various programming concepts.

• In Yang et al.’s research, their participants were undergraduate students with a pro-
gramming background who had also studied concepts related to software testing. Our
course design focuses on fundamental Python programming concepts, so most of the
participating learners do not have a background in urban or software testing.

• Pytutor enables students to practice programming questions at any time, offering
them more opportunities to demonstrate their testing abilities when assessing code.
In Yang et al.’s experiment, students were required to submit their assignments within
a limited timeframe, and the code was assessed through unit tests.

• From our research, we found that programming ability and testing ability are not
correlated. However, testing ability can assist learners in achieving better scores on
assignments. Yang et al.’s study also mentioned that nearly half of the developers
with excellent programming skills have relatively lower testing abilities. Conversely,
some developers with lower programming skills also perform well in testing.

5.5. Limitation

In our course design, some programming questions have TQIO scores exceeding 80,
so learners’ self-Defining Test Cases (DTCs) do not have much room for improvement,
resulting in a negligible increase in the TEI calculation. Additionally, the concept of soft-
ware testing was not integrated into the course when teaching programming concepts, so
the testing ability here reflects learners’ sensitivity to test cases. Regarding data collection,
the system currently lacks the capability to analyze learners’ actual behaviors while an-
swering questions, such as whether learners use local editors to write code and perform
tests before submitting them to the system.

6. Conclusions and Future Work

We developed an OJ system with testing functionality called Pytutor and applied it
in online programming-education courses. Unlike most traditional OJ systems, Pytutor
allows learners to add their own test cases to test their own code. We defined programming
ability and testing ability to differentiate learners’ capabilities. In the past, OJ systems
determined passing based on the number of Hidden Test Cases passed. We defined a
scoring system based on the proportion of Hidden Test Cases passed and considered the
resilience of learners who persisted in attempting even in the face of errors or incomplete
correctness as a parameter for programming ability. Additionally, we designed criteria for
testing ability based on the number of test cases, code coverage, mutation testing scores,
and program cyclomatic complexity.

We analyzed the ability indices of 61 learners along with their collected learning
behaviors and data from the platform. Our findings indicate that learners from computer
science majors have better programming abilities than non-CS learners, but there was no
significant difference in testing abilities. Having good programming and testing abilities
can lead to higher scores during the learning phase, but programming ability is the decisive
factor for exam performance.
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In our research, we observed that learners with higher testing abilities can better
solve programming problems during the learning process. Based on the findings, we
recommend that programming-education practitioners consider incorporating software-
testing concepts into course design—whether or not learners are computer science majors.
This approach allows learners to receive education in both programming fundamentals
and software testing, ultimately leading to improved learning outcomes. Although this
result may not have a huge impact on the education sector, it can be used as a reference for
cultivating students’ software engineering abilities.

With the rise of artificial intelligence, the behavior of writing programs will also un-
dergo major changes, which will of course also impact software engineering education [38].
In the future, we plan to develop more interesting topics:

• Using AI as a virtual assistant to assist in program education. How to guide—rather
than directly provide answers—will be challenging.

• Developing a more-powerful online editor so students enjoy writing code there,
and we can record student behavior in detail. By analyzing detailed programming
behaviors, we can analyze more and learn how to further improve programming
education.

• Conducting more experiments to understand the learning effects when using our tool.
In future courses, we plan to divide students into experimental and control groups
and conduct more comparative analyses on them.
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