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Abstract: The nearest neighbors query problem on road networks constitutes a crucial aspect of
location-oriented services and has useful practical implications; e.g., it can locate the k-nearest
hotels. However, researches who study road networks still encounter obstacles due to the method’s
inherent limitations with respect to object mobility. More popular methods employ indexes to
store intermediate results to improve querying time efficiency, but these other methods are often
accompanied by high time costs. To balance the costs of time and space, a lightweight flow graph
index is proposed to reduce the quantity of candidate nodes, and with this index the results of a
kNN query can be efficiently obtained. Experiments on real road networks confirm the efficiency and
accuracy of our optimized algorithm.

Keywords: kNN query; graph index; road network

1. Introduction

The nearest neighbors (top-k nearest neighbors (kNN)) query in a road network is an
essential problem in location-based services. The kNN search is applied in various practical
contexts. For example, when using hospitality reservation services such as Tongcheng-
Elong, it is crucial to show a range of venues near the user’s location. Similarly, in vehicle-
for-hire platforms like Didi Chuxing, it is advantageous to offer a variety of vehicles within
a short distance of the user.

Given a road network G(V,E), a set of candidate objects M, and a query vertex q,
the goal is to find the k objects in M that are closest to q. Figure 1 shows the example of a
road network G, a moving object m1 is on the edge from v6 to v3, dist(v3, v6) = 2, assuming
all vertices are candidates. Given a query vertex v3, the four nearest neighbors of v3 are v3,
v6, v7, and v10, with shortest network distances to v3 of 0, 2, 3, and 4, respectively; then, the
three nearest moving objects are m1, m2, and m5.

7

8

5

1 1

1

1

4

2

6

3

6
v1

v9

v8

v10

v7

v4

v6

v5

v2 v3

4

Figure 1. The example of a road network G.
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The kNN query problem on a road network has seen various research results. The most
simple and direct solution is to use Dijkstra’s algorithm [1]; i.e., given a query vertex
q, search for vertices in order of non-decreasing distance from other vertices to q, ending
when k vertices are found. Although this method is simple, the time cost is high, especially
when the dataset is relatively large. The state-of-the-art algorithm for the kNN problem
in road networks is TEN-Query [2], using the TEN-Index, which is based on tree decom-
position. Mapping the graph into a tree structure, the kNN results for each vertex are
precomputed and stored in the index. However, the establishment of the index is limited
by the value of k, and the algorithm cannot perform queries when k increases. We have
designed an index that breaks this limit by storing all candidate vertices in the local range
of each vertex. Using a new tree decomposition generation algorithm, an average weight
generation algorithm is used to construct tree decomposition.

The main contributions of this paper are as follows:

(1) Conventional tree decomposition is refined based on the minimum degree principle,
and we propose an flow graph index generated from a graph-decomposed tree, which
can effectively preserve distance information within the road network;

(2) Based on the flow graph index, the kNN query algorithm is proposed to significantly
reduce the retrieval space of candidate nodes; thereby, it can enhance the performance
of kNN queries in road networks;

(3) Experiments on real road networks confirm the efficiency and accuracy of the pro-
posed algorithm.

The remainder of this paper is organized as follows. Section 2 reviews related literature.
Section 3 describes the problem. Section 4 explains the index-construction methodology
and query algorithm. Section 5 reviews our findings. Section 6 presents our conclusions.

2. Related Work

The kNN query can be based on Euclidean space or a transportation network. We
concentrate on kNN queries within relaxation networks, which can be in either a static or
dynamic environment.

The most elementary solution for kNN queries is Dijkstra’s algorithm. Given a query
point q, the algorithm searches for vertices in non-decreasing order of distance from the
remaining vertices, stopping when k objects are found. Although effective, this is time-
consuming, especially in large networks and when candidate objects are far away.

The grid-based index is a typical index structure in road network queries. D. He et al. [3]
proposed a grid-based kNN index, GLAD, dividing road networks into 2x · 2x grids according
to the vertex latitude and longitude, maintaining a list of contained objects for each grid.
To answer a kNN query, GLAD searches for objects starting from the mesh containing the
queried vertices and updates the results by exploring adjacent meshes.

Dong Tianyang et al. [4] introduced direction-aware kNN (DAKNN) for moving objects
on road networks, which employs an R-tree and a simple grid as fundamental structures to
index the static road network and moving objects, respectively. An azimuth represents the
moving direction of a target in the road network, and a local network extension method is
used to quickly judge the direction of the moving target.

Graph partition-based indices are also used in kNN queries. Bilong Shen et al. [5]
proposed a V-tree index to support efficient kNN searches and dynamic updates for moving
objects. They iteratively divide the road network into sub-networks, build a tree structure
on top of these, and associate a moving object with the nearest vertex in the V-tree. When
updating the position of an object, only the tree nodes on the path from the corresponding
leaf node to the root must be updated.

Zhong R et al. [6] proposed a balanced search tree index, G-tree, recursively dividing
a road network into sub-networks, where each G-tree node corresponds to a sub-network.
They introduced a best-first search algorithm on road networks, and an assembly-based
approach to efficiently compute the minimum distance from a G-tree node to a query
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location. Li Z et al. [7] proposed G*-tree, an improved kNN index structure, establishing
shortcuts between selected leaf nodes to address the low query efficiency of G-tree.

Dan T et al. [8] proposed LG-tree, which partitions large graphs into subgraphs and
indexes these using balanced trees. LG-tree constructs a hierarchical structure based
on Dynamic Index Filtering (DIF) and boundary vertices, using stage-based dynamic
programming to ensure the efficiency of the shortest distance search.

Bao JL [9] introduced the index structures used in nearest neighborhood queries,
discussed current challenges, and explored future research focuses on nearest neighbor
query techniques in road networks. Li L et al. [10] addressed the problem of continuously
reporting alternative paths for users traveling along a given path by accessing vertices in
ascending order of maximum depth value, so as to improve computational efficiency and
enhance accuracy. Yuan-Ko Huang et al. [11] addressed the kNN skyline in dynamic road
networks, conducting queries using three data structures: object attribute control matrix
(OADM), road distance ranked list (RDSL), and skyline object extension tree (SOET). R.
Halin et al. [12] introduced the concept of tree decomposition in 1976, expediting graph
problem calculations by mapping graphs into tree structures. Dian Ouyang et al. [13] built
on this with H2H-Query, a method to efficiently calculate the shortest distance between
two vertices on a road network. The shortest distance for each vertex in each ancestor node
is stored, enabling the most straightforward network distance calculation between any two
points in O(w) time. They subsequently proposed a tree-decomposition-based index, TEN-
Index, which precalculates the shortest distance from each vertex to its ancestor vertex and
stores each vertex’s local kNN, which reduces query times and enhances kNN performance.

There are other kNN indices and algorithms. Hyung-Ju et al. [14] proposed an efficient
continuous search algorithm, UNICONS, using Dijkstra’s shortest path algorithm and a
precalculated NN list to enhance NN query performance. Maytham Safar [15] used network
distance rather than Euclidean distance as the shortest path metric. Guang Zhong Sun [16]
suggested a straightforward, effective precomputation technique for kNN calculations on
extensive road networks, selecting a suitable representative node set R (a subset of V) from
road network G(V,E) and precomputing the distance value for any pair in R.

In response to the natural extension of kNN queries for multiple moving objects,
i.e., Aggregate k Nearest Neighbor (AkNN) queries, Abeywickrama T [17] proposed the
Compressed Object Landmark Tree (COLT) data structure, which implements efficient hier-
archical graph traversal and performs various aggregation functions effectively. Bareche
I et al. [18] proposed a Velocity Spatiotemporal (VeST) indexing approach for continuous
queries, mainly Continuous K-Nearest Neighbor (CKNN) and continuous range queries us-
ing Apache Spark. The proposed structure is based on a selective velocity-partition method,
which reduces the update cost and improves the response time and query accuracy. Ying Ju
Chen et al. [19] proposed the SQUARE algorithm, constructing a network index resembling
the decoupling model while using coupling concepts to maintain kNN information relative
to hotspot areas in the network index. Hotspots represent areas where frequent queries are
found in history. Aye Thida Hlaing et al. [20] proposed a fast RkNN search algorithm using
Simple Materialized Path View (SMPV), employing an Incremental Euclidean Restriction
(IER) strategy for swift kNN queries. Luo et al. [21] proposed an index-based kNN query
solution, Toain, based on a shrinkage hierarchy, and utilizing a shortcut-based index, SCOB,
to accelerate query processing. Chuanwen Li et al. [22] proposed a kNN query algorithm
using an index structure based on a lazy update strategy, capitalizing on both CPU and
GPU resources. The region being queried is first identified, and the GPU is used to update
the index for that region. The index is queried using the GPU and a candidate result set is
generated, which is refined by the CPU to obtain the final result.

3. Problem Definitions

We study the kNN query problem on road networks based on tree decomposition,
with symbols as defined in Table 1.
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The road network is modeled as a weighted undirected graph G(V,E), where V is a
vertex set and E is an edge set. For an edge e(v1, v2), weight w(e) or w(v1, v2) represents
the length of the edge. A path p is a vertex sequence p = (v1, v2, . . . , vk), where for any
1 ≤ i < k, (vi, vi+1) ∈ E, the weight of p is expressed as ϕ(p) = ∑k−1

i=1 ϕ(vi, vi+1) given two
vertices v1 and v2; the shortest path between them is a path p from v1 to v2 that satisfies
w(p) as s minimum. In this paper, dist(v1, v2) is used to represent the length of the shortest
path from v1 to v2.

We study the road network kNN query in a static environment, i.e., when both the
query point and candidate object are static. For the dynamic road network kNN query,
the dynamic moving candidate object can be mapped into offset neighboring vertices; thus,
it can be transformed into a static environment. Specifically, given a query point q and a
moving object m, assuming that q is located on the edge e1 = (vs, ve), the distance from the
vertex ve is dq, m is located on the edge e2 = (v′s, v′e), and the distance to the vertex v′s is
dm. Then, the distance between q and m is expressed as dist(q, m) = dist(ve, v′s) + dq + dm.
This paper defines the kNN query problem as follows.

Table 1. Symbol Definitions.

Symbol Definition

X(v).extList Node expansion list of node X(v), sorted in ascending order of road network distance from node X(v)
v.isCandidate Whether vertex v is a candidate vertex
dist(v1, v2) The true shortest road network distance from vertex v1 to vertex v2

curDist((v1, v2)|p) The current shortest road network distance from vertex v1 to vertex v2 along path p
R kNN set of query point q, sorted in ascending order of road network distance from q

root The root of the kNN index
threshold Threshold

M Candidate vertex set

Definition 1 (kNN Query). Given a road network G(V, E), a query point q, an integer k, and a
set of candidate vertices M (|M| > k), the kNN query aims to calculate a set R that satisfies:

1. |R| = k;
2. R ⊂ M;
3. ∀v ∈ R, ∀v′ ∈ M− R, dist(q, v) ≤ dist(q, v′)

In the road network shown in Figure 2, there are ten vertexes, the distance between v2
to v3 is 6, given the query point v3, with k = 3, and dotted line vertices (such as v1, v5, v6, v8,
and v10) are candidate vertices, the 3NN of v3 in the candidate vertices is R = {v6, v10, v8},
and their shortest network distances to v3 are 2, 4, and 5, respectively.
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Figure 2. Example of kNN query of road network.
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Notably, due to the potential for identical edge weights, the kNN for each vertex
may need more uniqueness. This factor does not compromise the algorithm’s validity,
as presented in this treatise.

4. Index and Algorithm

We present the solution to the kNN problem on road networks, using an amalgamated
index structure, Average Weight Tree Decomposition with Ancestor Table and Children
Table (AWTDAC).

4.1. Average Weight Tree Decomposition Index Construction

Definition 2 (Tree Node). For each vertex v in the road network G(V, E), its corresponding tree
node is denoted by X(v), X(v) represents a subset of the road network vertex set V, comprising
vertex v and its neighboring vertices. In this paper, v is referred to as the principal vertex of X(v)
and is denoted in gray, symbolized by X(v).grayId. The neighboring vertices of v are considered
adjacent vertices of X(v).

Taking the road network shown in Figure 1 as an example, Figure 3 depicts the tree
node X(v3) corresponding to vertex v3, where v3 serves as the principal vertex, and v1,
v4, and v8 constitute adjacent vertices. The calculation process of the specific values of
the adjacent vertices of v3 is based on the average weight tree decomposition process.
The result comes from the constructed decomposition tree.
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Figure 3. Example of tree node X(v3).

Tree decomposition [5] accelerates the computation of numerous graph problems by
mapping graphs onto tree structures and is defined as follows.

Definition 3 (Tree Decomposition). Given a graph G(V, E), its tree decomposition is denoted
TG, and is composed of several tree nodes with the set of all tree nodes represented as Λ. TG satisfies
the following conditions:

(1) ∪X(v) ∈ ΛX(v) = V.
(2) For each edge e(v1, v2) ∈ E in G, there must exist a tree node X(v3) ∈ Λ, satisfying

v1 ∈ X(v3) and v2 ∈ X(v3).
(3) For each vertex v in G, all tree nodes X(v′) containing v (i.e., v ∈ X(v′)) constitute a

connected subtree of TG.

Definition 4 (Tree Height and Tree Width). Given a tree decomposition TG, this manuscript
stipulates that the root node’s depth is 1, while the depth of other tree nodes is the depth of their
parent node plus 1. Based on this, the tree height of TG is defined as the maximum depth of all tree
nodes, denoted by h. The treewidth of TG is defined as the maximum number of adjacent vertices
among all tree nodes, represented by w; that is,

w = max
X(v)∈Λ

|X(v)| − 1 (1)

Definition 5 (Elimination Order). Given a graph G(V, E), this manuscript sequentially removes
vertices in G following a specific rule. For each currently deleted vertex v, v.deleteOrder is utilized
to record its removal order, referred to as the elimination order of vertex v.

For instance, considering the road network G(V, E) depicted in Figure 1, vertex v6 is
the first to be removed; hence, v6.deleteOrder = 1.
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We briefly describe the generation process of tree decomposition. For any road network
G(V, E), the traditional tree decomposition generation algorithm is based on the principle
of minimum degree (i.e., the vertex with the smallest degree in graph G) and it is divided
into two stages.

Stage One: Vertex Removal. Select vertex v with the smallest degree in G each
time, and use v and its neighbors as tree nodes X(v). For any pair of neighbors (v1, v2) of
v, if no edge exists between v1 and v2, add an edge e(v1, v2), whose weight w(v1, v2) =
w(v1, v) + w(v, v2); if there is an edge e(v1, v2) and w(v1, v2) > w(v1, v) + w(v, v2), then
update w(v1, v2) to w(v1, v2) = w(v1, v) + w(v, v2). Finally, delete v from G. Repeat
this step until all vertices in G have been removed and record the elimination order of
each vertex.

Stage Two: Tree Decomposition Construction. For each tree node X(v) generated in
Stage One, select the vertex v′ with the smallest elimination order among the adjacent
vertices of X(v), designating X(v′) as the parent node of X(v). Repeat this step until all
tree nodes coalesce into a tree.

Figure 4 exhibits a tree decomposition created using the minimum degree principle
for the road network G illustrated in Figure 1. The gray vertices are the principal vertices,
like v1 is the principal vertex, and v2, and v9 constitute adjacent vertices. In this paper,
a tree decomposition is constructed by the average weight principle. Both the average
weight principle and the minimum degree principle are important concepts in graph
algorithms, each having advantages in different types of problems. The average weight
principle typically provides better results in dealing with weighted graph problems because
it considers the weights of all nodes, not just their degrees. The minimum degree principle,
on the other hand, is more suitable for specific problems such as connectivity issues.
The average weight principle can provide improvements compared to the minimum degree
principle, especially in dealing with weighted graph problems. However, the minimum
degree principle may be more effective in dealing with certain specific types of problems.
Therefore, the choice of which principle to use depends on the specific problem being
addressed and the characteristics of the data.
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Figure 4. Tree decomposition TG based on minimum degree.

The proposed average weight tree decomposition builds upon the minimum degree
principle. The deletion of vertices no longer adheres to the minimum degree principle
but defines a priority S(v)(α, β, γ) instead, where S(v).α represents the average weight of
vertex v, i.e., the sum of edge weights of v divided by its degree. S(v).γ is the number of
edges that must be added after deleting vertex v, and S(v).γ is the ID of vertex v. For the
vertices in G, priority is sorted according to α; if α values are equal, sorting is based on
β. Vertex v is removed after sorting S(v)(α, β, γ), and other operations remain unaltered.
Figure 5 shows a tree decomposition generated based on the average weight principle for
the road network G in Figure 1.
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Figure 5. Tree decomposition TG based on average weight.

Using Figure 5 as an example, the tree height of TG is h = 6, and the tree width is w = 3,
as the tree nodes within TG contain a maximum of three adjacent vertices. For example, v3
serves as the principal vertex, and v1, v4, and v8 constitute adjacent vertices. In the road
network, utilizing tree decomposition is reasonable, since the tree width and height are
significantly less than the total number of vertices in the road network.

An average-weight-based tree decomposition algorithm is presented as Algorithm 1,
where lines 2–9 represent vertex deletion, and lines 10–13 represent the tree decomposition
phase. Upon the algorithm’s completion, all tree nodes form a connected tree decompo-
sition. The time complexity of Algorithm 1 is O(n(w2 + log(n))), where n is the number
of vertices in G, and w is the tree width of tree decomposition TG. The space complexity
is O(nw).

Algorithm 1: Average Weight Tree Decomposition Construction Algorithm (G(V, E)).

Input: Road network G(V, E)
Output: Tree decomposition TG

1 TG ← ∅;
2 for i = 1 to |V| do
3 Sort the vertices in G according to S(v)(α, β, γ) ;
4 v← Selected vertices after sorting ;
5 Create tree node X(v)← {v} ∪ {neighbor vertices of v};
6 Adding edges to G makes all neighbors of v connected ;
7 Delete v and its neighbors from G ;
8 Update the α and β values of v’s neighbors ;
9 v.deleteOrder← i ;

10 end
11 for v ∈ V do
12 if |X(v)| > 1 then
13 v′ ← the vertex with the smallest elimination sequence in X(v)− {v};
14 Set X(v′) as the parent node of X(v) in TG;
15 end
16 end
17 Return TG

The calculated tree decomposition has the following properties [12].
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Proposition 1. For a graph G and its corresponding tree decomposition TG, for any two distinct
vertices, v 6= v′ in G, X(v) 6= X(v′).

Proposition 2. Considering a graph G and a tree decomposition TG, for any tree node X(v) ∈ Λ
and any vertex v′ ∈ X(v)/v, X(v′) is an ancestor of X(v) in the tree node TG.

Definition 6 (Ancestor). With the tree decomposition TG of G, for any tree node X(v) ∈ Λ,
the ancestor of X(v) is expressed as the set X(v).anc, and the ancestor table of the root node is
specified in this paper as ∅. Utilize X(v).parent to represent the parent node of X(v). Consequently,
the ancestor X(v).anc = X(v).parent.grayId∪ X(v).parent.anc.

Definition 7 (Children). Given the tree decomposition TG of G, for any tree node X(v), the child
of X(v) is symbolized as the set X(v).child. This paper stipulates that the leaf node’s child is ∅,
employing X(v).childSet to represent the principal vertex set of X(v)’s child node and the child of
the non-leaf node X(v).

X(v).child =
⋃

c∈X(v).childSet

c ∪ X(c).child (2)

Upon obtaining a tree decomposition, the shortest network distance between two
vertices can be computed in O(w) time using the H2H-Index [13], where w is the tree width.
This is currently the most sophisticated technique to calculate the shortest net distance
between vertices in road networks.

For any pair of vertices q and v with the nearest common ancestor X, the shortest path
network distance between them is shown, which is described in Dian Ouyang et al. [13]:

dist(q, v) = min
s∈X

dist(q, s) + dist(s, v) (3)

We introduce the proposed kNN index. Given a query point q, we traverse the ances-
tors and children of each vertex. For any other vertex v, there are three possible scenarios:

1. If v ∈ X(q).anc, then dist(q, v) has been pre-calculated, and dist(q, v) can be obtained
in O(1) time.

2. If v ∈ X(q).child, likewise, dist(q, v) can be obtained in O(1) time.
3. If v /∈ X(q).child and v /∈ X(q).anc, according to Equation (3) , the shortest path net-

work distance between v and q must pass through a vertex u in their nearest common
ancestor. Hence, dist(q, v) = dist(q, u) + dist(u, v). This paper can obtain dist(q, u)
and dist(u, v) in O(1) time, allowing the retrieval of dist(q, v) within O(1) time.

In summary, for any other vertex v, this paper can obtain dist(q, v) in O(1) time.

Definition 8 (Node extension list). Given a tree decomposition TG of G, for any tree node
X(v) ∈ Λ, the node extension list of X(v) is denoted as the set X(v).extList, where X(v).extList =
X(v)/v ∪ X(v).child.

To enhance the algorithm’s efficiency, this paper arranges the vertices in X(v)’s node
extension list in ascending order based on their road network distance to vertex v.

For instance, in the tree decomposition TG, illustrated in Figure 5, X(v3).extList =
{(v6, 2), (v7, 3), (v10, 4), (v4, 5), (v8, 5), (v9, 5), (v2, 6), (v1, 9)}, with respective road network
distances to v3 of 2, 3, 4, 5, 5, 5, 6, and 9.

We were inspired by Sun et al. who put forward the idea of flow graph to serialize the
processing graph [23]. According to the TG structure on average weight tree decomposition
in Figure 5, if the relationship between two vertices belongs to the parent–child relationship,
the edge between the two vertices is called a tree edge; otherwise, it is a non-tree edge.
The direction of the tree edge is from the parent vertex to the child vertex, and the direction
of the non-tree edge is the direction from the deleted vertex to its adjacent vertices; in
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Figure 6, the solid line indicates the tree edge, and the dashed line indicates the non-tree
edge. It can be seen that v3 is the parent vertices of v2, v7, v8, and v9, and the distances from
child vertices to v3 are 6, 5, 5, and 5. The adjacent vertices of v3 are v4, v1, v8.

Definition 9 (Flow Graph). Given a directed label graph F(VF, EF, LF), where VF represents a
set of vertices, EF is a set of edges, and LF represents a label function, assigning one or more labels
to nodes in VF. In this paper, LF can be expressed as distance from two vertices, the vertex that
contains the moving object M and the number of moving objects.

Relying on average weight tree decomposition, we maintain a node extension list for
each tree node, resulting in the kNN flow graph index structure depicted in Figure 6. If
there is a parent-child relationship between two vertices, the edge between the two points
is called a tree edge, otherwise it is called a non-tree edge. The direction of the tree edge
is from the parent-child vertex to the child vertex. The direction of the non-tree edge is
from the deleted vertex to its adjacent vertex. The solid line represents the tree edge and
the dotted line represents the non-tree edge. The parent and child vertices of vertices v2, v7,
v8, and v9 are v3, and their distances to v3 are 6, 5, 5, 5 respectively. The adjacent vertices of
v3 are v4, v1, v8.
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Figure 6. Example of kNN Flow Graph Index.

The space complexity of the kNN flow graph index is O(n2), where n is the total num-
ber of vertices in the road network. Using the flow graph index structure can completely
preserve the index structure of the tree decomposition, and it can also save the weight
between vertices and the information about the moving objects on the vertices.

Theorem 1 verifies the node completeness between the road network and the flow graph
index.

Theorem 1. Given a node v, if there exists a neighbor node v′ of v, the tree node X(v′) is a passing
node on the path from root node r to v in the graph-decomposed tree Λ rooted by node r.

Proof of Theorem 1. Considering a node v and its neighbor nodes N(v), node v can be
abstracted as a tree node X(v), satisfying N(v) = X(v)−v. If there exists a tree node X(v′),
satisfying that X(v′) is a parent of X(v), then v′ ∈ X(v)−v. v′ is connected with all other
neighbor nodes X(v)−v−v′ after v is deleted. It is the same if there exists a tree node X(v′′),
satisfying that X(v′′) is a parent of X(v′), such that X(v′′) ∈ (X(v)−v−v′) ∪ (X(v′)−v′).
Similarly, all tree nodes abstracted from neighbor nodes of v can be found in a path from
the root node to v.



Electronics 2023, 12, 4536 10 of 21

In addition, a filtering rule can be defined to prune the redundant nodes for kNN
searching on the road network, shown as Lemma 1

Lemma 1. Given a query node q and a data node v, if there exists a minimum common ancestor v′

of q and v, the shortest path dist(q, v) is equal to the sum of shortest paths dist(q, v′) and dist(v′, v).

Proof of Lemma 1. If there exists one other node v′′, satisfying the condition that the
shortest path dist(q, v) is equal to the sum of shortest paths dist(q, v′′) and dist(v′′, v), then
there must exist one or more across-path edges to connect the node v′′. However, it is
impossible that there exists one across-path edge in a graph-decomposed tree according to
Theorem 1 because any node v and its neighbor nodes are only found in the path from root
node r to v.

We present the index construction and update strategy. For each tree node in average
weight tree decomposition, it is only necessary to compute its node extension list. The con-
struction algorithm for the node extension list is shown as Algorithm 2, where lines 1–3
calculate the shortest network distance from adjacent vertices in X(v) to v, adding it to the
node extension list; lines 4–6 compute the child vertices of X(v) and incorporate them into
the node extension list; and line 7 sorts the node extension list. The time complexity of
Algorithm 2 is O(nw), where n is the total number of vertices in the road network, and w is
the tree width of TG.

Algorithm 2: Node Expansion List Construction Algorithm (X(v))

Input: Tree node X(V)
Output: Node expansion list of X(v)

1 for Each adjacent vertex p of X(v) do
2 Calculate dist(v,p);
3 X(v).extList.push(p);
4 end
5 for Each child vertex c of X(v) do
6 Calculate dist(v,c);
7 X(v).extList.push(c);
8 end
9 sort(X(v).extList);

10 Return X(v).extList

Regarding index updates, each vertex v has a flag bit, v.isCandidate, indicating its status
as a candidate point, which is false when v ceases to be a candidate point. Consequently,
index updates have time complexity O(1).

4.2. Query-Processing Method Based on kNN Index

We examine the specifics of the query algorithm AWTDN.

Definition 10 (Ancestor Relationship). Given any two vertices v1 and v2, within the average
weight tree decomposition TG, if v1 ∈ X(v2).child or v2 ∈ X(v1).child, then v1 and v2 are said to
possess an ancestral relationship.

Definition 11 (Current Shortest Path Network Distance). Given vertices v1 and v2 with no an-
cestral relationship, and common ancestor X(v3), the current shortest network distance from vertex
v1 to vertex v2 via vertex v3 is represented as curDist((v1, v2)|v3), that is, curDist((v1, v2)|v3) =
dist(v1, v3) + dist(v3, v2). Since X(v3) is the common ancestor of X(v1), X(v2), dist(v1, v3) and
dist(v3, v2) can be found in X(v3).child without calculation.

To enhance algorithm efficiency, this paper introduces a threshold for pruning, initially
set to infinity and updated accordingly when the result is set |R| ≥ k.
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To facilitate the explanation of the kNN query problem, for a given query point q, we
use a triplet (v1, v2, s) to suggest that v1 via v2 has the shortest network distance to query
point q equal to s, with the intermediate point v2 termed the base point.

The vertex expansion strategy of AWTDN has three steps.
Step 1: Insert the query point into the min-heap, process the first vertex p of the heap,

and if p is a candidate point, add it to the result set R.
Step 2: Determine the relationship between p and the base point. (1) If p is a child of

the base point, add the next vertex of p to the min-heap. (2) If p is an ancestor of the base
point, add both the next vertex of p and the next vertex of the base point’s node extension
list to the min-heap. (3) If the distance between vertex v and the query point in the heap is
updated, add the next vertex of vertex v to the heap.

Step 3: Process the heap’s leading vertex, repeat the first two steps, and when the
current road network distance from the heap’s leading vertex to the query point is no less
than the threshold, the algorithm concludes.

Consider a 3NN (q = v3, k = 3) of the query vertex v3 as an example. In the first
step, v3 is added to the min-heap, the first vertex p of the heap is processed, and the vertex
p = v3 is handled for the first time. As v3 is not a candidate point, it is not processed. In the
second step, with no ancestral or child relationship with the base point, the next vertex v2
of v3’s node extension list is added to the min-heap. Correspondingly, in the third step,
the heap’s first vertex, v2, is processed.

As mentioned earlier, this paper uses curDist((q, v)|p) = dist(q, p) + dist(p, v) to
denote the current shortest path network distance from vertex q to vertex v when pass-
ing through point p. Evidently, curDist((q, v)|p) is the upper bound of dist(q, v). Since
dist(q, p) and dist(p, v) are pre-calculated, curDist((q, v)|p) can be retrieved in constant time.

We present a lemma that supports the development of our query algorithm and two
theorems that guide it and demonstrate its correctness.

Lemma 2. For any given vertices q and v, if v is a kNN of q, there must exist a vertex p ∈
X(q).extList ∪ {q} such that v satisfies the following: (i) v ∈ X(p).child; (ii) dist(q, v) =
dist(q, p) + dist(p, v).

As an illustration, consider Figure 6. Assume all vertices are candidate points, and given
q = v3 and v = v5. For {v3} ∈ X(v3).extList, we have S = {v3, v1, v4, v8}. There exists a
vertex p = v8 in S such that the shortest path from v3 to v5 passes through vertex v8.

Based on Lemma 2, we propose our query algorithm. For a given query point q, we
scan each vertex p in {q} ∪ X(q).extList. We first determine whether p is a candidate point.
If so, we compare it with the last vertex in result set R, and update R accordingly. We then
assess the relationship between p and the base point and process it accordingly.

Theorem 2. For a query vertex q, vertex v, and their common ancestor p, if curDist((q, v)|p) ≥
threshold, then vertex v cannot be a kNN of q.

Proof of Theorem 2. Given a query vertex q, assume that there is a vertex v and their
common ancestor p, satisfying curDist((q, v)|p) ≥ threshold, and v is a kNN of q. Let R be
the kNN set of q. It is easy to know that when threshold 6= +∞, there is |R| ≥ k, and for
any point v′ in R, there is dist(q, v′) ≤ threshold, so there is dist(q, v′) ≤ threshold ≤
curDist((q, v)|p), and from the definition of kNN, we can know that v is not the kNN of q,
which contradicts the hypothesis. The proof is completed.

Based on Theorem 1 and the ascending order feature of the node expansion list,
when curDist((q, v)|p) ≥ threshold, then the vertex v and the vertices after v in the node
expansion list must not be kNN of q, so we can exit the calculation early.
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Theorem 3. Assume that in {q} ∪ X(q).extList, the algorithm is currently processing vertex p,
and it terminates when dist(q, p) ≥ threshold. At this point, for any vertex v in the result set R,
curDist((q, v)|v′) = dist(q, v) holds, where v′ is any common ancestor of q and v.

Proof of Theorem 3. Let v be any vertex in the result set R. Given the termination con-
dition, for any vertex pafter processed after p (based on the sequence of scanning in
{q} ∪ X(q).extList), by the property of ascending order in node expansion lists, if v ∈
X(pafter).child, then we have dist(q, pafter) + dist(pafter, v) ≥ threshold. Considering that
curDist((q, v)|v′) ≤ threshold and v′ is any common ancestor of q and v, curDist((q, v)|v′) ≤
threshold; the proof is complete.

The pseudocode of AWTDN is shown as Algorithm 3. For each vertex p in {q} ∪
X(q).extList, if the shortest network distance from p to q is not less than the threshold (line
5 of Algorithm 3), the algorithm terminates because no more kNNs of q will appear. Then,
we evaluate p; if p is a candidate point, we update the result set R and the threshold.

Algorithm 3: kNN Searching Algorithm basd on Graph-Decomposed Tree.
Input: road network G(V,E), query point q, integer k
Output: result set R

1 threshold σ← +∞, R← ∅, small root heap h← ∅;
2 Λ(X(V), E(X(V)))← construct graph-decomposed tree of G(V,E), h.add(q);
3 while h is not empty do
4 The heap head vertex of p← h;
5 if dist(q, p) > threshold σ then
6 break;
7 end
8 if p.isCandidate == true then
9 Update R and threshold σ;

10 end
11 Determine the relation between p and the base point;
12 Update h;
13 end
14 Return R

The space complexity of the graph-decomposed tree is O(Λ) = |V|(|V|+1)
2 +(|V| − 1)

in the worst case, where each node can be connected by all other nodes, the number of tree
edges is |V| − 1. The time complexity of the graph-decomposed kNN searching algorithm
is O(q) = |V| − 1 for query node q, because the nearest nodes can be found in the tree
nodes X(q) on the graph-decomposed tree Λ.

For example, given a query point q = v3, k = 3, suppose the candidate set M =
{v1, v5, v6, v8, v10} (i.e., the vertices of dotted lines in Figure 2), and we query the 3NN
of v3. Table 2 shows the process. The meaning of triplet representation is as mentioned
above. In rows 3–5 of Table 2, the relationship between v6, v7, v10, v9, v2, and the base
point v3 is as follows. All are children of v3, so we add the subsequent vertices in the
extended list of v3 nodes to the heap. In line 6, v4 is the ancestor of base point v3, so we
must add the subsequent vertices in the extended lists of nodes v3 and v4 to the heap; note
that at this time, the first vertex of the v4 node expansion list is v1, and dist(v4, v1) = 14,
dist(v3, v4) = 9. Also, dist(v3, v4) + dist(v4, v1) > dist(v3, v1). Hence, the shortest distance
from v4 to v3 through v1 is greater than the shortest distance from v1 itself to v3, so v1 does
no processing, and we add the follow-up vertex v5 of v4 to the heap. In the last line, the first
vertex of the heap in the small root heap is v2, and its label is (v2,v3,6); i.e., the shortest
distance from v2 to the query point after v3 is 6, which is greater than the threshold of 5 at
this time. So, the algorithm ends and returns R=(v6,2),(v10,4),(v8,5), indicating that the 3NN
of v3 is v6, v10, v8, and their respective shortest distances to the query point are 2, 4, and 5.
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This example helps illustrate the efficiency of AWTDN in handling kNN queries.
The algorithm can use the precomputed shortest distances and a threshold value to prune
unnecessary computations, improving overall performance.

By focusing on an average weight tree decomposition instead of on the minimum
degree, we can more accurately capture the inherent structure of the road network. It visits
fewer vertices for a given query point, which increases computational efficiency, as the num-
ber of visited vertices of a query point q is much smaller, as confirmed by our experiments,
because average weight tree decomposition better preserves the distance information on
the road network. On average, the vertices are similar to those in intermediate weight
tree decomposition.

Table 2. kNN solution process of v3 (q = v3, k = 3).

Currently
Processed

Vertex

Candidate
Point Result Set

Relationship
with Base

Point

Extended
Vertex Label Min-Heap Threshold

(v3, ∅, 0) No (v6, v3, 2) (v6, v3, 2) +∞
(v6, v3, 2) Yes (v6, 2) Child (v7, v3, 3) (v7, v3, 3) +∞
(v7, v3, 3) No (v6, v3, 2) Child (v10, v3, 4) (v10, v3, 4) +∞
(v10, v3, 4) Yes (v6, 2),(v10, 4) Child (v4, v3, 5) (v4, v3, 5) +∞
(v4, v3, 5) No (v6, 2),(v10, 4) Ancestor (v8, v3, 5),

(v1, v4, 14)
(v8, v3, 5),
(v1, v4, 14)

+∞

(v8, v3, 5) Yes (v6, 2),(v10, 4),
(v8, 5)

Ancestor
(v9, v3, 5),
(v1, v8, 14),
(v5, v8, 17)

(v9, v3, 5),
(v1, v8, 14),
(v5, v8, 17)

+∞

(v9, v3, 5) No (v6, 2),(v10, 4),
(v8, 5)

Child
(v2, v3, 6),
(v1, v9, 14),
(v5, v9, 17)

(v2, v3, 6),
(v1, v9, 14),
(v5, v9, 17)

5

4.3. kNN-Query-Processing Method in a Dynamic Environment

We focus on the kNN query problem in a dynamic road network environment, where
the candidate points are moving objects. Specifically, given a query point q, we must find
the k moving objects that are closest. Since the positions of moving objects change with
time, we use the offset method to map them to the nearest road network vertex and then
convert the query from a dynamic environment to a static environment.

Considering the directionality of moving objects, we model the road network as a
directed weighted graph G(V, E).

Definition 12 (Moving Object). Each moving object on the road network is represented by m = <
(vi, vj), offset, t >; that is, at time t, moving object m is on edge (vi, vj), at an offset from vertex vj.

For instance, referring to Figure 7, if the current time is t, moving object m13 can be
represented as m13 = < (v3,v2),2,t>, meaning m13 is on the edge between v3 and v2, the
distance between v3 and v2 is 5 and the offset from vertex v2 is 2. The algorithm maps each
query point to the starting vertex with the offset. For example, if q1 is located on edge (v2,
v1), it is mapped to starting point v2 with an offset of 1. Therefore, the distance between a
moving object m =< (vi, vj), o f f set1, t > and query point q =< (vs, vt), o f f set2, t > can be
represented as o f f set1 + dist(vj, vs) + o f f set2.
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Figure 7. Example of kNN Flow Graph Index.

The location information of each moving object m is updated regularly. We use a
moving object table to store this location information at a given moment. Figure 8 shows
the location information of the moving objects on a road network at times t and t + 1, where
vstart and vend are the respective start and end vertices of edge (vstart, vend); M is the set of
moving objects on this edge; offset contains the offsets of the moving objects to the end
vertex vend, corresponding one-to-one with the moving objects in M; and MN is the number
of moving objects in M.
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Moving Object List 

vend M vstart Offset MN

v1 m12 v2 1 1

v2 m11,m13 v6,v3 1,2 2

v3 m14 v2 2 1

v5 m16 v6 1 1

v6 m10,m15 v7,v5 1,1 2

v7 m5,m9 v8,v6 1,1.5 2

v8 m8,m6 v1,v7 0.5,1 2

     

Moving Object List 

vend M vstart Offset MN

v1 m13 v2 2 1

v2 m11 v6 1 1

v4 m14 v5 1 1

v6 m6,m15 v7,v5 2,1 2

v7 m5,m10 v8,v6 1,2 2

v8 m12 v1 1 1

     

Figure 8. Example of moving object list.

Taking Figure 8 as an example, given query point q1 and assuming that all moving
objects are candidate objects, when we initiate a kNN query at time t, we first map the
query point q1 to the starting vertex with an offset; i.e., q1 6 〈 (v2, v1), 1, t〉. Subsequently, all
moving objects are offset to the vertices in their end direction, which become the candidate
vertices. For example, moving object m13 can be represented as m13 > 〈(v3, v2), 2, t〉; i.e., m13
is on the edge (v3, v2), with an offset of 2 from the vertex v2. Similarly, each moving object
is mapped to a vertex on the road network with an offset, and the final result is as shown
in the Moving Object List at time t. In this way, we can use the AWTDN algorithm for kNN
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queries. For the kNN set, R = {v1, v2, · · · , vK} returned by AWTDN is not the true result.
We must continue restoring the vertices in R to moving objects on the road network. Taking
v1 as an example, MN = 1; i.e., there is only one moving object on v1, i.e., m13. The final
distance from m13 to the query point q1 is dist(m13, q1) = dist(v2, v1) + q1.offset + m13.offset
= 0 + 1 + 2 = 3. The actual kNN result set is obtained after restoring all vertices to moving
objects in turn. It is worth noting that some vertices have more than one moving object,
such as vertex v2, which has moving objects m11 and m13. Therefore, it is necessary to
further screen the moving objects to obtain the final k results.

At time t + 1, as shown, due to the changes in positions of moving objects, the vertices
to which moving objects are offset may also change. For example, due to the change in the
position of m13, its offset vertex changes from v2 at time t to v1 at time t + 1. At this point,
we need to set v2.isCandidate to false andv1.isCandidate to true. We take Figure 9 as an example
to explain the kNN query in a dynamic environment.
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Figure 9. kNN query in dynamic environment.

The starting vertex of query point q in Figure 9 is v3. At time t, there are five moving
objects, m1, m2, m3, m4, m5. m1 is on the edge (v3, v6), and the distance between v3 and v6 is
2. We map each to a terminating vertex with the offset. Table 3 shows the moving object
list at time t after mapping. O f f set = 1 means the distance from m1 to v6 is 1, MN = 1
means the number of the moving object on the edge (v3, v6) is 1. Then, for the vertices after
mapping, we use AWTDN to obtain the result set R and restore its vertices to real moving
objects according to the moving object list, so as to obtain the final kNN result. The solution
process is shown in Table 4. In the dynamic query, we must modify the kNN result set
obtained by AWTDN. Suppose that the 4NN of query point q is 4NN = {v6, v7, v10, v4}. If a
vertex v8 satisfies dist(v8,q) = dist(v4,q), then we continue to save v8; i.e., the 4NN of q is
4NN = {v6, v7, v10, v4, v8}. This ensures that the real moving objects are not missed.

Table 3. List of moving objects at time t.

vend M vstart O f f set MN

v6 m1 v3 1 1
v10 m2 v3 2 1
v5 m3 v8 3 1
v1 m4 v9 2 1
v8 m5 v7 2 1

A moving object table stores the moving objects’ location information at specific time
points, including information such as the starting and ending vertices of the edge on
which the object is located, the set of moving objects on that edge, the offset of each object
from the ending vertex, and the number of moving objects on the edge. This allows the
transformation of the problem from dynamic to static, allowing the use of conventional
static kNN algorithms.
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Table 4. kNN solution process of q.

Object Mapped Vertex Currently
Processed Vertex . . . Min-Heap Threshold

∅ v3 (v3, ∅, 0) (v6, v3, 2) +∞
m1 v6 (v6, v3, 2) . . . (v7, v3, 3) +∞
m1 v7 (v7, v3, 3) . . . (v10, v3, 4) +∞

m1,m2 v10 (v10, v3, 4) . . . (v4, v3, 5) +∞
m1,m2 v4 (v4, v3, 5) . . . (v8, v3, 5),(v1, v4, 14) +∞

m1,m2,m5 v8 (v8, v3, 5) . . .
(v9, v3, 5),(v1, v8, 14),

(v5, v8, 17) +∞

m1,m2,m5 v9 (v9, v3, 5) . . .
(v2, v3, 6),(v1, v9, 14),

(v5, v9, 17) 5

5. Experimental Analysis
5.1. Experimental Parameters

We implemented the AWTDN algorithm in the Java language and compared it with
TEN-Query [2] and G*Tree [7]. The experimental environment comprised an AMD Ryzen
9 5900X 12-Core CPU at 3.69 GHz, 64 GB of memory, a 4 TB hard drive, and Windows 10.

Dataset: The dataset came from real-world road networks provided by Urban Road
Network [24]. Six sets were selected for experiments, as shown in Table 5, where h and w
are the respective height and width of average weight tree decomposition.

Table 5. Statistics of road network data.

Dataset |V| |E| h w

Quanzhou (QZ) 5672 7521 210 79
Dalian (DL) 13,605 17,984 209 65
Pune (PN) 28,649 36,925 359 144

Baghdad (BD) 60,108 88,876 560 201
Tehran (TR) 110,580 147,339 721 356

Bangkok (BK) 154,352 187,798 806 357

Parameter Configuration: For each dataset, we randomly generated candidate objects
and controlled their numbers via object density θ, defined as the ratio of the numbers of
candidate objects and road network vertices. The configurations of θ- and k-values can be
found in Table 6, with default values written in boldface.

Table 6. Parameter Settings.

Parameters Description Value

k Quantity of Nearest Neighbors 10, 20, 50, 100
θ Object Density 0.2, 0.3, 0.5, 0.7

5.2. Impact of Dataset Size on Algorithm Query Time

We compared the query times of AWTDN, G*Query, and TEN-Query for different
dataset sizes, where the object density θ and k take default values. We randomly generated
1000 vertices as query points, using the mean of all query times as the ultimate query time.
The results are shown in Figure 10.
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Figure 10. Tree decomposition TG based on average weight.

It is evident that both AWTDN and TEN-Query are significantly more efficient than
G*Query, and AWTDN is the fastest. This is attributed to the avoidance of ineffective
computations by applying thresholds. We compared the performance of the algorithms
under varying k-values.

5.3. Impact of Changing k-Values on Algorithm Query Time

We compared the query efficiencies of the algorithms across six datasets by altering
k-values, as shown in Figure 11.

The query performance varying different k-values is evaluated in Figure 11. A more
stationary linearity of our algorithm is measured than G*Query and TEN-Query algorithms
as the incremental changes of k-values. The flow graph index abstracts all nodes of the
graph as the tree nodes, and the size of the tree nodes depends on the quantity of neighbors.
Therefore, this tree is not related to the selection of k-value, which transcend the k-value
limitation by storing all potential nodes.
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Figure 11. Impact of Changing k-values on Algorithm Query Time.
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5.4. Impact of Changing Object Density θ on Algorithm Query Time

We compared the query efficiencies of the three algorithms across six datasets by
adjusting θ values, with results as shown in Figure 12.

It is apparent that, irrespective of changes in the θ value, the performance of AWTDN
across all six datasets is markedly superior to that of TEN-Query and G*Query, thereby
confirming the universal applicability of AWTDN.
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Figure 12. Impact of Changing Object Density θ on Algorithm Query Time.

5.5. Comparison of Accessed Vertex Numbers across Different Datasets

We compared the number of vertices accessed by AWTDN, TEN-Query, and G*Query
across six datasets. For each dataset, we generated 1000 random query points and took
the average total number of accessed vertices as the final count. Both k and θ took default
values. The comparison results are shown in Figure 13.
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Figure 13. Comparison of the number of visited vertices.

The results reveal that AWTDN accesses significantly fewer vertices than TEN-Query
and G*Query, which is attributable to the efficient pruning capacity of the threshold.
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5.6. Comparison of Index Construction Time and Space across Different Datasets

We compared the index construction time and space of AWTDAC, TEN-Index, and G*Query
across datasets of varying sizes, where the object density θ takes the default value of 0.3. Since
the construction of TEN-Index depends on k, to accommodate queries of all k-values, we set k to
100. It is worth mentioning that AWTDAC does not rely on k and thus can satisfy kNN queries
of any k-value. We set the parameters of G*Tree according to the original text. The comparison
results are depicted in Figures 14 and 15.
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Figure 14. Comparison of index construction time.
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Figure 15. Comparison of index construction space.

AWTDAC incurs higher construction time and space costs than TEN-Index, which
only stores the kNN results within the contracted neighbor range, which explains why
TEN-Index depends on the k-value. In contrast, AWTDAC stores all vertices within the
subtree scope, thus breaking the k-value limitation and enabling kNN queries of any k-value.
Although G*Tree has the smallest space cost, it has the largest time cost. G*Tree employs
the Dijkstra algorithm to calculate the shortest path network distance, while AWTDAC and
TEN-Index use H2H-Query to measure the road network distance, which is significantly
more efficient than Dijkstra.
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6. Conclusions

kNN queries for road networks are studied in this paper. Firstly, a flow graph index is
proposed to store the intermediated results, which is generated from a graph-decomposed
tree. Rules obtained from the flow graph index are found to reduce the quantity of candidate
nodes. Secondly, the kNN query algorithm is used to conduct the final results on this
flow graph index. Finally, the effectiveness and efficiency of our proposed algorithm are
confirmed through experiments.
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