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Abstract: In this paper, we present a novel signal sorting method aimed at reducing the impact
of interference and noise while achieving blind detection and accurate sorting of a variable-speed
frequency-hopping communication system. To achieve this, we combine spectrogram analysis with
an innovative sorting approach. First, we generate the spectrogram of the received signal, and then
employ a morphology filter to effectively eliminate noise and sweep frequency interference from
the spectrogram. Subsequently, we identify and mark connected domains in the spectrogram, from
which we extract the duration data to create a dataset specifically for separating fixed-frequency
interference. Furthermore, we propose a specialized time alignment algorithm designed to accommo-
date the unique characteristics of variable-speed frequency-hopping signals, enabling precise sorting
of variable-speed frequency-hopping signals. Through rigorous comparative evaluations against
existing algorithms, we demonstrate that our proposed approach provides superior accuracy by
offering a clearer representation of the time–frequency situation of the received signals . The proposed
method provides a high correct sorting probability which is equal to 0.8 when signal-to-noise ratio is
0 dB and reaches 1 when signal-to-noise ratio reaches over 12 dB. In comparison, the correct sorting
probability of the comparison algorithm is far inferior to the proposed algorithm.

Keywords: variable-speed frequency-hopping signals; signal sorting; spectrogram; time alignment

1. Introduction

Frequency-hopping (FH) communication, as a special spread spectrum communi-
cation method, can randomly change the carrier frequency of the signal according to
a certain pattern, and has superior antifading, anti-interference, and anti-interception
capabilities. With the widespread application of FH communication technology in the
military field, there have been increasing demands for reconnaissance of FH signals from
noncooperative parties.

The sorting of FH signals is a fundamental problem in the reconnaissance of FH
signals [1]; extensive studies have been devoted to this area and many methods have
been proposed to precisely sort FH signals from multiple networks. The multiple-hop
autocorrelation processing is considered a traditional means of estimating the parameters
and sorting the networks of FH signals in the presence of broadband thermal noise, which
is dependent on prior information [2]. In [3], a shortwave signal detection algorithm based
on spectral energy statistics was proposed, utilizing the differences in the energy spectrum
characteristics of shortwave signals. However, the detection probability was poor at low
signal-to-noise ratios (SNRs). In [4], the authors proposed a channelized structure based
on short-time Fourier transform (STFT), which was only based on signal power detection,
but the detection effect plummeted at low SNR. In [5], autocorrelation processing was
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performed on each subchannel signal to achieve FH signal detection after channelization
processing of the received signal. Once the FH signal crosses the channel, a certain hop of the
FH signal is lost, resulting in a decrease in detection probability. In [6], the authors generated
time–frequency maps using an overlapping sliding window to improve time–frequency
resolution and signal detection probability. In [7], the authors used the method of short-
term energy cancellation to detect the existence of FH signals in each subchannel, while
ignoring the cross-channel problem of FH signals. In [8], local adaptive thresholds were
set to eliminate the impact of interference signals, but the detection probability and anti-
interference ability are poor in shortwave channels.

FH signal sorting essentially belongs to the classification problem; as a result, many
clustering algorithms are applied to that. Both FH threshold segmentation algorithm
based on the K-means [9] and feature set classification algorithm based on the improved
K-Means [10] can extract FH signals at low SNR, with high detection probabilities. How-
ever, the K-means clustering algorithm requires presetting of the number of clusters and
has weak anti-interference ability in shortwave channels.

In recent years, deep learning has emerged in the field of FH signal sorting. In [11–13],
the impact of spectrum leakage and poor time–frequency resolution was reduced to im-
prove detection probability through the method of neural network. The real electromagnetic
environment is complex and unpredictable, which poses a problem to the detection al-
gorithm based on simulation data. To address this problem, an interference cancellation
network that introduces a graph attention mechanism and an ensemble channel attention
module with Siamese nested U-Net backbone was proposed [14], but requires a great lot
of calculation.

Because of technical performance and computation limitations, it is more universal to
use time–frequency spectrum information to sort signals in engineering. In [15], the uti-
lization of smooth pseudo-Wigner–Ville distribution (SPWVD) to generate time–frequency
maps increased the computational complexity and was not conducive to engineering im-
plementation. The time–frequency maps were obtained through STFT, and then processed
using image enhancement, edge detection, and morphological filtering methods [16,17].
This had a good effect on interference with geometric features. To solve the problem of
selection of structural elements in traditional methods, a morphological structure adaptive
method was proposed, which combines with the least squares method to improve the
estimation accuracy [18].

Due to the rapid development of FH communication, multiple types of FH commu-
nication technologies have emerged, and variable-speed FH communication technology
stands out among them, which adopts the strategy of variable FH speed to pose a severe
challenge on the sorting of FH signals in complex environments [19]. Some scholars have
proposed blind source separation algorithm, sparse Bayesian estimation algorithm, and
frame overlap algorithm to sort variable-speed FH signals from different receiving time
periods [20–25]. However, the practical application of these algorithms are limited by their
large computational complexity and poor sorting accuracy.

Motivated by the study in [16], we consider a sorting method for variable-speed FH
signals with only a spectrogram. Our focus is to detect the variable-speed FH signals
from complex electromagnetic environments and separate the multiple variable-speed FH
signals into the single variable-speed FH signal corresponding to the same radio station
with only a spectrogram. Results indicate that the proposed method can accurately select
variable-speed FH signals with the good antinoise ability and anti-interference ability. Our
work contributes in the following aspects:

• This method does not require preprocessing of the received signal and only requires ob-
taining the spectrogram of the received signal, which reduces computational complexity.

• We repair the broken part of the spectrogram which is caused by the noise and
interference to offer better representation of the time–frequency situation.

• We develop the time alignment algorithm for the characteristics of variable-speed FH
signal, and this algorithm improves sorting accuracy significantly.
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The remainder of this paper is organized as follows. In Section 2, the mathematical
model of signal and time–frequency analysis are introduced. In Section 3, the proposed
algorithm for variable-speed FH signal sorting is presented. The output result and sorting
accuracy of the proposed algorithm are numerically evaluated in Section 4, and conclusions
are made in Section 5.

2. Signal Model and Problem Formulation
2.1. Signal Model

We assume that there are noise, fixed-frequency interference, and sweep-frequency
interference in the shortwave environment. Within the certain observation time, we can
model the received signal in the shortwave frequency channel by

r(t) =
I

∑
i=1

FSFHi(t) +
J

∑
j=1

VSFHj(t) +
K

∑
k=1

dk(t) +
L

∑
l=1

cl(t) + n(t) (1)

where r(t) is the received shortwave broadband signal, FSFH(t) is the fixed-speed FH
signal, VSFH(t) is the variable-speed FH signal, d(t) is the fixed-frequency interference,
c(t) is the sweep-frequency interference, and n(t) is the receiver noise (we assume that it is
white and Gaussian).

Assume that the period of the fixed-speed FH signal is Th and the amplitude of the
fixed-speed FH signal is A(t). To describe the FH signal, we introduce the rectangular
window function, which can be written as

rectTh(t) =
{

1 0 ≤ t ≤ Th
0 else

(2)

According to reference [26], the model of the fixed-speed FH signal can be given by

FSFH(t) = A(t) ∗ ∑
n

rectTh(t − (n − 1)Th − t0)ej2π fn(t−(n−1)Th−t0)+jθn ∗ m(t) (3)

where t0 is the original time, fn is the center frequency at hop n, θn is the initial phase at
hop n, and m(t) denotes an information modulation term multiplied to the FH signal.

Compared with the fixed-speed FH signal, the period of the variable-speed FH signal
changes randomly. Based on (3), the model of the variable-speed FH signal can be given by

VSFH(t) = A(t) ∗ ∑
n

rectTn(t −
n−1

∑
i=1

Ti − t0)ej2π fn(t−∑n−1
i=1 Ti−t0)+jθn ∗ m(t) (4)

where Tn denotes the dwell time at hop n and Ti denotes the dwell time at hop i.

2.2. Time–Frequency Analysis

The center frequency of FH signals exhibits irregular changes over time, which makes
it difficult to comprehensively analyze FH signals in both the time and frequency do-
mains. To effectively detect FH signals, it is common to utilize the time–frequency analysis
techniques. The popular methods of time–frequency analysis mainly include STFT and
Wigner–Ville distribution (WVD), as well as some relevant improved algorithms, and vari-
ous joint time–frequency transforms.

For the received signal r(t), the expression of STFT can be written as

STFTr(t, f ) =
∫ +∞

−∞
r(τ)h∗(τ − t)e−j2π f τdτ (5)

where h(t) denotes the window function, and τ denotes the delay time. According to (5),
we can discover that STFT divides the received signal r(t) into multiple signal segments



Electronics 2023, 12, 4533 4 of 16

which are processed by the window function, and then calculates the Fourier transform of
each signal segment separately.

For the received signal r(t), the expression of WVD can be written as

WVDr(t, f ) =
∫ +∞

−∞
r(t + τ/2)r∗(t − τ/2)e−j2π f τdτ (6)

Considering the expression in (1), we can rewrite WVDr(t, f ) as

WVDr(t, f ) = WVDFSFH(t, f ) + WVDVSFH(t, f ) + WVDd(t, f ) + WVDc(t, f )

+ WVDFSFH,VSFH(t, f ) + WVDFSFH,d(t, f ) + WVDFSFH,c(t, f )

+ WVDVSFH,d(t, f ) + WVDVSFH,c(t, f )

+ WVDd,c(t, f )

(7)

where WVDFSFH(t, f ) is the WVD term of fixed-speed FH signal, WVDVSFH(t, f ) is the
WVD term of variable-speed FH signal, WVDd(t, f ) is the WVD term of fixed-frequency
interference signal, WVDc(t, f ) is the WVD term of sweep-frequency interference signal,
and other terms are cross-terms between signal components.

Comparing the expression of STFT and WVD, it can be observed that cross-terms
of different signal components will be generated during the transformation of WVD,
making the fixed-speed FH signal and the variable-speed FH signal difficult to detect.
Joint time–frequency transforms can suppress cross-terms and improve resolution, but the
high computational complexity is not conducive to engineering implementation [27,28].
To avoid the cross-terms and reduce the computational complexity, we select STFT as the
time–frequency analysis tool.

3. Algorithm Design
3.1. Spectrogram Preprocessing

After STFT, the spectrogram of the received signal r(t) is obtained. Due to the presence
of background noise and interference, it is hard to extract the FH signals directly. With the
decline of SNR, the FH signals are easily submerged in the noisy background noise. To ex-
tract the FH signals from the spectrogram and reduce the impact of background noise and
interference, we adopt the method of morphology filter to preprocess the spectrogram.
The steps of preprocessing are as follows:

(1) Select the rectangular structural element with length and width smaller than single hop
to perform closed operation on the spectrogram to eliminate the impact of background
noise and sweep-frequency interference.

(2) Select the rectangular structural element with length slightly greater than the fracture
area to perform the operation of corrosion on the spectrogram to complete the correla-
tion and splicing of different signal fragments. Then, select the rectangular structural
element with length slightly greater than the former rectangular structural element
to perform the operation of expansion on the spectrogram for separating the aliasing
regions in the spectrogram.

(3) Utilize the method of OTSU to determine the binarization threshold. The method of
OTSU divides the image data into two categories using a threshold. In one category,
the grayscale of the pixels in the image is less than the threshold, while in the other
category, the grayscale of the pixels in the image is greater than or equal to the
threshold. When the variance of the grayscale between these two categories reaches
the top, it indicates that the obtained threshold is the optimal threshold.

To obtain the optimal threshold, count the number of pixels for each grayscale in the
image firstly. Set ni as the number of pixels with grayscale i in the image, i = 0, 1, 2, · · · , 255.
Thus, the probability of pixels with grayscale i in the image is given by
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pi =
ni

∑255
j=0nj

(8)

Assume that all pixels in the image are divided into two categories, C1 and C2, with
threshold k, and the probability of category C1 and C2 are written as p1 and p2, respectively,
and the average grayscale of category C1 and C2 are written as m1 and m2, respectively.

p1 =
k

∑
i=0

pi (9)

p2 =
255

∑
i=k+1

pi (10)

m1 =
∑k

i=0ipi

p1
(11)

m2 =
∑255

i=k+1ipi

p2
(12)

Average grayscale of the entire image is given by

mG =
255

∑
i=0

ipi (13)

Combining with (9), (10), (11), and (12), we can update mG as follows:

mG = m1p1 + m2p2 (14)

According to the definition of variance, the expression for intercategory variance is
given by

σ2 = p1(m1 − mG)
2 + p2(m2 − mG)

2 (15)

Inserting (14) into (15), we can update σ2 as follows:

σ2 = p1p2(m1 − m2)2 (16)

Traversing all grayscale levels [0, 254], the k that maximizes σ2 is the optimal threshold.

(4) Perform binarization segmentation to obtain the binary time–frequency image contain-
ing only FH signals and fixed-frequency interference signals based on the binarization
threshold, with the signal grayscale of 1 and the background grayscale of 0.

3.2. Connected Domain Labeling

To remove fixed-frequency interference signals effectively, we adopt the method of
connected domain labeling, which marks each white pixel in a binary image. The white
pixels belonging to the same connected domain have the same mark, and the white pix-
els of different connected domains have different marks, so that each connected domain
in the image can be extracted. In the method of connected domain labeling, there are
two common connections: four-neighborhood connection and eight-neighborhood con-
nection. To strengthen the correlation between adjacent regions, we adopt the pattern of
eight-neighborhood connection. The steps of connected domain labeling are as follows:

(1) label_count = 1, and traverse each pixel of the binary time–frequency image in
sequence (from left to right and from top to bottom).

(2) If the pixel has already been traversed, continue traversing; otherwise, turn to step 3.
(3) Set this pixel as the starting seed and place it in a set labeled as label_count, then push

all eligible pixels onto the stack based on the eight-neighborhood relationship.
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(4) Eject the top pixel of the stack and place it in the set labeled as label_count, then push
all eligible pixels onto the stack based on the eight-neighborhood relationship.

(5) Repeat step 4 until the stack is empty, label_count = label_count + 1.
(6) Repeat step 2 until the entire image is traversed.

3.3. Feature Extraction and Signal Sorting

After marking the connected domain of the binary time–frequency image, it is avail-
able to extract the feature. The method of feature extraction is to construct a minimum
rectangular boundary for the connected domain, which can be represented by the vector
(x, y, L, H), where x and y denote the horizontal coordinates and the vertical coordinates
of the left lower corner, respectively, and L and H denote the length of the x-axis and the
y-axis, respectively.

Due to the constant frequency of the fixed-frequency interference signal, it is a straight
line during the observation time in the spectrogram. The center frequency of the fixed-speed
FH signal changes randomly over time, with some short horizontal lines of equal length on
the spectrogram. Moreover, each hop of the fixed-speed FH signal is interconnected in time.
Compared with the fixed-speed FH signal, each hop of the variable-speed FH signal has no
fixed duration, with some short horizontal lines of different lengths on the spectrogram
and each hop being interconnected in time. Based on the above analysis, we propose such
a strategy of sorting: if the duration of each hop is equal to the observation time, regard
the signal as fixed-frequency interference; if the duration of each hop is equal and is much
less than the observation time, regard the signal as fixed-speed FH signal; if the duration
of each hop is different and is much less than the observation time, regard the signal as
variable-speed FH signal.

By analyzing the duration of each connected domain, we can easily find that the
duration of each hop of FH signals and the duration of fixed-frequency interference signals
are located in different high-density areas. Based on the feature, the DBSCAN (density-
based spatial clustering of applications with noise) clustering algorithm is applied to
distinguish between FH signals and fixed-frequency interference signals. The DBSCAN
clustering algorithm is a classic density clustering algorithm that defines clusters as the
largest set of points connected by density. This algorithm can divide regions with high
density into clusters and find clusters of arbitrary shape in the noisy spatial database.

Compared with fixed-speed FH signal, the duration of each hop of the variable-speed
FH signal has no regular distribution, causing DBSCAN clustering algorithm to be invalid.
However, each hop of the variable-speed FH signal is interconnected in time, which means
that the starting time of the next hop is equal to the ending time of the previous hop without
considering channel-switching time. Based on the feature, we develop a time alignment
algorithm, which is shown in Algorithm 1. According to the above analysis, we can know
that the duration, the starting time, and the ending time are key parameters of each hop.
We use the symbol td, ts, te to represent the duration, the starting time, and the ending time,
respectively, td = L, ts = x, te = x + L, and input these three parameters into the parameter
vector w = [ts, te, td].

In Algorithm 1, we sequentially traverse all components within the signal class and
select different network signals by comparing the relationship between the end time
of one component and the start time of other components. When the end time of a
certain component is equal to the start time of another component, we consider these two
components to be continuous in time and classify them into the same FH radio station.
We repeat this cycle until the end time of a certain component is equal to the length of
the observation time tobservation. Using Algorithm 1, we sequentially analyze the clustering
results of the DBSCAN algorithm. Firstly, we utilize the time alignment algorithm for high-
density clusters to separate the fixed-speed FH signals. This is because the high-density
clusters include both all components of fixed-speed FH signals and certain components of
variable-speed FH signals, and we use Algorithm 1 to identify all components belonging
to the same fixed-speed FH radio station. After that, the remaining signal segments only
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contain components of variable-speed FH signals. By using Algorithm 1 again, the sorting
of variable-speed FH signals can be achieved.

Algorithm 1: The time alignment algorithm.
Input: the cluster of FH signal, the parameter vector of the first signal w1 in the

cluster.
Output: sorting result Φm.

1 Initialize: k = 2, m = 1, Φm = w1.
2 while Φm.wm.te < tobservation do
3 Extract the parameter vector of the k-th signal wk in the cluster.
4 if wk.ts = Φm.wm.te then
5 m = m + 1.
6 Φm = [Φm−1, wk].
7 k = k + 1.
8 else
9 k = k + 1.

10 end
11 end

To sum up, the sorting of a variable-speed FH signal is divided into two steps:
(1) Utilize the time alignment algorithm for high-density clusters to separate the fixed-
speed FH signal. (2) Utilize the time alignment algorithm for remaining signal segments to
sort the variable-speed FH signal.

3.4. Algorithm Summary

We sort variable-speed FH signals from the perspective of image processing. Firstly,
after performing STFT on the received signal, we adopt the methods of morphology filter
and binary processing to filter out the background noise and sweep-frequency interference
in the spectrogram. Secondly, we mark the white connected areas in the spectrogram for
feature extraction. Thirdly, the starting time, the ending time, and the duration of each hop
are obtained and the DBSCAN algorithm is applied to identify fixed-frequency interference
based on these three characteristic parameters. Finally, the proposed algorithm about time
alignment can detect and sort variable-speed FH signals from the remaining mixed FH signals.
We summarize the proposed sorting algorithm about variable-speed FH signals in Figure 1.

signal reception STFT

morphology filter binary processing

connected domain labeling

feature extraction

DBSCAN

fixed-frequency 
interference

time alignment 

fixed-speed 
FH signal

variable-speed 
FH signal

Figure 1. Flowchart of variable-speed FH signal sorting.



Electronics 2023, 12, 4533 8 of 16

4. Numerical Results

In this section, examples are provided to demonstrate the output result and sorting
accuracy of the proposed algorithm. We consider the mixed signals containing white
Gaussian noise, fixed-frequency interference signals, sweep-frequency interference signals,
fixed-speed FH signals, and variable-speed FH signals, where the sampling rate of the
mixed signals is 180 MHz and the sampling time is 2 s. The frequency set of fixed-frequency
interference signals is [30, 50, 70, 90] MHz, the frequency range of sweep-frequency interfer-
ence signal 1 is 20 MHz∼40 MHz with the time length tl = 0.05 s, the frequency range of
sweep-frequency interference signal 2 is 30 MHz∼50 MHz with the time length tl = 0.05 s,
and the SNR for white Gaussian noise is 0 dB. For fixed-speed FH signal 1, the frequency
range is 30 MHz∼50 MHz, the hopping speed is 100 hop/s, the modulation method is
2 FSK, and the symbol rate is 200 bit/s. For fixed-speed FH signal 2, the frequency range
is 50 MHz∼70 MHz, the hopping speed is 50 hop/s, the modulation method is 2 PSK,
and the symbol rate is 100 bit/s. For variable-speed FH signals, the frequency range is
70 MHz∼90 MHz, the range of hopping speed is 25 hop/s∼100 hop/s, the modulation
method is MSK, and the symbol rate is 50 bit/s. STFT adopts the Hamming window with
the length of 1024 points.

4.1. Morphology Filter and Binary Processing

We perform STFT transformation on the mixed signals to obtain the spectrogram.
As shown in Figure 2, the spectrogram is filled with foggy noise, which is the form of white
Gaussian noise after STFT. The fixed-speed FH signal is represented on the spectrogram as
some short horizontal lines of equal length, and the variable-speed FH signal is represented
on the spectrogram as some short horizontal lines of different lengths. The fixed-frequency
signal is represented on the spectrogram as a continuous horizontal line, and the sweep-
frequency signal is represented on the spectrogram as the short slash.

Figure 2. The original spectrogram (the observation time is 0.1 s).

To eliminate white Gaussian noise and sweep-frequency signal, we perform the opera-
tion of morphology filter on the spectrogram. As shown in Figure 3a, white Gaussian noise
and sweep-frequency signal are filtered out. However, STFT can set the amplitude of some
signal regions to 0, resulting in fractures in the connected areas of the same type of signal
under low SNR conditions. Thus, it is necessary to associate the fracture fragments and
then complete the stitching. The optimized spectrogram is shown in Figure 3b.
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Figure 3. (a) The filtered spectrogram. (b) The optimized spectrogram.

Expanding the difference between signal and background is beneficial for connected
domain labeling. We utilize the method of OTSU to determine the binarization threshold,
and the binary processing of the optimized spectrogram is shown in Figure 4.

0 Time/s 0.1

Fr
eq
ue
nc
y/
M
H
z

90

Figure 4. The binary processing of the optimized spectrogram.

4.2. Connected Domain Labeling and Signal Sorting

It can be observed that the attributes of each connected region can effectively charac-
terize the parameter characteristics of the signal from Figure 4. To extract these parameter
characteristics, we label the connected regions, which are shown in Figure 5.

After labeling the connected domains, the parameter vector of each connected domain
can be obtained. We extract the duration of each connected domain from the parameter
vector and use the duration of each connected domain as a feature. The duration clustering
based on the DBSCAN algorithm is performed on the connected domains, and the density
parameter of sample distribution within the neighborhood is set to (30,1), which represents
clustering with at least one point in a circular neighborhood with a radius of 30. The clus-
tering result is shown in Figure 6, where labels [1,2,4,5] are category 1, label 3 is category 2,
labels [6,8,10,11,14,15,17,19,20,22,24] are category 3, and labels [7,9,12,13,16,18,21,23] are
category 4. Due to the duration of category 1 being equal to the observation time, labels
[1,2,4,5] belong to fixed-frequency interference signal. The duration of categories [2,3,4] is
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much shorter than the observation time, so categories [2,3,4] belong to FH signals, which
include fixed-speed FH signals and variable-speed FH signals.

1
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4
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7

8
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15
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17

18
19
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22

23

24
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y/
M
H
z

90

Figure 5. Connected domain after labeling.
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L
a
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e
l

Category 1

Category 2

Category 3

Category 4

Figure 6. Clustering result.

The random duration of variable-speed FH signals makes it difficult to sort FH signals
according to duration, and we adopt the proposed time alignment algorithm to solve this
problem. Due to a large number of signal segments contained in category 3 and category 4,
we think that category 3 and category 4 are high-density clusters and we input category 3
and category 4 into the time alignment algorithm to separate the fixed-speed FH signals.
Then, we reuse the time alignment algorithm for the remaining signal segments. Figure 7
shows the result of signal sorting, where fixed-speed FH signal 1 is made up of labels
[6,8,10,11,14,15,17,19,22,24], fixed-speed FH signal 2 is made up of labels [7,9,13,18,21],
and the variable-speed FH signal is made up of labels [3,12,16,20,23].
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Figure 7. Sorting result.

4.3. Testing in Code Division Networking

It can be seen from Figure 7 that the proposed algorithm is able to effectively sort
variable-speed FH signals from multiple FH signals when the networking method of FH
signals is frequency division networking (different FH signals use different frequency
channels), and in this section, we test the output result of the proposed algorithm in the
scene of code division networking (all FH signals work on the same frequency channel with
different FH sequences, and the orthogonality of the FH sequences is used to distinguish
different FH signals). The parameters are set as follows: For fixed-speed FH signal 1,
the frequency range is 30 MHz∼80 MHz, the hopping speed is 100 hop/s, the modulation
method is 2FSK, and the symbol rate is 200 bit/s. For fixed-speed FH signal 2, the frequency
range is 30 MHz∼80 MHz, the hopping speed is 50 hop/s, the modulation method is 2 PSK,
and the symbol rate is 100 bit/s. For variable-speed FH signal 1, the frequency range is
30 MHz∼80 MHz, the range of hopping speed is 25 hop/s∼100 hop/s, the modulation
method is MSK, and the symbol rate is 50 bit/s. For variable-speed FH signal 2, the fre-
quency range is 30 MHz∼80 MHz, the range of hopping speed is 20 hop/s∼100 hop/s,
the modulation method is QPSK, and the symbol rate is 50 bit/s. In addition, there are white
Gaussian noise (SNR = 0 dB), fixed-frequency interference ( f1 = 58 MHz, f2 = 78 MHz),
and sweep-frequency interference (the frequency range fr = 30 MHz∼50 MHz, the time
length tl = 0.025 s) in the shortwave environment. The spectrogram is shown in Figure 8.

We input the spectrogram into the proposed algorithm, and the sorting process of the
variable-speed frequency-hopping signal is shown in Figure 9. The output of the proposed
algorithm indicates that the proposed algorithm can accurately sort mixed FH signals,
which adopts the method of code division networking.

Figure 8. The original spectrogram.
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4.4. Comparison of Sorting Performance

In this section, we analyze the sorting performance of the proposed algorithm in
different SNR conditions. The performance of the variable-speed FH signal sorting is
evaluated using correct-sorting probability Pcs, which is defined in (17), and false alarm
probability Pf a, which is defined in (18).

Pcs =
∑Q

q=1
bq
a

Q
(17)

Pf a =
∑Q

q=1
cq
d

Q
(18)

where Q = 1000 is the number of independent trials, a is the actual number of variable-
speed FH signal segments, bq is the number of variable-speed FH signal segments sorted
correctly with the sorting algorithm, cq is the number of false variable-speed FH signal
segments detected with the sorting algorithm, and d is the estimated number of variable-
speed FH signal segments.
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Figure 9. The sorting process of variable-speed frequency-hopping signals.
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In Section 4.3, we set the number of category k = 5 and we choose the algorithms
in [29,30] as the compared algorithms. After STFT, filter operation, binary segmentation,
connected domain labeling, and feature extraction, FH signal sorting is based on MeanShift
algorithm in [29]. The MeanShift algorithm assumes that the datasets of different clusters
conform to different probability density distributions. By finding the most dense direction
in the sample set and constantly shifting to the maximum density, the samples converge to
the local density maximum, and the points that converge to the same maximum are the
members of the same cluster. In [30], FH signals sorting depends on K-means clustering,
which implements the classification of the sample based on Euclidean distance between
sample data and different centroids. Figure 10a compares the correct-sorting probability for
the algorithms in [29,30] and the proposed algorithm, and Figure 10b compares the false
alarm probability for the algorithms in [29,30] and the proposed algorithm.
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Figure 10. (a) Pcs versus SNR. (b) Pf a versus SNR.

As shown in Figure 10a, the sorting accuracy of the proposed algorithm is much
higher than that of the algorithm in [29,30] in the same SNR conditions. Moreover, in high
SNR conditions, the sorting accuracy of the proposed algorithm can reach 100%, while the
sorting accuracy of the algorithm in the literature [29,30] can only reach 30%. There are
two reasons for this difference:

(1) As shown in Figure 11a, the connected domain marked by the algorithm in [29,30]
has some broken parts, causing the FH signal to be divided into multiple burst signals
with shorter duration, which brings interference to subsequent clustering processing.
Moreover, there are some overlaps of time and frequency dimensions in the time–frequency
distribution, causing deformation of the connected domain, which brings significant errors
to parameter extraction. In comparison, the connected domain marked by the proposed
algorithm has no broken parts and overlaps, which can better reflect the time–frequency
situation of the FH signal, as shown in Figure 11b.
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Figure 11. (a) Marked connected domain in [29,30]. (b) Marked connected domain in this paper.
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(2) The proposed algorithm adopts the means of time alignment to sort multiple FH
signals, which takes into account the random changes in duration and center frequency.
However, the algorithm in [29,30] sorts multiple FH signals only based on their duration,
which ignores the irregular distribution of the duration of variable-speed FH signals. The
sorting process of variable-speed FH signals in [29,30] is shown in Figure 12.
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Figure 12. The sorting process of variable-speed frequency-hopping signal in [29,30].

From Figure 12, it can be seen that the methods in [29,30] lack the optimization of
time–frequency maps, resulting in some variable-speed FH signal segments being frag-
mented or overlapping with other signal segments. In addition, the methods in [29,30]
do not consider the temporal continuity of FH signals, but simply classify them based on
the duration of each hop signal, resulting in the inability to sort variable-speed FH signal
segments which have the same duration as the fixed-speed FH signal segments. Therefore,
whether under low SNR conditions or high SNR conditions, the sorting accuracy of the
methods in [29,30] is far lower than that of the proposed algorithm.

As shown in Figure 10b, the false alarm probability of both the proposed algorithm
and the comparison algorithm decreases with increasing SNR, with the proposed algorithm
having the smallest false alarm probability, followed by the algorithm in [29], and the
algorithm in [30] having the highest false alarm probability. This is because the proposed
algorithm adopts the strategy of sorting fixed-speed FH signals first and then variable-speed
FH signals, while the algorithm in [29,30] synchronizes the fixed-speed FH signals sorting
with the variable-speed FH signals sorting, greatly increasing the false alarm probability.

In addition, we can see that the sum of correct-sorting probability and false alarm
probability is not equal to 1; this is because the sorting of variable-speed FH signals is
based on the detection of variable-speed FH signals. After detecting the variable-speed
FH signal, it is necessary to group these variable-speed FH signal segments, and the same
group of variable-speed FH signal segments indicates that these variable-speed FH signal
segments come from the same FH radio station. During the grouping process, some
variable-speed FH signal segments may entered the wrong group, resulting in a smaller
number of correctly grouped variable-speed FH signal segments than the detected variable-
speed FH signal segments. Therefore, the correct-sorting probability is lower than the
detection probability. The correct-sorting probability describes the sorting situation of
variable-speed FH signals, and the false alarm probability describes the detection situation
of variable-speed FH signals. The sum of false alarm probability and detection probability
is equal to 1. Combining the condition that the correct-sorting probability is less than the
detection probability, it can be determined that the sum of correct-sorting probability and
false alarm probability is less than 1.
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5. Conclusions

A signal sorting method utilizing a spectrogram was proposed for variable-speed
frequency-hopping (FH) signals. The objective was to mitigate the impact of interference
signals and noise on FH signals and achieve blind detection and accurate sorting of variable-
speed FH signals. In this method, the duration of the signal was utilized as the dataset
for blind detection, enabling the separation of various interference signals and noise from
the FH signals. Subsequently, a time alignment algorithm was employed to separate
the fixed-speed FH signals from the mixed FH signals. Building upon this, the time
alignment algorithm was reapplied to accurately sort the variable-speed FH signals from
the remaining FH signals. The numerical results demonstrated that the proposed algorithm
exhibited a high probability of correct sorting and a low false alarm probability, all without
requiring any prior information. In comparison to alternative sorting algorithms for FH
signals, the proposed method not only offered better representation of the time–frequency
characteristics of the received signals but also achieved more accurate sorting of variable-
speed FH signals.
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