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Abstract: This study addresses the trajectory tracking control challenges of robot manipulators
with uncertain dynamics. The aim is to achieve precise and smooth trajectory regulation through
a novel composite position predictive control (PPC) scheme that integrates motion profile and
disturbance preview techniques. First, we perform offline dynamics identification and feedforward
compensation alongside a pre-defined motion profile. To handle the disturbances arising from
uncertain dynamics, a super-twisting disturbance observer is designed, resulting in a dynamically
compensated prediction model. Furthermore, the receding optimization operations for PPC are
executed by solving an optimal solution associated with a joint angle tracking error. The combination
of feedforward and feedback control improves the robot manipulator’s absolute positioning accuracy
as opposed to the conventional model predictive control method, especially when dealing with
uncertain dynamics. The effectiveness of the proposed control method is confirmed through trajectory
tracking experiments conducted on a six-degree-of-freedom robot platform with varying end-effector
loads. The experimental results demonstrate that the proposed PPC method enhances tracking
accuracy by approximately 45% and 25% when compared to the traditional inverse dynamic control
(IDC) and the robust IDC approaches, respectively.

Keywords: position predictive control; trajectory tracking; dynamics compensation; robot manipulators;
disturbance observer

1. Introduction

Robot manipulators, typically consisting of interconnected motion chains and various
joints, find widespread applications in high-end fields such as intelligent manufacturing [1,2],
aerospace assembly [3,4], and medical surgery [5]. These applications often require robot
manipulators to perform precise and efficient engineering tasks, leading to increased de-
mands for high-precision trajectory tracking. However, in actual industrial scenarios,
the prevailing control method still relies on cascade PID control, which is used to handle
diverse complex operating conditions [6]. Nevertheless, robot manipulator systems are
inherently nonlinear control objects with strong coupling and complex uncertainties. Rely-
ing solely on PID control, while it is commonly used, may not be sufficient to achieve the
desired level of performance, especially in challenging industrial scenarios. The limitations
of PID control in handling nonlinearities and uncertainties can lead to suboptimal trajectory
tracking and potentially pose safety risks, making it essential to explore alternative control
strategies [7].

As a result, there is a growing emphasis on researching advanced control algorithms
for robot manipulators in complex environments, encompassing sliding mode control [8,9],
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model predictive control (MPC) [10,11], adaptive control [12], and neural network con-
trol [13,14], among others. These control strategies aim to address the inherent challenges
posed by nonlinear dynamics and uncertainties, providing potential solutions to enhance
trajectory tracking accuracy, improve real-time capabilities, and ensure robust performance
in unpredictable operating conditions. Among these approaches, MPC has emerged as
a promising method due to its conceptual simplicity and excellent trajectory tracking
performance, garnering significant attention from engineering practitioners [15]. In gen-
eral, MPC strategies can be further classified into discrete-time optimization control and
continuous-time optimization control [16]. The former is widely used to address internal
state constraints for system optimization. However, it is important to consider that its con-
trol performance is significantly influenced by the sampling control period, and prioritizing
control performance alone may result in an excessive computational burden, potentially
affecting real-time capability [17]. In contrast, continuous-time predictive control circum-
vents the need for model discretization and directly utilizes the Taylor approximation of the
system dynamics model to compute optimization performance indicators. This approach
yields explicit analytical solutions, offering advantages such as simplicity in design, re-
duced computational load, and a clear parameter-tuning mechanism [18,19]. By advancing
research on the continuous-time MPC, we can further enhance the effectiveness and effi-
ciency of robot manipulators in challenging environments, benefiting various applications
in industrial automation, medical robotics, and autonomous systems.

However, uncertainties, including parameter perturbations, unmodeled dynamics,
and external disturbances, are pervasive in engineering systems and can significantly im-
pact control performance and even lead to safety issues [20–22]. Achieving high-precision
trajectory tracking control for robot manipulator systems in the presence of uncertainties
poses a considerable challenge. Similarly, traditional MPC designs also face significant
hurdles in handling uncertainties [23]. As an alternative, a common approach to tackle
uncertainties is to utilize disturbance/uncertainty estimation attenuation (DUEA) tech-
niques [24], which typically combine feedforward compensation and feedback control,
providing enhanced trajectory tracking control for robot manipulators operating in uncer-
tain environments. By mitigating the impact of uncertainties, DUEA techniques play a
vital role in improving trajectory tracking accuracy and overall system robustness. For in-
stance, as a popular DUEA technique, super-twisting-disturbance-observer (STDO)-based
composite controllers have been successfully applied to many fields, such as underwater
vehicles [25] and overhead crane systems [26]. Furthermore, several extensions for the
STDO can also be found in the community of DUEA, such as the adaptive fast STDO [27]
and the fixed-time STDO [28]. Moreover, it has also been reported that integrating DUEA
techniques into the MPC design offers a promising solution for effectively addressing
uncertainties and disturbances, ultimately enhancing the reliability of control operations in
practical applications [29–31].

Based on the above analysis and inspired by reference [18], this paper investigates a
composite position predictive control (PPC) approach for the trajectory tracking of robot
manipulators. The proposed PPC scheme integrates motion profile and disturbance preview
techniques to effectively address the uncertainties present in the system. Firstly, offline
dynamics identification and feedforward compensation are performed in conjunction with
a pre-defined motion profile. Additionally, a STDO is designed to handle the disturbances
arising from uncertain dynamics, resulting in a dynamically compensated prediction model.
Furthermore, the study executes receding optimization operations for the PPC by solving an
optimal solution associated with a joint angle tracking error. This approach ensures optimal
trajectory tracking performance, even in the presence of uncertainties. The effectiveness of
the proposed control method is rigorously validated through various trajectory tracking
experiments conducted on a six-degree-of-freedom (DOF) robot platform. The experimental
results demonstrate superior trajectory control accuracy and disturbance rejection ability
compared to the traditional inverse dynamic control (IDC) approach. Compared to existing
research results, this paper’s contributions are mainly reflected in the following two aspects:
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• The combination of feedforward and feedback control improves the limitations of the
traditional MPC in trajectory tracking accuracy under uncertain dynamics, thereby
enhancing the robot manipulator’s absolute positioning accuracy during operation.

• The proposed composite generalized predictive control scheme is experimentally
validated using the Beckhoff motion controller and the actual robot system using the
model-based design approach using MATLAB/Simulink.

The structure of this paper is as follows. Section 2 introduces the system dynamics
and outlines the control objectives for robot manipulators. Section 3 presents a comprehen-
sive design procedure, encompassing offline dynamics identification, uncertain dynamics
estimation, and composite position predictive control design. Additionally, the stability
analysis is also provided. In Section 4, we evaluate the performance of the proposed
approach through real-world experimentation with a six-axis robot manipulator. Finally,
Section 5 presents the conclusions.

Notations:

• x = [x1, x2, · · · , xn]> denotes an n-dimensional vector, where xi represents the i-th
component of x with i = 1, 2, · · · , n.

• xa = [xa
1, xa

2, · · · , xa
n]
> with 0 < a < 1; x(a) = [x(a)

1 , x(a)
2 , · · · , x(a)

n ]> with a ∈ N+.

• siga(x) =
[
|x1|asign(x1), |x2|asign(x2), · · · , |xn|asign(xn)

]> with 0 < a < 1.

2. Problem Formulation
2.1. System Dynamics Modeling

For an n-link robot manipulator system, its dynamic model can be described in the
following form [32]:

M(q)q̈ + C(q, q̇)q̇ + G(q) + f (q̇) = τ + τd (1)

where q, q̇, q̈ ∈ Rn are the vectors representing joint angles, angular velocities, and ac-
celerations, respectively; M(q) = M>(q) ∈ Rn×n is the mass and inertia matrix, which
is symmetric and positive definite; C(q, q̇) ∈ Rn×n is the Coriolis and centripetal forces
matrix; G(q) ∈ Rn represents the gravitational term of the robot manipulator; f (q̇) ∈ Rn

represents the friction torque consisting of Coulomb and viscous friction; τ ∈ Rn is the
joint torque generated by servo drives; and τd ∈ Rn accounts for the lumped disturbances,
including parameterized uncertainties, unmodeled dynamics, and external uncertain load.

By defining the system states q = x1 and q̇ = x2, system (1) can be reformulated into
the state–space representation as

ẋ1 = x2

ẋ2 = u + F(x1, x2) + d(t)

y = x1

(2)

where
u = M−1(x1)τ, d(t) = M−1(x1)τd,

F(x1, x2) = −M−1(x1)[C(x1, x2)x2 + G(x1) + f (x2)].
(3)

Taking into account the actual attributes of system disturbances and the intended tra-
jectory within practical industrial applications, we establish the following two assumptions
concerning system (2):

Assumption 1. Both d(t) and its derivative term ḋ(t) are bounded, i.e., sup{|di|, |ḋi|} ≤ Li,
i = 1, 2, · · · , n, where L = diag(L1, L2, · · · , Ln) is a positive constant matrix.

Remark 1. In general, the external disturbances experienced by robotic systems can be quite in-
tricate. These disturbances may originate from both human actions and the external environment,
such as when unknown load disturbances occur. To evaluate the disturbance rejection capabilities,
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we subject the robot’s end-effector to the unknown load disturbance, as clarified in Section 4.3.
In this context, the load disturbance can be treated as a constant, which is a practical engineer-
ing assumption. Then, it can be ascertained that the disturbance imposed at the joint remains
continuously differentiable through Jacobian matrix mapping. Therefore, Assumption 1 can be
considered reasonable.

Assumption 2. The trajectory planning for the robot manipulator in joint space is pre-established,
i.e., the desired trajectory qd, along with its corresponding velocity q̇d and acceleration q̈d, are all
known and exhibit continuity.

2.2. Control Objective

Generally, the control objective of a robot manipulator’s trajectory tracking can be
summarized as the following two aspects:

• High Trajectory Tracking Accuracy: This objective involves regulating the joint mo-
tion of the robot manipulator to attain the precise tracking of a predefined trajectory.
The control system is required to ensure that the robot’s end-effector accurately follows
the intended trajectory while minimizing deviations.

• Robustness to Uncertain Dynamics and Disturbances: The control algorithm must
be meticulously designed to accommodate fluctuations in the robot’s dynamics, encom-
passing variations in joint friction, inertial parameters, and mechanical uncertainties.
Additionally, the control system should effectively counteract external disturbances
that may arise during operation, such as forces applied to the end-effector or unex-
pected environmental conditions.

By fulfilling the above control objectives, the robot manipulator can fluidly follow
predefined trajectories with exceptional accuracy, all the while upholding resilience against
uncertainties and disturbances. This achievement will enhance control precision, thereby
securing the dependable performance of the robot manipulator across diverse opera-
tional scenarios.

3. Controller Design

Based on the aforementioned control objectives, this section provides an in-depth
exposition of the proposed control strategy. The framework is primarily delineated by three
fundamental constituents: offline dynamics identification, uncertain dynamics estimation,
and composite predictive control design.

3.1. Offline Dynamics Identification

The objective of this subsection is to perform the offline identification of the system
dynamics, which involves obtaining a mathematical description of the system through
experimental data. Subsequently, feedforward compensation techniques are employed to
introduce pre-computed compensatory signals into the controller, mitigating the influence
of system dynamics on control performance.

To begin with, leveraging the attributes of friction, we select a suitable friction model
as follows [33]:

f (q̇) = fv1 q̇ + fv2sign(q̇)q̇2 + fcsign(q̇) + fo (4)

where fv1 and fv2 represent the viscous friction coefficient, and fc and fo represent the
Coulomb friction coefficient and the friction bias term, respectively.

Suppose that the robot’s end-effector is devoid of any load over the process of dynam-
ics identification, i.e., τd = 0. Since the dynamic model of the robot manipulator is linear
with respect to the dynamic parameters, based on the linearity property [6], system (1) can
be transformed into the following linearized parameterized form:

τ = Ys(q, q̇, q̈)βs (5)
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where Ys(q, q̇, q̈) ∈ Rn×s and βs ∈ Rs denote the regressor function and the standard
parameters, respectively, while s is the number of standard parameters. Notably, for each
link, βs consists of a total of 15 parameters, encompassing 10 link-related parameters—Ixxi ,
Iyyi , Izzi , Ixyi , Ixzi , Iyzi as inertia parameters, mi as joint mass, and lxi , lyi , lzi as first-order mass
moments—and 5 motor-related parameters—Ji as moment of inertia and fv1i , fv2i , fci , foi as
friction parameters, with the subscript i denoting the i-th link.

Nonetheless, Ys(q, q̇, q̈) encompasses a substantial number of zero columns and lin-
early dependent columns, rendering the matrix non-invertible. Thus, by reorganizing
linearly independent columns [34], we can further formulate system (5) as the following
simplified dynamic model:

τ = Yb(q, q̇, q̈)βb (6)

where Yb(q, q̇, q̈) ∈ Rn×r and βb ∈ Rr represent the subset of the maximum linear inde-
pendent columns of Ys(q, q̇, q̈) and the base parameters comprising a total of r elements,
respectively.

Ultimately, the robot manipulator is executed along the excitation trajectory for N
cycles, during which experimental data are collected as expressed by

T = Yβb (7)

where Y = [Y>b1
, Y>b2

, · · · , Y>bN
]> and T = [τ1

>, τ2
>, · · · , τN

>]>. Consequently, the base
parameters βb can be determined by using the least squares estimation technique [35].

Up to this point, we have successfully established the dynamic model (6) of the robot
manipulator, thereby laying the foundation for forthcoming endeavors in disturbance
observer and controller design. Furthermore, explicit formulations for M(q), C(q, q̇), G(q),
and f (q̇) can be readily derived through straightforward algebraic manipulations [32].

3.2. Uncertain Dynamics Estimation

In the preceding section, we assume that τd = 0. However, in real-world scenarios,
particularly during the operation of the robot manipulator, the value of τd cannot be
disregarded. As a result, in this section, we will proceed to develop a STDO aimed at
providing a precise estimation of d(t).

Firstly, by extending d(t) as a new state vector x3, system (2) can be reformulated as{
ẋ2 = u + F(x1, x2) + x3

ẋ3 = ḋ(t).
(8)

For system (8), the following STDO is designed:{
˙̂x2 = u + F(x1, x2) + x̂3 + κ1sig1/2(x2 − x̂2)

˙̂x3 = κ2sign(x2 − x̂2)
(9)

where x̂2, x̂3 are the estimates of x2, x3, respectively, and κ1, κ2 ∈ Rn×n are the observer
parameters, both of which are the positive definite diagonal matrices to be designed.

Let e1 = x2 − x̂2, e2 = x3 − x̂3 be the observation errors. By combining systems (8)
and (9), the error equation of the disturbance observer can be obtained as{

ė1 = e2 − κ1sig1/2(e1)

ė2 = −κ2sign(e2) + ḋ(t).
(10)

Based on the finite-stability analysis presented in reference [36], and considering
Assumption 1, it is evident that the selection of κ1 = 1.5L1/2 and κ2 = 1.1L will lead to
finite-time stability for system (10). That is, there exists a finite time constant T0 after which
e1 and e2 will converge to zero when time t > T0.
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3.3. Composite Position Predictive Control Design

Building upon the foundation of the offline identification model and estimations of
unknown dynamics, this subsection primarily delves into the construction of a composite
position predictive controller. The process is principally divided into three key steps.

3.3.1. State Transformation

First of all, following Assumption 2, the ensuing steady-state reference signal is
established as follows:

x∗1 = qd, x∗2 = q̇d, x∗3 = q̈d − F(x∗1 , x∗2)− x̂3. (11)

Next, perform the following coordinate transformation:

η1 = x1 − x∗1 , η2 = x2 − x∗2 , v = u− x∗3 (12)

Define a new state vector η = [η>1 , η>2 ]
> ∈ R2n. Subsequently, concerning (11) and (12),

system (2) can be reorganized as

η̇ = Aη+ B
(
v + e2 + F(x1, x2)− F(x∗1 , x∗2)

)
(13)

where

A =

[
0 ∈ Rn×n In ∈ Rn×n

0 ∈ Rn×n 0 ∈ Rn×n

]
∈ R2n×2n,

B =
[

0 ∈ Rn×n In ∈ Rn×n ]> ∈ R2n×n.

System (13) will serve as the model foundation for the subsequent design of the
composite position predictive controller.

3.3.2. Receding Optimization

To make the joint angle converge to its reference value at an optimal rate, the optimiza-
tion performance index is selected as

J(t) =
1
2

∫ Tp

0
η>1 (t + ξ) · η1(t + ξ)dξ (14)

where Tp ∈ (0, 1) is the prediction horizon.
Subsequently, by disregarding the estimation error and the nonlinear tracking error

term in system (13), we derive the nominal model as follows:

η̇ = Aη+ Bv. (15)

Regarding the tracking error η1, the approximation within a single prediction cycle
[0, Tp], obtained through the application of a Taylor series expansion on the nominal
model (15), leads to the following formula:

η̂1(t + ξ) = η1 + ξη2 +
ξ2

2
v + · · ·+ ξ2+r

(2 + r)!
v(r)

= Gη+ HV
(16)
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where r is the control order of the system,

G =
[
In ∈ Rn×n, ξ In ∈ Rn×n] ∈ Rn×2n,

H =

[
ξ2

2
In,

ξ3

3!
In, · · · ,

ξ2+r

(2 + r)!
In

]
∈ Rn×n(r+1),

V =

[
v>, v̇>, · · · , (v(r))

>
]>
∈ Rn(r+1)×1.

By substituting (16) into (14), the performance index defined in (14) can be further
calculated as follows:

Ĵ(t) =
1
2

∫ Tp

0
η̂>1 (t + ξ) · η̂1(t + ξ)dξ

=
1
2

η>Q1η+ η>Q2V +
1
2

V>Q3V
(17)

where

Q1 =
∫ Tp

0
G>Gdξ ∈ R2n×2n,

Q2 =
∫ Tp

0
G>Hdξ ∈ R2n×n(r+1),

Q3 =
∫ Tp

0
H>Hdξ ∈ Rn(r+1)×n(r+1).

Taking the partial derivative of Ĵ(t) with respect to V yields ∂ Ĵ/∂V = η>Q2 + V>Q3.
To obtain the optimal control vector V∗, by setting ∂ Ĵ/∂V = 0, we can obtain

V∗ = −Q−1
3 Q>2 η. (18)

Following the principles of model predictive control theory, it is customary to designate
the first column as the optimal control law. Consequently, the optimal control law can be
further derived as

v∗ = −EQ−1
3 Q>2 η (19)

where E = [In, 0, · · · , 0] ∈ Rn×n(r+1).

3.3.3. Controller Implementation

For the ease of implementation in the controller algorithm, we choose the control order
r = 0, therefore the optimization control law can be further calculated as

v = v∗
∣∣∣
r=0

= −
K∗1
T2

p
η1 −

K∗2
Tp

η2 (20)

where K∗1 , K∗2 ∈ Rn are constant diagonal matrices related to Q2 and Q3.
Finally, combining (3), (11), and (12), we can get the composite PPC strategy as

τ = M(x1)

(
−

K∗1
T2

p
η1 −

K∗2
Tp

η2 + q̈d − F(x∗1 , x∗2)− x̂3

)

= M(q)

(
K∗1
T2

p
(qd − q) +

K∗2
Tp

(q̇d − q̇)

)
+ C(qd, q̇d)q̇d + G(qd) + f (q̇d) + M(q)(q̈d − d̂).

(21)

It can be observed from the controller (21) that the resulting optimized control law
comprises the state feedback term, the dynamics feedforward term, and the observed
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disturbance value. Furthermore, only the prediction horizon Tp needs adjustment, which
significantly reduces the complexity of parameter tuning.

The comprehensive control block diagram is depicted in Figure 1.

Robot Dynamics

Identification

Equation (6)

M C G f, , ,

, ,d d dq q q

+

Disturbance 

Observer

Equation (9)

State 

Transformation

Equations (11)-(13)

Receding 

Optimization

Equations (17)-(19)

Composite Predictive 

Position Control

Equation (21)

Robot Dynamics

Equation (1)

q q,

 d



v*

d

+

Nominal System 

Model

Equation (15)

Figure 1. Control block diagram of the proposed control approach.

Remark 2. Typically, the traditional IDC is often linked with a proportional–integral–derivative
(PID) type feedback control law, often formulated as follows:

τ = M(q)
(

Kp(qd − q) + Ki

∫ t

0
(qd − q)dτ + Kd(q̇d − q̇)

)
+ C(q, q̇)q̇ + G(q) + f (q̇) + M(q)q̈d

(22)

where Kp, Ki, and Kd are the positive diagonal matrices to be designed. It is worth noting that this
control approach heavily depends on precise robot dynamics. When an uncertain load is affixed to
the robot’s end-effector, it inevitably impacts positioning accuracy.

To tackle this challenge, a robust IDC can be developed by incorporating a nonlinear disturbance
observer (NDO), which is designed as follows:

τ = M(q)
(
Kp(qd − q) + Kd(q̇d − q̇)

)
+ C(q, q̇)q̇ + G(q) + f (q̇) + M(q)(q̈d − d̂)

(23)

where the NDO is constructed as {
d̂ = Ld(x2 − p),

ṗ = u + F(x1, x2) + d̂
(24)

with Ld being the diagonal matrix to be designed.
However, when compared to the proposed controller (21), the composite IDC+NDO method

exhibits the following drawbacks. It is well-established that utilizing NDO for the estimation of
constant or slow time-varying disturbances proves to be effective. However, within robotic systems,
the interactive coupling of various axes often leads to disturbances that are inherently nonlinear
and time-varying. As a result, a certain degree of error unavoidably arises between the estimations
and the actual values. To address this issue, we introduce the STDO, which is capable of achieving
offset-free disturbance estimation within a finite time. This improvement significantly strengthens
both the robustness and precision of robotic manipulation.

3.4. Stability Analysis

This section aims to provide a proof of the stability analysis of the closed-loop system.

Theorem 1. For an n-link robot manipulator described by the system dynamics (1), under the
composite PPC approach combining the disturbance observer (9) and the optimal control action (21),
with the proper selection of prediction horizon Tp, the tracking error η of the joint motion remains
uniformly bounded, even in the presence of the external uncertain load.
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Proof. To begin with, by introducing a coordinate transformation εi = Ti−1
p ηi, i = 1, 2,

and further combining the system model (13), the transformed system associated with ε
can be expressed by

ε̇ = Tp
−1(A− BK)ε + Tp

(
e2 + F̃

)
(25)

where ε = [ε>1 , ε>2 ]
>, K = [K∗1 , K∗2 ], F̃ = F(x1, x2) − F(x∗1 , x∗2). It is notable that, since

A− BK is always Hurwitz stable, there exists a positive definite symmetric matrix P ∈
R2n×2n such that (A− BK)>P + P(A− BK) = −I2n is guaranteed.

Construct a Lyapunov function candidate as

V(ε) = ε>Pε. (26)

By differentiating V(ε) along the dynamics ε in (25), we obtain the following:

V̇(ε) = ε̇>Pε + ε>Pε̇

=

(
Tp
−1(A− BK)ε + Tp

(
e2 + F̃

))>
Pε + ε>P

(
Tp
−1(A− BK)ε + Tp

(
e2 + F̃

))
= Tp

−1ε>(A− BK)>Pε + Tp
(
e2 + F̃

)>Pε + Tp
−1ε>P(A− BK)ε + Tpε>P

(
e2 + F̃

)
= Tp

−1ε>
(
(A− BK)>P + P(A− BK)

)
ε + 2Tpε>P

(
e2 + F̃

)
= −Tp

−1ε>ε + 2Tpε>Pe2 + 2Tpε>PF̃.

(27)

Considering that, under the STDO (9), the disturbance estimation error is bounded,
there must exist a bounded constant Γ such that sup ‖e2‖ ≤ Γ. Then, the second term in (27)
can be specifically computed as

2Tpε>Pe2 ≤ 2ε>Pe2

≤ 2λmax(P)‖ε‖‖e2‖
≤ λmax(P)2‖ε‖2 + ‖e2‖2

≤ ι1‖ε‖2 + Γ2

(28)

where ι1 = λmax(P)2 and λmax(P) represent the maximum eigenvalue of matrix P.
Meanwhile, according to reference [37], there must exist a constant γ ≥ 0, such that

Tp F̃ ≤ Tpγ(‖x1 − x∗1‖+ ‖x2 − x∗2‖)
= Tpγ(‖η1‖+ ‖η2‖)
= Tpγ

(
‖ε1‖+ ‖Tp

−1ε2‖
)

≤ γ
(
‖ε1‖+ ‖ε2‖

)
≤
√

2γ‖ε‖.

(29)

Therefore, the third term in (27) can be reduced to

2Tpε>PF̃ ≤ 2‖ε>P‖‖Tp F̃‖
≤ 2
√

2γ‖ε>P‖‖ε‖
≤ 2
√

2γλmax(P)‖ε‖2

= ι2‖ε‖2.

(30)

where ι2 = 2
√

2γλmax(P).
Substituting (28) and (30) into (27) yields

V̇(ε) ≤ −
(

1
Tp
− ι1 − ι2

)
‖ε‖2 + Γ2. (31)
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With (31) in mind, we can establish the criterion for selecting the prediction horizon
Tp in the proposed PPC method, which should satisfy the following inequality:

0 < Tp ≤
1

ι1 + ι2 + 1
. (32)

Combining (31) and (32), we can further obtain the following:

V̇(ε) ≤ −‖ε‖2 + Γ2 ≤ −δV(ε) + Γ2 (33)

where δ = 1/λmax(P). Furthermore, the following formula will hold:

0 ≤ V(ε) ≤
(

V(0)− Γ2

δ

)
e−δt +

Γ2

δ
. (34)

It can be concluded from (34) that V(ε) is bounded and converges exponentially,
indicating that ε is uniformly bounded. This completes the proof.

4. Experimental Results

To validate the efficacy of the proposed control method, this section conducts a series
of practical handling experiments on a real-world six-DOF robot manipulator subjected to
varying load conditions.

4.1. Experimental Setup

The experimental platform comprises three main components: a motion control unit,
a permanent magnet synchronous motor (PMSM) servo drive unit, and the robot body
structure, as illustrated in Figure 2. Specifically, the motion control unit is implemented
using a Beckhoff controller equipped with a PLC environment, which utilizes EtherCAT
bus communication for the real-time control of the servo drives. These servo drives operate
in the cyclic synchronous torque (CST) mode, receiving real-time torque signals from the
motion controller with a control cycle of 1.0 ms. Furthermore, the robot body structure
encompasses a six-DOF robot manipulator capable of executing movements in both the
joint space and Cartesian space.

3.2kg2.7kg2.2kg1.7kg1.2kg0.7kg

Servo Drive Unit

Motion Control Unit

Robot Manipulator

Payload

Servo motor

#1

Servo driver

EtherCAT slave

interface

Servo driver

EtherCAT slave

interface

Servo driver

EtherCAT slave

interface

Servo motor

#2

Servo motor

#6

EtherCAT Slaves

Beckhoff controller

TwinCAT3

MATLAB/Simulink

EtherCAT slave

interface

Other peripheral

interface

EtherCAT Master

EtherCAT

Teach pendant

(b)(a)

TE1400

0.7kg 3.2kg

(b)(a)

Figure 2. Experimental platform. (a) Hardware diagram. (b) System architecture.

As depicted in Figure 2b, the initial validation of the proposed control algorithm
involved simulation in MATLAB/Simulink. We utilized the model-based design (MBD)
methodology to create algorithm modules. Subsequently, the motion control unit was
implemented in a Beckhoff controller, and the C++ files generated through MBD were
imported using the TE1400 plugin. Finally, the algorithm modules were invoked and con-
firmed within the TwinCAT3 software (https://www.beckhoff.com.cn/zh-cn/products/
automation/twincat/, accessed on 29 September 2023).

https://www.beckhoff.com.cn/zh-cn/products/automation/twincat/
https://www.beckhoff.com.cn/zh-cn/products/automation/twincat/
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4.2. Dynamics Identification Results

The offline dynamics identification serves as the foundational step in implementing
the proposed control method. This process begins by collecting real-time data related to
the robot’s trajectories, velocities, accelerations, and drive torques. Following this data
collection, the dynamic base parameter set is determined through offline analysis utilizing
the least squares method. The results of this experimental procedure are visualized in
Figure 3.
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Figure 3. Dynamics identification results.

In these graphical representations, solid lines represent the actual torque measure-
ments obtained during the execution of the excitation trajectories, whereas dashed lines
depict the computed torques derived from the experimentally determined dynamic model.
Notably, the errors (indicated by dotted lines) associated with the dynamic model consis-
tently reside within an remarkably narrow range, which reveals that the identified dynamic
model is relatively accurate.

4.3. Performance Validation

The feasibility and effectiveness of the proposed control strategy are further verified in
terms of disturbance rejection capability and the steady-state control performance. To pro-
vide a basis for comparison, three distinct control strategies are devised: the traditional
IDC method (22), the composite IDC+NDO method (23), and the proposed control method
(PPC+STDO) (21).

4.3.1. Control Parameters Setting

To ensure a fair comparison in the experiments, we maintained consistent test con-
ditions and manually fine-tuned the parameters by using a trial-and-error approach for
each controller. Then, we closely monitored the curves of control effort and fluctuations in
tracking errors. As a general guideline, we expected the control effort to initially remain
consistent. Furthermore, if the tracking errors remained largely unchanged while the
fluctuations increased with larger parameter adjustments, it indicates that the parameters
have been suitably selected. Finally, the parameter configurations for each controller are
provided in Table 1.
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Table 1. Parameters of three different controllers.

Controllers Parameters

IDC
Kp = diag{6, 6, 6, 12, 12, 12} × 103

Ki = diag{1.2, 1.2, 1.2, 1.5, 1.5, 1.5} × 104

Kd = diag{25, 25, 25, 150, 150, 150}

IDC+NDO
Kp = diag{3.5, 3.5, 3.5, 10, 10, 10} × 103

Kd = diag{25, 25, 25, 150, 150, 150}
Ld = diag{30, 30, 30, 30, 30, 30}

PPC+STDO
K∗1 = diag{3.3, 3.3, 3.3, 3.3, 3.3, 3.3}

K∗2 = diag{2.5, 2.5, 2.5, 2.5, 2.5, 2.5},Tp = 0.02
L = diag{100, 100, 100, 100, 100, 100}

4.3.2. Trajectory Tracking Performance with Uncertain Load

To assess trajectory tracking performance, we conducted tracking experiments with 3D
curves in Cartesian space under both light and heavy load conditions. Figure 4a illustrates
the desired 3D curves, while Figure 4b displays the corresponding joint angles obtained
using inverse kinematics.

(a) (b)

Figure 4. Desired trajectories. (a) 3D desired trajectory. (b) Joint trajectories of the 3D curve.

Case 1: Executing a handling task under a light load condition.
In this case, an additional payload weighing 0.25 kg is affixed to the end-effector of

the robot manipulator, as depicted in Figure 5a. The experimental results are presented in
Figures 6–9.

3.2kg2.7kg2.2kg1.7kg1.2kg0.7kg

Servo drive unit

Motion control unit

Robot Manipulator

Payload

Servo motor
#1

Servo driver

EtherCAT slave
interface

Servo driver

EtherCAT slave
interface

Servo driver

EtherCAT slave
interface

Servo motor
#2

Servo motor
#6

EtherCAT slaves

Beckhoff controller

TwinCAT3

MATLAB/Simulink

EtherCAT slave
interface

Other peripheral
interface

EtherCAT master

EtherCAT

Teach pendant

(b)(a)

TE1400

0.7kg 3.2kg

(b)(a)

Figure 5. End-effector load. (a) 0.7 kg. (b) 3.2 kg.

It is evident that the proposed PPC+STDO method offers distinct advantages when
compared to the IDC and IDC+NDO approaches in terms of position tracking errors.
Specifically, the proposed controller achieves minimal trajectory tracking errors, with each
joint’s maximum tracking error falling within a narrow range of 0.05 deg. In contrast,
the traditional IDC method exhibits a maximum tracking error close to 0.25 deg. Figure 8
illustrates the disturbance estimation results of NDO and STDO, while Figure 9 represents
the control inputs of these three methods. Notably, the comparison is fair because the
control energy is within the same order of magnitude.
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Figure 6. Trajectory tracking curves under Case 1.
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Figure 7. Trajectory tracking error curves under Case 1.
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Case 2: Executing a handling task under a heavy load condition.
In this case, an additional payload weighing 3.2 kg is affixed to the end-effector of

the robot manipulator, as depicted in Figure 5b. The experimental results are presented in
Figures 10–13.

In contrast to Case 1, it is worth noting that Case 2 displays a higher level of sys-
tem uncertainty. The experimental results clearly illustrate that the PPC+STDO method
surpasses IDC+NDO and IDC in terms of disturbance rejection performance. Figure 12
presents the disturbance estimation results. Furthermore, as shown in Figure 9, it showcases
smoother transitions in control energy and curve fluctuations compared to the other two
control schemes. This can be attributed to the advantages facilitated by the offline dynamic
identification provided by the proposed method.
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Figure 10. Trajectory tracking curves under Case 2.
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Figure 11. Trajectory tracking error curves under Case 2.
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Figure 12. Disturbance estimation results under Case 2.
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For a more intuitive analysis of the comparison, performance indices for all the control
methods involved in two test cases are provided, which includes the root mean square
error (RMSE) and the maximum absolute error (MAE), as shown in Table 2. The results
indicate that the PPC+STDO method enhances tracking accuracy by approximately 45%
and 25% when compared to the traditional IDC and the robust IDC+NDO approaches.

Table 2. Performance indices under different controllers.

Controllers
Joint 1 (deg) Joint 2 (deg) Joint 3 (deg)

RMSE MAE RMSE MAE RMSE MAE

IDC 0.013 0.0104 0.013 0.0093 0.022 0.0178
IDC+NDO 0.008 0.0055 0.006 0.0041 0.019 0.0131
PPC+STDO 0.006 0.0037 0.005 0.0036 0.012 0.0086

Controllers
Joint 4 (deg) Joint 5 (deg) Joint 6 (deg)

RMSE MAE RMSE MAE RMSE MAE

IDC 0.003 0.0032 0.046 0.040 0.043 0.026
IDC+NDO 6.5× 10−4 6.6× 10−4 0.025 0.020 0.015 0.0105
PPC+STDO 4.7× 10−5 4.0× 10−5 0.019 0.016 0.010 0.006

5. Conclusions

To enhance the trajectory tracking performance of robot manipulators, we have in-
troduced a novel composite STDO-based PPC approach. The proposed control scheme
has effectively integrated motion profile and disturbance preview elements into the dy-
namics and disturbance feedforward compensation. This comprehensive approach has
significantly enhanced joint position tracking accuracy and bolstered robustness against
disturbances, which is different from the conventional methods (e.g., IDC and IDC+NDO).
We have validated the effectiveness of the proposed method using a real-world six-DOF
robot manipulator. Comparative experiments have showcased the superior performance
of our composite PPC approach in comparison to the conventional IDC methods. The re-
sults indicated that the proposed method can effectively solve the challenges related to
accurate trajectory tracking and robust control in practical robot applications, which is also
confirmed through quantitative analysis. In future work, we aim to address the challenge
of state constraints within robot systems using the approach outlined in this paper.
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