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Abstract: This work proposes an analytical gradient-based optimization approach to determine
the optimal weight matrices that make the state and control input at the final time close to zero
for the linear quadratic regulator problem. Most existing methodologies focused on regulating
the diagonal elements using only bio-inspired approaches or analytical approaches. The method
proposed, contrarily, optimizes both diagonal and off-diagonal matrix elements based on the gradient.
Moreover, by introducing a new variable composed of the steady-state and time-varying terms for the
Riccati matrix and using the coordinate transformation for the state, one develops algebraic equations-
based closed-form solutions to generate the required states and numerical partial derivatives for
an optimization strategy that does not require the computationally intensive numerical integration
process. The authors test the algorithm with one- and two-degrees-of-freedom linear plant models,
and it yields the weight matrices that successfully satisfy the pre-defined requirement, which is
the norm of the augmented states less than 10−5. The results suggest the broad applicability of the
proposed algorithm in science and engineering.

Keywords: optimalfeedback control; weight matrices; optimization; algebraic closed-form solutions

1. Introduction

In optimal control theory, one defines optimal control problems to determine control
signals that minimize a performance index as well as satisfy the physical constraints [1].
Whereas it is difficult to find explicit expressions for the optimal control of nonlinear
systems, linear systems can provide explicit equations for the optimal control input. For the
advantage of using explicit equations, many works linearize nonlinear systems at the
equilibrium point. One of the widely used state feedback control problems is defined for
a linear system, where a quadratic performance index is defined using the state, control,
terminal state, and associated unspecified weight matrices, called the linear quadratic
regulator (LQR) problem. In general, the weight matrices are adjusted by users to find the
optimal control and corresponding states that satisfy the requirement or desired behavior
set by users. For instance, if it is important that the intermediate state is to be small, a large
state weight matrix can be selected. The other weight matrices, such as the terminal state
and control weight matrices concerning the terminal state and control effort, are selected
in a similar manner. Although a key of solving the LQR problem is to determine the
weight matrices properly, most studies have determined these matrices by trial-and-error,
which is time-consuming work. For instance, considering a second-order system with
one degree-of-freedom (DOF) requires determining seven symmetric components of the
weight matrices (i.e., three for the state weight Q ∈ R2×2, one for the control weight R ∈ R,
and three for the terminal state weight Sf ∈ R2×2). However, if one considers a two-DOFs
system, the number of the symmetric components in the weight matrices increases to 23
(i.e., 10 for Q ∈ R4×4, three for R ∈ R2×2, and 10 for Sf ∈ R4×4). That is, the number of
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components to be determined in the weight matrices exponentially increases if the size of
the system increases. Moreover, determining the weight matrices generally depends on
the engineers’ knowledge, and this approach does not always guarantee that the system
response will meet the specified performance. For this reason, it is critical to design a
proper optimization strategy for determining the weight matrices while satisfying the
user-specified performance and reducing the engineers’ effort to find the proper weight
matrices, especially for high DOF applications.

Many researchers have proposed weight matrices selection approaches to reduce the
effort for determining weight matrices using bio-inspired heuristic algorithms. Among
a number of bio-inspired optimization algorithms, some researchers employed a genetic
algorithm (GA) to optimize the weight matrices for various system models and fitness
functions. Marada et al. [2] formulated the LQR problem based on the linearized inverted
pendulum system and found the state and control weight matrices using the GA. Their
approach minimizes a fitness function that consists of a weighted summation of the set-
tling time and the control input considering the location of system closed-loop poles for
system stability. Dhiman et al. [3] also utilized the same system model and optimization
algorithm, but the considered fitness function was the quadratic performance index. The
GA-based weight optimization approach was also utilized for the vehicle suspension sys-
tem by Yu et al. [4] and linearized spacecraft attitude dynamics by Kukreti et al. [5]. For the
vehicle suspension system, the fitness function was composed of suspension performance
indices, such as vertical acceleration of the car, dynamic tire load, and suspension work-
ing space. Similarly, Kukreti et al. considered the control performance for the fitness
function, which is defined as the weighted summation of the final time and attitude and
angular velocity errors. In addition to the GA, to optimize the weight matrices of the LQR
problem, scholars applied many different optimization algorithms (e.g., a particle swarm
optimization [6], its variations [7,8], ant-lion algorithm [9], ant colony optimization [10],
Jaya’s algorithm [11], and bat algorithm [12], etc.) into diverse dynamic systems, and more
studies including the mentioned research are summarized in Table 1. The aforementioned
approaches commonly considered the diagonal components of the state and control weight
matrices, as well as the algebraic Riccati matrix equation. Also, these approaches, based
on bio-inspired optimization algorithms, take offline optimization which requires a huge
computational burden.

Unlike weight selection using bio-inspired heuristic algorithms, some scholars pro-
posed analytical approaches to determine the weight matrices. Elumalai and Raaja [13]
proposed a time-domain-based algebraic Riccati and Lagrange optimization technique to
determine the weight matrices, where they satisfy a pre-defined performance for a two-
dimensional torsion system. Sarkar and Dewan [14] presented a pole-placement approach
that satisfies user-defined time domain specifications for generating the state-feedback
gain for an inverted pendulum system. Yang [15] presented a pole assignment design of a
quaternion-based spacecraft attitude control problem for generating the weight matrices by
considering a balance between the performance and fuel consumption.

Table 1. Relevant research papers.

Refs. System Model Approach Consideration

[2] Inverted pendulum Genetic algorithm - Weighted summation of settling time and
control input

[3] Inverted pendulum Genetic algorithm - Performance index of the LQR problem
[4] Active suspension system Genetic algorithm - Vertical acceleration of the car, dynamic tire

load, and suspension working space
[5] Spacecraft attitude dynamics Genetic algorithm - Weighted summation of the final time,

attitude, and angular velocity error
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Table 1. Cont.

Refs. System Model Approach Consideration

[6] Inverted double pendulum Particle swarm optimization - Performance index of the LQR problem
[7] Inverted pendulum Adaptive particle swarm optimization - Integrated state error
[8] Semi-active suspension system Improved particle swarm optimization - Vertical acceleration, suspension deflection

and tire dynamic load of the passive
suspension vehicle

[9] Inverted double pendulum Ant-lion algorithm - Crane position, upswing and
downswing angle

[10] Vehicle suspension system Ant colony optimization - Suspension travel, suspension velocity, tire
deflection, and tire velocity

[11] Deregulated power system Jaya’s algorithm - State error
[12] Vehicle suspension system Bat algorithm - Ride comfort and passenger safety
[16] Vehicle suspension system Adaptive predator-prey optimization - Integral square error of the state
[17] Two-axis CNC system Artificial bee colony optimization - Settling time and overshoot
[18] Inverted double pendulum Neuro Evolution of Augmenting

Topologies
- State error

[13] Two-dimensional torsion system Lagrange optimization - System response (overshoot, setting time,
steady state error)

[14] Inverted pendulum Pole-placement approach - Time-domain specifications
[15] spacecraft attitude dynamics Pole assignment design - Control performance and fuel consumption

Most of the existing studies only find diagonal components for the state and control
weight matrices using bio-inspired heuristic optimization algorithms along with the infinite-
time algebraic Riccati matrix equation, and the limited number of studies deals with
analytical methods for finding diagonal components of the state and control weight matrices
as shown in Table 1. Considering only diagonal components for the weight matrices may
not provide better control performance if the states of the considered system are coupled
with each other [19]. On the other hand, this work optimizes all symmetric components of
the weight matrices in the LQR problem to minimize the state and control values at the final
time by utilizing analytic gradients. Also, the optimization process only contains algebraic
equations for the principal equations and the partial derivatives, which are developed by
employing the steady-state and time-varying terms for the time-varying differential Riccati
matrix equation [20] and utilizing the coordinate transformation for the states [21]. The
main contributions of this work include the following:

• We design a gradient-based optimization strategy for determining diagonal and off-
diagonal components of the state, control, and terminal state weight matrices; to provide
more flexibility for optimization.

• We find only algebraic equations-contained closed-form solutions for the principal equations
and the sensitivity partial derivatives, including the time-varying Riccati matrix equation,
which require less computational cost for the optimization.

As a result, no numerical integration is required for solving the finite-time fixed-
time optimal feedback control as well as optimizing the weight matrices. In simulation
studies, two most widely used numerical examples are presented to demonstrate the
effectiveness of the proposed approach, for second-order linear differential systems with
one and two DOFs.

2. Formulation of Linear Quadratic Regulator Problem

The optimal state feedback control problem for a linear time-invariant and continuous-
time model with a finite and fixed-time, called the LQR problem, is to find the control
inputs that minimize the following performance index [22]:

L =
1
2

xT(tf)Sf x(tf) +
1
2

∫ tf

t0

[
xT(t)Q x(t) + uT(t)R u(t)

]
dt, (1)
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subject to
ẋ(t) = Ax(t) + Bu(t), (2)

with the initial condition x(t0) = x0 and terminal condition x(tf) = xf. The optimal control
is obtained by [22]:

u∗(t) = −R−1BTS(t)x(t), (3)

where the time-varying Riccati matrix is found by integrating the following backward
in time:

Ṡ(t) = −S(t)A− ATS(t) + S(t)BR−1BTS(t)−Q. (4)

This work assumes that (A, B) is controllable and (A, D) is observable. Note that D ∈ Rg×n

with g ≤ n is defined as Q = DTD and can be obtained by Cholesky decomposition.
In addition, the proof of the stability of the given closed-loop control system is discussed in
Appendix A. To find the optimal control u∗(t), indeed, it is required to properly select the
weight matrices (Q, R, and Sf), which are the user-defined parameters in general. Then, one
can compute the time-varying Riccati matrix, state, and control input through numerical
integration. If the user-defined requirement, such as the norm of the states less than a
certain value at the final time, is satisfied, one can obtain the state with the optimal control
input as shown in Figure 1. In general, the weight matrices are determined by the engineers’
knowledge and trial-and-error. The engineers need to change the weight matrices iteratively
until the requirement is satisfied. However, it is not only time-consuming work but also
hard to guarantee that the system response satisfies the specified performance.

Figure 1. Conventional weight matrices selection procedure.

3. Optimization of Weight Matrices

To efficiently determine the weight matrices of the LQR problem, this work proposes
an optimization process for the weight matrices. Unlike the aforementioned studies in the
introduction, this work considers all symmetric components of the weight matrices (Q,
R, and Sf) in the formulation to gain more flexibility in optimization. Here, the unknown
parameters for the optimization process are the symmetric elements of Q, R, and Sf are
as follows:

Q =

q1 · · · qn
...

. . .
...

qn · · · qN

, (5)

R =

 r1 · · · rm
...

. . .
...

rm · · · rM

, (6)

Sf =

s1 · · · sn
...

. . .
...

sn · · · sN

. (7)
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For the simple notation, the symmetric components of the weight matrices are gathered
into one vector as

w ≡ [w1 . . . wP]
T ∈ RP

= [q1 · · · qN r1 · · · rMs1 · · · sN ]
T. (8)

For optimization, this work introduces a new variable consisting of the state and
control, called an augmented state, as follows:

y(t) =
[

x(t)
u(t)

]
∈ Rn+m. (9)

The goal of the proposed optimization process is to find the optimal weight matrices that min-
imize the performance index while y(t) at the final time is to be zero. Thus, for Equation (9),
one applies Taylor expansion at t = tf as a function of the weight matrices’ symmetric elements
defined in Equations (5)–(7), which leads to

y(tf) = y(tf, Q, R, Sf) +
N

∑
k=1

y,qk dqk +
M

∑
l=1

y,rl drl +
N

∑
k=1

y,sk dsk. (10)

It is important to note that β,α indicates the partial derivative of an arbitrary variable β
with respect to an arbitrary variable α. That is, “,” between the variable and the subscript
indicates the partial derivative. Targeting y(tf) = 0 and collecting the partial derivatives in
Equation (10) into a global Jacobian matrix J leads to

0 = y(tf, Q, R, Sf) + Jdw

= yf + Jdw, (11)

where

J =
[
y,q1 · · · y,qN y,r1 · · · y,rM y,s1 · · · y,sN

]
∈ R(n+m)×P, (12)

dw =[dq1 · · · dqN dr1 · · · drMds1 · · · dsN ]
T ∈ RP. (13)

Here, each element in the correction vector dw represents changes in each symmetric
element of the weight matrices. Since the number of unknown parameters (P = 2N + M)
is larger than the number of final conditions (n + m), one can obtain the solution for dw by
minimizing the following:

H =
dwTdw

2
+ λT(yf + Jdw), (14)

The necessary conditions for the optimization are derived as

H,dw = dw + JTλ = 0, (15)

H,λ = yf + Jdw = 0. (16)

Then, manipulating two necessary conditions, the solution for λ is given by

λ = (J JT)−1yf, (17)

and the minimum norm optimization solution for the parameter correction vector is ob-
tained as

dw = −JT(J JT)−1yf. (18)
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Therefore, the symmetric components of the weight matrices are updated as

wupdate = wprevious + dw. (19)

Figure 2 displays the procedure of the proposed optimization process.

Figure 2. Proposed weight matrices optimization procedure.

Once initial weight matrices are assumed, one needs to confirm whether Sf is equal
to Sss or not. This condition comes from deriving the closed-form solution for the time-
varying Riccati matrix that will be explained in Section 4.1.1. If Sf = Sss at the first step,
users need to redefine the initial Sf. However, if Sf = Sss in a second or higher iteration, Sf
obtained is slightly changed by replacing it with (1− γ)Sf. Note that γ is a user-defined
small constant value, which is considered not only to avoid the equality condition but
also to use the values as close to the updated values as possible. After that, one requires
to verify whether the weight matrices satisfy the definiteness condition or not. That is,
Q and Sf must be positive semi-definite, and R must be positive definite. In particular,
after finding D matrix via Cholesky decomposition, the observability for (A, D) pair is
evaluated. After confirming the definiteness condition for each updated weight matrix, one
finds S(t), x(t), and u(t), and evaluates yf using the confirmed weight matrices only. Note
that it uses previous weight matrices if the updated weight matrices violate the definiteness
conditions. For instance, if all weight matrices violate the definiteness condition, one should
try different initial weight matrices. However, for example, if only the updated Q violates
the definiteness condition, it uses Q obtained from the previous step and the updated R and
Sf for the next step. Next, it evaluates the two-stage stopping conditions. First, it terminates
the process when the current iteration number exceeds the maximum iteration number,
which is defined by users, and then repeats the entire process with the newly assumed
initial weight matrices. This means that the initial guesses for the weight matrices used are
not properly selected, and it requires starting from new initial guesses to find the optimal
weight matrices. Otherwise, it evaluates the second stopping condition. If the resulting
solution meets the requirement defined by users (ε), it terminates the process and endorses
the weight matrices as optimal. If not, it updates the weight matrices. To proceed with the
update process, one evaluates the Jacobian J. After computing dw and updating w using
dw, one converts wupdate into the corresponding updated weight matrix. This procedure
continues until the resulting solution satisfies the requirement.
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The proposed optimization process requires finding the state and control using
Equations (2)–(4) to evaluate the augmented state at the final time and computing the
partial derivatives of Equations (2)–(4) with respect to each symmetric component of the
weight matrices to determine the Jacobian matrix in Equation (12). Then, the partial deriva-
tives for the state, control, and time-varying Riccati matrix with respect to each symmetric
element of the weight matrices wp (for p = 1, . . . , P) are derived as

ẋ,wp (t) =Ax,wp (t) + Bu,wp (t), (20)

u,wp (t) =R−1R,wp R−1BTS(t)x(t)− R−1BTS,wp (t)x(t)− R−1BTS(t)x,wp (t), (21)

Ṡ,wp (t) =− S,wp (t)A− ATS,wp (t) + S,wp (t)BR−1BTS(t)

− S(t)BR−1R,wp R−1BTS(t) + S(t)BR−1BTS,wp (t)−Q,wp ,
(22)

where x,wp (t0) = 0 and S,wp (t0) = 0, because x(t0) and S(t0) are constants. So, to evaluate
the augmented state, it first numerically integrates the differential Riccati matrix equation in
Equation (4) backward in time and then integrates the controlled system response computed
by substituting the optimal control defined in Equation (3) into Equation (2) forward in time.
In the same manner, to compute the Jacobian matrix, it integrates the partial derivatives in
Equations (20) and (22) forward in time. In fact, this process is technically straightforward.
However, it requires the exponential computational load as the dimension of the state
increases because of multiple numerical integrations. Hence, this work develops closed-
form algebraic expressions for the principal equations and partial derivatives. The use of
closed-form solutions not only eliminates the need for introducing numerical integration
methods but also allows computing analytic sensitivity partial derivatives. Otherwise, it
would require extensive numerical integration calculations.

4. Closed-Form Solutions for Principal Equations and Partial Derivatives

This section introduces the closed-form solutions for the principal equations and the
sensitivity partial derivatives. The closed-form solutions for the principal equations are
mainly used to solve the LQR problem and find the augmented state at the final time,
and the closed-form solutions for the partial derivatives are utilized to obtain the Jacobian
in the optimization process.

4.1. Derivation of Closed-Form Solutions for Principal Equations

This work considers the time-varying Riccati matrix, the controlled state, control
input, and the performance index as the principal equations. It is important to note that
the closed-form solutions derived here do not require numerical integration, so there is a
minimal computational load to solve the LQR problem.

4.1.1. Time-Varying Riccati Matrix

It eliminates numerical integration by introducing the following closed-form solution
for the differential Riccati matrix equation in Equation (4), where the solution consists of a
steady-state term and a time-varying term [20,23]:

S(t) = Sss + Z−1(t). (23)

Note that Z(t) is invertible, and the detailed condition is described after Equation (27). Also,
the final condition is given by Sf, and the steady-state solution Sss satisfies the algebraic
Riccati matrix equation:

−Sss A− ATSss + SssBR−1BTSss −Q = 0. (24)

Substituting Equation (23) into Equation (4), the differential Lyapunov matrix equation for
Z(t) is derived as

Ż(t) = ĀZ(t) + Z(t)ĀT − BR−1BT, (25)
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where Ā is defined as [24]
Ā = A− BR−1BTSss, (26)

and from Equation (23), the final condition of Z(t) is found to be

Z(tf) = (Sf − Sss)
−1. (27)

Note that the condition Sf 6= Sss must be satisfied during the optimization process so that
Sf − Sss is invertible. This condition aligns with the reversibility of Z(t) in Equation (23).
The closed-form solution for Z(t) with a steady-state term and a time-varying term is
derived as

Z(t) = Zss + eĀ(t−tf)ZbeĀ(t−tf), (28)

where e(·) is the Rn×n exponential matrix, and the boundary condition of Z(t) is defined by

Zb = (Sf − Sss)
−1 − Zss. (29)

Here, the steady-state solution for Zss satisfies the algebraic Lyapunov matrix equation [25]:

ĀZss + Zss ĀT − BR−1BT = 0. (30)

As described above, several equations and solutions for the algebraic Riccati matrix equa-
tion and algebraic Lyapunov matrix equation are interconnected with each other to obtain
the closed-form solution for the time-varying Riccati matrix. To sum up, the time-varying
Riccati matrix can be obtained by substituting the solution of Equations (24) and (28)
into Equation (23) as the closed-form solution. See Appendix B.1 for derivations of
Equations (25) and (28).

4.1.2. State for the Closed-Loop Control System

From the problem formulation, the governing differential equation for the controlled
state is derived by substituting Equations (3) and (23) into Equation (2):

ẋ(t) =
[

Ā− BR−1BTZ−1(t)
]
x(t), (31)

with the initial condition x0. The closed-form solution for Equation (31) is expressed
as [21,26]

x(t) = Φ(t, t0)x0. (32)

Note that the state transition matrix Φ(t, t0) has the explicit form defined as

Φ(t, t0) = Z(t)e−ĀT(t−t0)Z−1(t0), (33)

where Z(t) is defined by Equation (28), and Φ(t, t0) satisfies the following properties:

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0), (34)

Φ(t0, t1) = Φ−1(t1, t0), (35)

Φ(t0, t0) = I. (36)

Therefore, the closed-form solution for the state is expressed as

x(t) =
(

Zss + eĀ(t−tf)ZbeĀ(t−tf)
)

e−ĀT(t−t0)Z−1(t0)x0. (37)

See Appendix B.2 for derivations of Equations (32) and (33).
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4.1.3. Control for the Closed-Loop Control System

The control input is defined by introducing Equation (23) into Equation (3):

u∗(t) = −R−1BT(Sss + Z−1(t))x(t). (38)

Using Equation (32) and expanding Equation (38) lead to

u∗(t) = −R−1BTSssΦ(t, t0)x0 − R−1BTZ−1(t)Φ(t, t0)x0, (39)

and substituting Equation (33) into Equation (39) yields:

u∗(t) = −R−1BTSssZ(t)e−ĀT(t−t0)Z−1(t0)x0 − R−1BTe−ĀT(t−t0)Z−1(t0)x0. (40)

Finally, the closed-form solution for the control input is expressed as

u∗(t) = −R−1BT
(

Sss

(
Zss + eĀ(t−tf)ZbeĀ(t−tf)

)
+ I
)

e−ĀT(t−t0)Z−1(t0)x0. (41)

4.1.4. Performance Index

The performance index on [t, tf] L = 1
2 xT(t)S(t)x(t) is already a closed-form solution,

because the closed-form solution for x(t) and S(t) are given by Equations (37) and (23),
respectively.

Algorithm 1 summarizes the process for solving the LQR problem using the closed-
form solutions. The process for finding the solution for the LQR problem using the closed-
form solutions contains backward computation for obtaining the Riccati matrix from the
given Sf and forward computation for obtaining the state and optimal control. Note
that numerical integration processes, like Runge–Kutta methods, are not incorporated.
In contrast, the conventional method requires numerical integration processes, such as
backward integration for the Riccati matrix and forward integration for the controlled state.

Algorithm 1 Computation procedure for solving the LQR problem using the closed-form
solutions

1: Inputs: A, B, t0, tf, x0, xf, Q, R, Sf
2: Outputs: x(t), u∗(t)

3: Sss ← 0 = −Sss A− ATSss + SssBR−1BTSss −Q
4: Ā← A− BR−1BTSss
5: Zss ← 0 = ĀZss + Zss ĀT − BR−1BT

6: Z(tf)← (Sf − Sss)−1

7: for t← tf to t0 do
8: Z(t)← Zss + eĀ(t−tf)

[
(Sf − Sss)−1−Zss

]
eĀ(t−tf)

9: S(t)← Sss + Z−1(t)
10: end for
11: Z−1(t0)← Z(t0) 6= 0 from line 8
12: for t← t0 to tf do
13: x(t)← Z(t)e−ĀT(t−t0)Z−1(t0)x0
14: u∗(t)← −R−1BTS(t)x(t)
15: end for

4.2. Derivation of Closed-Form Solutions for Sensitivity Partial Derivatives

The partial derivative of a function with respect to the independent variable measures
the sensitivity of the function. In this section, the sensitivity partial derivatives for the
aforementioned equations and variables with respect to the symmetric elements of the
weight matrices are derived to form the Jacobian matrix defined in Equation (12) that is
used for the proposed optimization process. Note that no numerical integration is needed
to compute the partial derivatives because all of the expressions are purely algebraic.
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4.2.1. Time-Varying Riccati Matrix Partial Derivatives

Based on the closed-form expressions, the partial derivatives of the Riccati matrix
in Equation (23) with respect to the symmetric components of the weight matrices are
given by

S,wp (t) = Sss,wp − Z−1(t)Z,wp (t)Z−1(t), (42)

where Sss,wp is found by taking the partial derivatives of the algebraic Riccati matrix
equation in Equation (24):

ĀTSss,wp + Sss,wp Ā = −SssBR−1R,wp R−1BTSss −Q,wp . (43)

See Appendix C.1 for this derivation. Moreover, the detailed descriptions for Q,wp , R,wp ,
and Sf,wp are explained in the first paragraph in Appendix C. Then, Z,wp (t) is found by
taking the partial derivatives of Equation (28) as follows:

Z,wp (t) =Zss,wp +
[
eĀ(t−tf)

]
,wp ZbeĀ(t−tf)

+ eĀ(t−tf)Zb,wp eĀT(t−tf) + eĀ(t−tf)Zb

[
eĀT(t−tf)

]
,wp .

(44)

Here, [·],wp denotes the partial derivative of the matrix exponential, and Zb,wp is given by
taking the partial derivatives of Equation (29) as follows:

Zb,wp =− (Sf − Sss)
−1(Sf,wp − Sss,wp )(Sf − Sss)

−1 − Zss,wp . (45)

Also, Zss,wp is found by taking the partial derivatives of the steady-state Lyapunov matrix
in Equation (30) as follows:

ĀZss,wp +Zss,wp ĀT =− Ā,wp Zss − Zss Ā,Twp −BR−1R,wp R−1BT, (46)

where Ā,wp is found by taking the partial derivatives of the closed-loop system dynamics
matrix in Equation (26) as follows:

Ā,wp = BR−1R,wp R−1BTSss − BR−1BTSss,wp . (47)

The details of the derivatives for all variables and matrices with respect to the symmetric
elements of each weight matrix are explained throughout Appendices C.1–C.5.

4.2.2. State Partial Derivatives

The state partial derivatives are generated by modeling the state as Equation (32),
leading to the state partial derivatives given by

x,wp (t) = Φ,wp (t, t0)x0, (48)

where Φ,wp (t, t0) is expressed as

Φ,wp (t, t0) =Z,wp (t)e
−Ā(t−t0)Z−1(t0) + Z(t)

[
e−Ā(t−t0)

]
,wp Z−1(t0)

− Z(t)e−Ā(t−t0)Z−1(t0)Z,wp (t0)Z−1(t0).
(49)

The detailed expressions of the partial derivative of the matrix exponential are explained
in Appendix C.6.
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4.2.3. Control Partial Derivatives

The partial derivatives of the optimal control in Equation (40) are expressed as

u,wp (t) =R−1R,wp R−1BTSssΦ(t, t0)x0 − R−1BTSss,wp Φ(t, t0)x0

− R−1BTSssΦ,wp (t, t0)x0 + R−1R,wp R−1BTe−ĀT(t−t0)Z−1(t0)x0

− R−1BT
[
e−ĀT(t−t0)

]
,wp Z−1(t0)x0

+ R−1BTe−ĀT(t−t0)Z−1(t0)Z,wp (t0)Z−1(t0)x0.

(50)

The detailed derivation process is described in Appendix C.7. Note that Equations (48) and (50)
are primarily utilized to form the Jacobian matrix, which is composed of the augmented state.

5. Simulation Study
5.1. Problem Descriptions

This work considers two of the most widely used example problems for the second-
order differential equation with one and two DOFs to validate the efficacy of the closed-
form algebraic expressions and the performance of the proposed optimization process.
The system of the example problems is shown in Figure 3. The formulations described in (1)
and (2) are used, and the system dynamics and control influence matrices for each problem
are defined in Table 2. Also, the simulation parameters for each variable are tabulated
in Table 3.

Table 2. Model parameters [27].

1 DOF 2 DOFs

State Variables x(t) = [x1 x2]
T ∈ R2, u(t) ∈ R x(t) = [x1 x2 x3 x4]

T ∈ R4, u(t) = [u1 u2]
T ∈ R2

Models A =

[
0 1
− k1

m1
− c1

m1

]
, B =

[
0
− 1

m1

]
A =


0 0 1 0
0 0 0 1

− k2+k3
m2

− k3
m2

− c2+c3
m2

c3
m2

k3
m3

− k3
m3

c3
m3

− c3
m3

, B =


0 0
0 0
1

m2
0

0 1
m3



Table 3. Simulation parameters [27].

Parameter
Value

1 DOF 2 DOFs

Mass (kg) m1 = 1 m2 = 1
m3 = 1

Spring coefficient (N/m) k1 = 0.64 k2 = 1
k3 = 0.5

Damping coefficient (Ns/m) c1 = 0.16 c2 = 0.1
c3 = 0.1

Initial condition x(t0) [10 10]T [10 1 0 0]T

State weight matrix Q I2×2 I4×4
Control weight matrix R 1 I2×2

Terminal state weight matrix Sf I2×2 I4×4
Final time tf (s) 10

Time interval dt (s) 0.01
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(a) (b)
Figure 3. System of the example problems. (a) 1 DOF. (b) 2 DOFs.

5.2. Verification of the Closed-Form Solutions for the LQR Problem

To highlight the efficacy of the closed-form solutions, especially for the principal equa-
tions, numerical simulations are conducted using the closed-form solutions that eliminate
the numerical integration process. The resulting state and control trajectories computed
using the closed-form solutions are compared with the results obtained by a conventional
approach, which is to find the Riccati matrix by numerically integrating backward in time
and the state and control trajectories by integrating forward in time. Figure 4a,b depicts
the comparison results for the state and control trajectories using the parameters listed in
Tables 2 and 3. Moreover, the state and optimal control trajectories are displayed in the fig-
ures for the changes in state and optimal control trajectories over iterations with the legend
of “Initial” in Section 5.3. For Figure 4, it is observed that the state and control differences
are less than 5× 10−5 for both cases. That is, it is confirmed that there is not much difference
in terms of the solution trajectories between the conventional and proposed approaches. In
addition, it is proved that the proposed approach is computationally more efficient than
the conventional approach because, during 1000 simulations, the average computational
time using the closed-form solutions is reduced by half compared to the one using the
conventional approach, as listed in Table 4. The improvement in the computational speed
for solving the LQR problem can contribute to the increase in the control frequency. In
fact, the reduction in the computational time is obvious because the proposed approach
does not require any numerical integration process. As the dimension of the state and
control increases, the computational efficiency also increases exponentially. In addition,
the closed-form solution provides a more accurate result compared to the conventional
one because the closed-form solution does not contain numerical errors that occurred from
numerical integration process.

0 2 4 6 8 10
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-5
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Time (s)

-2
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-5

(a)

0 2 4 6 8 10
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0

5
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Time (s)

-2
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-5

(b)
Figure 4. State and control trajectories difference between the closed-form solutions and conventional
approach. (a) 1 DOF. (b) 2 DOFs.
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Table 4. Comparison of average computational time.

1 DOF 2 DOFs

Conventional: numerical integrations (s) 0.118 0.129
Proposed: closed-form algebraic equations (s) 0.057 0.060

5.3. Weight Matrices Optimization

To validate the performance of the proposed optimization approach with the devel-
oped closed-form solutions for the partial derivatives and principal equations, the weight
matrices given in Table 3 are optimized. The optimization process aims for finding the
optimal weight matrices that make the state and the control input at the final time close to
zero while minimizing the corrections for the weight matrices. The requirement is set to
be the norm of the augmented state at the final time that is less than 10−5 (i.e., ε = 10−5),
and the maximum number of iterations is 100. With these requirements, two example
problems are considered, and the weight matrices listed in Table 3 are used as the initial
weight matrices.

Table 5 shows the results obtained using the initial and the optimized weight matrices
for the one-DOF example problem. The norm of the augmented state at the final time using
initial weight matrices does not meet the requirement, requiring a tuning process for the
weight matrices. After applying the optimization process proposed with the closed-form
solutions, the norm of the augmented state of 3.82× 10−6 that satisfies the requirement is
obtained. The history of the norm of the augmented state versus the performance index for
the one-DOF example is shown in Figure 5, and it is shown that both values evaluated are
decreased during optimization from the initial evaluation using the initial weight matrices.
Moreover, as shown in Figures 6–8, the proposed approach optimizes the off-diagonal
elements of the weight matrices as well as the diagonal elements although the identity
matrices are used as the initial conditions. Note that the elements in the green-dotted
boxes are the same as the elements on the other side because the weight matrices are
symmetric. The proposed optimization approach provides more flexibility compared to
existing studies because the proposed one optimizes all components of the weight matrices.
In addition, since the proposed optimization process contains the step that checks the
definiteness conditions of the obtained matrices at every iteration, one guarantees that all
weight matrices updated are positive (semi-)definite. The state and control trajectories for
all iterations are shown in Figures 9 and 10. The responses of the state and control input
become faster over the iterations to satisfy the requirement. Hence, the trajectories with
blue color, which use the optimized weight matrices, are converged to the target states
faster than the others.

Table 5. Optimization results for the 1-DOF problem.

Initial Optimized

Norm of the augmented state ||yf|| 2.68× 10−2 3.82× 10−6

States at the final time x(tf) [1.20 − 1.70]T × 10−2 [3.28 − 1.94]T × 10−6

Control at the final time u(tf) 1.70× 10−2 −2.71× 10−7

State weight matrix Q I2×2

[
1.63 0.08
0.08 1.02

]
Control weight matrix R 1 0.19

Terminal state weight matrix Sf I2×2

[
1.08 0.31
0.31 0.50

]
Performance index L 2.01× 102 1.58× 102
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Figure 5. History of the norm of the augmented state and the performance index (1 DOF).

Figure 6. History of symmetric components of Q (1 DOF).

Figure 7. History of symmetric components of Sf (1 DOF).
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Figure 9. Changes in state trajectories over iterations (1 DOF).

0 2 4 6 8 10

Time (s)

-60

-50

-40

-30

-20

-10

0

10

Initial

Intermediate

Optimized

8 8.5 9 9.5 10
-0.05

0

0.05

Figure 10. Changes of optimal control trajectories over iterations (1 DOF).

The optimization results for the two-DOFs example problem are tabulated in Table 6
and displayed in Figures 11–16. The proposed approach successfully finds the weight
matrices with ||yf|| of 7.71× 10−6 that satisfy the predefined requirement as shown in
Table 6. The history of the norm of the augmented state and the performance index over
iterations is depicted in Figure 11, and the result shows that both values continuously
decrease until the requirement is satisfied. The optimization results for the weight matrices
are shown in Table 6, and their histories during optimization are shown in Figures 12–14. It
is shown that all symmetric components including the off-diagonal terms are optimized
to find the optimal solution. In addition, all weight matrices over iterations are surely
positive (semi-)definite because the proposed approach updates the matrix that meets the
definiteness conditions. As shown in Figures 15 and 16, the controlled states obtained using
the optimized weight matrices are converged into zero values faster compared to the states
obtained using the initial weight matrices in order to satisfy the requirements.

For the two cases, even though the identity matrices are used as the initial conditions,
the optimal weight matrices that satisfy the predefined requirement are obtained within
10 iterations. Over the iterations, the updated matrices do not violate the definiteness
conditions while optimizing all symmetric components of the weight matrices using the
developed closed-form solutions.

Moreover, additional simulations using different initial conditions (weight matrices)
for better understanding are displayed, and the optimization results are discussed in
Appendix D.

Table 6. Optimization results for the 2-DOFs problem.

Initial Optimized

Norm of the augmented state ||yf|| 2.04× 10−2 7.71× 10−6

States at the final time x(tf)


1.94× 10−2

−5.26× 10−3

2.48× 10−3

−6.43× 10−4




4.29
−2.36
1.58
1.32

× 10−6
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Table 6. Cont.

Initial Optimized

Control at the final time u(tf)

[
−2.48
0.64

]
× 10−3

[
−4.84
−2.80

]
× 10−6

State weight matrix Q I4×4


1.54 −0.07 0.17 −0.04
−0.07 1.56 0.14 −0.03
0.17 0.14 0.75 0.26
−0.04 −0.03 0.26 0.82


Control weight matrix R I2×2

[
0.14 0.03
0.03 0.26

]

Terminal state weight matrix Sf I4×4


1.17 0.10 −0.15 −0.07
0.10 0.97 0.06 0.02
−0.15 0.06 0.97 −0.03
−0.07 0.02 −0.03 0.99


Performance index L 2.01× 102 1.58× 102

65 70 75 80 85 90 95 100 105
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Optimal

Requirement

Figure 11. History of the norm of the augmented state and the performance index (2 DOFs).

Figure 12. History of symmetric components of Q (2 DOFs).
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Figure 13. History of symmetric components of Sf (2 DOFs).

Figure 14. History of symmetric components of R (2 DOFs).
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Figure 15. Changes in state trajectories over iterations (2 DOFs).
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Figure 16. Changes in optimal control trajectories over iterations (2 DOFs).

6. Conclusions

This study proposes a gradient-based optimization approach to determine the sym-
metric components of the weight matrices for the linear quadratic regulator problem by
applying Taylor’s expansion to the state and control at the final time and finding the mini-
mum norm optimization solution. To prevent the increase in the computational burden that
arises from the increase in state dimensions and multiple numerical integration steps in the
optimization process, this work develops the algebraic equations that exploit the closed-
form solutions for the principal equations and their partial derivatives. Through numerical
simulations for the one- and two-degrees-of-freedom second-order dynamic systems, it is
validated that the proposed optimization approach finds all symmetric elements of the state,
control, and terminal state weight matrices that satisfy the requirement (the norm of the
augmented state of less than 10−5) without violating the definiteness condition. Moreover,
it is confirmed that the use of closed-form solutions reduces the computation time by half
compared to the use of numerical integrations. In the future, a linear time-varying system
model will be considered to extend the applicable systems.
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Abbreviations
The following abbreviations are used in this manuscript:

A ∈ Rn×n System dynamics matrix
B ∈ Rn×m Control influence matrix
Q ∈ Rn×n = QT ≥ 0. State weight matrix
R ∈ Rm×m = RT > 0. Control weight matrix
S(tf) ∈ Rn×n = Sf = ST

f ≥ 0. Terminal state weight matrix
S(t) ∈ Rn×n Time-varying Riccati matrix
J ∈ R(n+m)×P Global Jacobian matrix
Sss ∈ Rn×n Steady-state Riccati matrix
Z(t) ∈ Rn×n Time-varying term of Riccati matrix
Ā ∈ Rn×n System stability matrix
Φ(t, t0) ∈ Rn×n State transition matrix
x(t) ∈ Rn State vector
u(t) ∈ Rm Control input vector
y(t) ∈ Rn+m Augmented state vector
dw ∈ RP Correction vector
λ ∈ Rn+m Lagrange multiplier
w ∈ RP Vector composed of symmetric elements of weight matrices
t0 ∈ R Initial time
tf ∈ R Terminal time
qk ∈ R Symmetric element of Q
sk ∈ R Symmetric element of Sf
rl ∈ R Symmetric element of R

β,α =
∂β
∂α . Partial derivative of an arbitrary variable β with respect to

an arbitrary variable α

N ∈ R = n(n + 1)/2. Number of symmetric elements of Q and Sf
M ∈ R = m(m + 1)/2. Number of symmetric elements of R
P ∈ R = 2N + M. Total number of symmetric elements of weight matrices
L ∈ R Performance index
n ∈ R Dimension of states
m ∈ R Dimension of control input
Zss ∈ Rn×n Steady-state term of Z(t)
Zb ∈ Rn×n Boundary condition of Z(t)

Appendix A. Proof of Closed-Loop Control System Stability

Using the obtained optimal control in Equation (3), the closed-loop system is de-
scribed as

ẋ(t) = (A− BR−1BTS(t))x(t), (A1)

where
Ṡ(t) = −S(t)A− ATS(t) + S(t)BR−1BTS(t)−Q.

To prove stability, the positive Lyapunov function is chosen as

V = x(t)TS(t)x(t) ≥ 0. (A2)

Note that S(t) is a positive semi-definite matrix. The time derivative of the Lyapunov
function is derived as

V̇ = ẋ(t)TS(t)x(t) + x(t)TṠ(t)x(t) + x(t)TS(t)ẋ(t). (A3)
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Substituting Equations (A1) and (4) into Equation (A3) yields

V̇ = x(t)T(A− BR−1BTS(t))TS(t)x(t)

+ x(t)T(−S(t)A− ATS(t) + S(t)BR−1BTS(t)−Q)x(t)

+ x(t)TS(t)(A− BR−1BTS(t))x(t).

(A4)

Rearranging Equation (A4) and applying the fact of S(t) = S(t)T and R = RT results in

V̇ = −x(t)T(Q + S(t)BR−1S(t))x(t) ≤ 0. (A5)

It is worth noting that the weight matrices Q and S(t) are positive semi-definite and R is
positive definite. Therefore, the given closed-loop control system is stable. In addition,
the definiteness conditions for each weight matrix are maintained during the proposed
optimization process as discussed in Section 3 because the weight matrices are only updated
when satisfying the definiteness conditions. For this reason, one can confirm that the closed-
loop control system with the optimized weight matrices is stable.

Appendix B. Closed-Form Solutions for the Principal Equations

This section describes the derivation process for obtaining the closed-form solutions
for the time-varying Riccati matrix and the controlled state.

Appendix B.1. Time-Varying Riccati Matrix

Substituting (23) and its derivative into (4) and omitting t for notation simplifica-
tion yields

Ṡss + Ż−1 =− (Sss + Z−1)A− AT(Sss + Z−1)

+ (Sss + Z−1)BR−1BT(Sss + Z−1)−Q.
(A6)

Rearranging (A6) by applying the fact of Ṡss = 0 leads to

Ż−1 =− Sss A− Z−1 A− ATSss − ATZ−1 + SssBR−1BTSss + Z−1BR−1BTSss

+ SssBR−1BTZ−1 + Z−1BR−1BTZ−1 −Q.
(A7)

Using (24), (A7) reduces to

Ż−1 = −Z−1 A− ATZ−1 + Z−1BR−1BTSss + SssBR−1BTZ−1 + Z−1BR−1BTZ−1, (A8)

and rearranging (A8) leads to

Ż−1 = −Z−1
(

A− BR−1BTSss

)
−
(

AT − SssBR−1BT
)

Z−1 + Z−1BR−1BTZ−1. (A9)

Using Ż−1 = −Z−1ŻZ−1 and (26), (A9) is rewritten as

−Z−1ŻZ−1 = −Z−1 Ā− ĀTZ−1 + Z−1BR−1BTZ−1. (A10)

Multiplying Z by both sides, the differential Lyapunov matrix equation is derived as

Ż = ĀZ + ZĀ− BR−1BT. (A11)

Hence, the closed-form solution for Z(t) is given by [24]

Z(t) = Zss + eĀ(t−tf)(Z(tf)− Zss)eĀ(t−tf), (A12)

with Z(tf) = (Sf − Sss)−1.
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Appendix B.2. State for the Closed-Loop Control System

One assumes that x(t) is expressed as [21,26]

x(t) = Z(t)r(t), (A13)

where Z(t) is given by (A12) and r(t) is a vector function to be determined. Introduc-
ing (A13) and its derivative into the left-hand side of (31) and dropping t for notation
simplification yield

ẋ = Żr + Zṙ,

=
(

ĀZ + ZĀT − BR−1BT
)

r + Zṙ, (A14)

where Ż is replaced by (A11). Manipulating (31) and (A14) leads to(
ĀZ + ZĀT − BR−1BT

)
r + Zṙ =

(
Ā− BR−1BTZ−1

)
Zr, (A15)

and it is further simplified as
Z
(

ṙ + ĀTr
)
= 0. (A16)

To satisfy (A16) regardless of Z, ṙ + ĀTr = 0. This leads to the following differential
equation for r:

ṙ(t) = −ĀTr(t), (A17)

where the initial condition is r(t0) = Z−1(t0)x0. Then, the solution for r(t) follows as

r(t) = e−ĀT(t−t0)r(t0). (A18)

Substituting (A18) into (A13) yields the closed-form solution of the state as follows:

x(t) = Φ(t, t0)x0,

where Φ(t, t0) denotes the state transition matrix, which is defined as

Φ(t, t0) = Z(t)e−ĀT(t−t0)Z−1(t0).

Appendix C. Sensitivity Partial Derivatives with Respect to Each Symmetric Component

Partial derivative models are required for Sss, Ā, Zss, Zb, Z(t), Φ(t, t0), and u(t) to
perform the optimization process proposed. The free variables in the calculation consist of
the symmetric elements of Q, R, and Sf. Closed-form algebraic equations are developed
for all partial derivatives with respect to the symmetric elements of each weight matrix.
To define the partial derivatives, this work defines a single-entry matrix (·)ij that all entries
are equal to zero except for the entry of i-th row and j-th column, which is 1. For example,
when each element of Q is defined as qij, that is, the element in i-th row and j-th column,
the partial derivative of Q with respect to qij is expressed as Qij. This is applied to the other
weight matrices.

Appendix C.1. Partial Derivatives for the Steady-State Riccati Matrix Sss = Sss(Q, R)

Differentiating (24) with respect to wp yields

0 =− Sss,wp A− ATSss,wp +Sss,wp BR−1BTSss

− SssBR−1R,wp R−1BTSss + SssBR−1BTSss,wp −Q,wp ,
(A19)
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and it is rewritten as

0 =− Sss,wp (A− BR−1BTSss)− (AT − SssBR−1BT)Sss,wp

− SssBR−1R,wp R−1BTSss −Q,wp .
(A20)

Using (26), the partial derivatives for the steady-state Riccati matrix equation in (43) are
derived as

ĀTSss,wp +Sss,wp Ā = −SssBR−1R,wp R−1BTSss −Q,wp .

Appendix C.1.1. Partials with Respect to qij

The partial derivatives of Sss with respect to qij are defined by

ĀTSss,qij +Sss,qij Ā = −Qij, (A21)

where Qij is the single-entry matrix that is the partial derivative of Q with respect to the sym-
metric element qij, and the partial derivatives are computed over N number of components.

Appendix C.1.2. Partials with Respect to rij

The partial derivatives of Sss with respect to rij are defined by

ĀTSss,rij +Sss,rij Ā = −SssBR−1RijR−1BSss, (A22)

where Rij is the single-entry matrix that is the partial derivative of R with respect to
the symmetric element rij, and the partial derivatives are computed over M number
of components.

Appendix C.1.3. Partials with Respect to sij

The partial derivatives of Sss with respect to sij are defined by

Sss,sij = 0. (A23)

No other partial derivatives exist for the steady-state Riccati matrix because Sss is the
function of Q and R.

Appendix C.2. Partial Derivatives for the Closed-Loop System Dynamics Matrix Ā = Ā(Q, R)

The partial derivatives for the closed-loop system dynamics matrix are given in (47)
as follows:

Ā,wp = BR−1R,wp R−1BTSss − BR−1BTSss,wp .

Appendix C.2.1. Partials with Respect to qij

The partial derivatives of Ā with respect to qij are defined by

Ā,qij = −BR−1BTSss,qij , (A24)

yielding N matrix partial derivative calculations.

Appendix C.2.2. Partials with Respect to rij

The partial derivatives of Ā with respect to rij are defined by

Ā,rij = BR−1RijR−1BTSss − BR−1BTSss,rij . (A25)
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The partial derivatives are computed over M number of components.

Appendix C.2.3. Partials with Respect to sij

The partial derivatives of Ā with respect to sij are defined by

Ā,sij = 0. (A26)

No additional Ā partials exist because Ā is not the function of Sf.

Appendix C.3. Partial Derivatives for the Steady-State Lyapunov Dynamics Matrix
Zss = Zss(Q, R)

The partial derivatives for the steady-state Lyapunov dynamics matrix are given in
(46) as follows:

ĀZss,wp +Zss,wp ĀT = −Ā,wp Zss − Zss Ā,Twp −BR−1R,wp R−1BT.

Appendix C.3.1. Partials with Respect to qij

The partial derivatives of Zss with respect to qij are defined by

ĀZss,qij +Zss,qij ĀT = −Ā,qij Zss − Zss Ā,Tqij
, (A27)

where the partial derivatives are computed over N number of components.

Appendix C.3.2. Partials with Respect to rij

The partial derivatives of Zss with respect to rij are defined by the Lyapunov ma-
trix equation:

ĀZss,rij +Zss,rij ĀT = −Ā,rij Zss − Zss Ā,Trij
−BR−1RijR−1BT, (A28)

The partial derivative computations are performed over M number of components.

Appendix C.3.3. Partials with Respect to sij

The partial derivatives of Zss with respect to sij are defined by

Zss,sij = 0. (A29)

No additional Zss partials exist.

Appendix C.4. Partial Derivatives for the Boundary Condition Zb = Zb(Q, R, Sf)

The partial derivatives for the boundary condition are given in (45) as follows:

Zb,wp = −(Sf − Sss)
−1(Sf,wp −Sss,wp )(Sf − Sss)

−1 − Zss,wp .

Appendix C.4.1. Partials with Respect to qij

The partial derivatives of Zb with respect to qij are expressed as

Zb,qij = (Sf − Sss)
−1Sss,qij (Sf − Sss)

−1 − Zss,qij , (A30)

yielding N matrix partial derivative calculations.

Appendix C.4.2. Partials with Respect to rij

The partial derivatives of Zb with respect to rij are given by

Zb,rij = (Sf − Sss)
−1Sss,rij (Sf − Sss)

−1 − Zss,rij , (A31)
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yielding M matrix partial derivative calculations.

Appendix C.4.3. Partials with Respect to sij

The partial derivatives of Zb with respect to sij are given by

Zb,sij = −(Sf − Sss)
−1Sij

f (Sf − Sss)
−1. (A32)

The partial derivatives are computed over N number of components.

Appendix C.5. Partial Derivatives for the Time-Varying Part of the Riccati Matrix Equation
Z(t) = Z(t; Q, R, Sf)

The partial derivatives for the time-varying part of the Riccati matrix are given in (44)
as follows:

Z,wp (t) =Zss,wp +
[
eĀ(t−tf)

]
,wp ZbeĀ(t−tf)

+ eĀ(t−tf)Zb,wp eĀT(t−tf) + eĀ(t−tf)Zb

[
eĀT(t−tf)

]
,wp .

Appendix C.5.1. Partials with Respect to qij

The partial derivatives of Z(t) with respect to qij are given by

Z,qij (t) =Zss,qij +
[
eĀ(t−tf)

]
,qij ZbeĀT(t−tf)

+ eĀ(t−tf)Zb,qij eĀT(t−tf) + eĀ(t−tf)Zb

[
eĀT(t−tf)

]
,qij ,

(A33)

where the matrix exponential partial derivative with respect to qij is computed as follows:

[
eĀT(t−tf)

]
,qij =

[
I 0

]
exp

([
Ā Ā,qij

0 Ā

]
(t− tf)

)[
0
I

]
, (A34)

where exp(·) is the matrix exponential. The partial derivative is extracted as the upper
right-hand side block of the 2n× 2n matrix exponential solution, yielding N matrix partial
derivative calculations.

Appendix C.5.2. Partials with Respect to rij

The partial derivatives of Z(t) with respect to rij are given by

Z,rij (t) =Zss,rij +
[
eĀ(t−tf)

]
,rij ZbeĀT(t−tf)

+ eĀ(t−tf)Zb,rij eĀT(t−tf) + eĀ(t−tf)Zb

[
eĀT(t−tf)

]
,rij ,

(A35)

where the matrix exponential partial derivative with respect to rij is computed as follows:

[
eĀT(t−tf)

]
,rij =

[
I 0

]
exp

([
Ā Ā,rij

0 Ā

]
(t− tf)

)[
0
I

]
. (A36)

This yields M matrix partial derivative calculations.

Appendix C.5.3. Partials with Respect to sij

The partial derivatives of Z(t) with respect to sij are given by

Z,sij (t) = eĀ(t−tf)Zb,sij eĀT(t−tf), (A37)

yielding N matrix partial derivative calculations.
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Appendix C.6. Partial Derivatives for the State Transition Matrix Φ(t, t0) = Φ(t, t0; Q, R, Sf)

The partial derivatives for the state transition matrix are given in (49) as follows:

Φ,wp (t, t0) =Z,wp (t)e
−Ā(t−t0)Z−1(t0) + Z(t)

[
e−Ā(t−t0)

]
,wp Z−1(t0)

− Z(t)e−Ā(t−t0)Z−1(t0)Z,wp (t0)Z−1(t0).

Appendix C.6.1. Partials with Respect to qij

The partial derivatives of Φ(t, t0) with respect to qij are expressed as

Φ,qij (t, t0) =Z,qij (t)e
−Ā(t−t0)Z−1(t0) + Z(t)

[
e−Ā(t−t0)

]
,qij Z−1(t0)

− Z(t)e−Ā(t−t0)Z−1(t0)Z,qij (t0)Z−1(t0),
(A38)

yielding N matrix partial derivative calculations.

Appendix C.6.2. Partials with Respect to rij

The partial derivatives of Φ(t, t0) with respect to rij are given by

Φ,rij (t, t0) =Z,rij (t)e
−Ā(t−t0)Z−1(t0) + Z(t)

[
e−Ā(t−t0)

]
,rij Z−1(t0)

− Z(t)e−Ā(t−t0)Z−1(t0)Z,rij (t0)Z−1(t0),
(A39)

yielding M matrix partial derivative calculations.

Appendix C.6.3. Partials with Respect to sij

The partial derivatives of Φ(t, t0) with respect to sij are expressed as

Φ,sij (t, t0) = Z,sij (t)e
−Ā(t−t0)Z−1(t0)− Z(t)e−Ā(t−t0)Z−1(t0)Z,sij (t0)Z−1(t0), (A40)

yielding N matrix partial derivative calculations.

Appendix C.7. Partial Derivatives for the Control Trajectory u(t) = u(t; Q, R, Sf)

The partial derivatives for the optimal control trajectory are given in (50) as follows:

u,wp (t) =R−1R,wp R−1BTSssΦ(t, t0)x0 − R−1BTSss,wp Φ(t, t0)x0

− R−1BTSssΦ,wp (t, t0)x0 + R−1R,wp R−1BTe−ĀT(t−t0)Z−1(t0)x0

− R−1BT
[
e−ĀT(t−t0)

]
,wp Z−1(t0)x0

− R−1BTe−ĀT(t−t0)Z−1(t0)Z,wp (t0)Z−1(t0)x0.

Appendix C.7.1. Partials with Respect to qij

The partial derivatives of u(t) with respect to qij are defined by

u,qij (t) =− R−1BTSss,qij Φ(t, t0)x0 − R−1BTSssΦ,qij (t, t0)x0

− R−1BT
[
e−ĀT(t−t0)

]
,qij Z−1(t0)x0

− R−1BTe−ĀT(t−t0)Z−1(t0)Z,qij (t0)Z−1(t0)x0.

(A41)

The partial derivatives are computed over N number of components.
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Appendix C.7.2. Partials with Respect to rij

The partial derivatives of u(t) with respect to rij are defined by

u,rij (t) =R−1RijR−1BTSssΦ(t, t0)x0 − R−1BTSss,rij Φ(t, t0)x0

− R−1BTSssΦ,rij (t, t0)x0 + R−1RijR−1BTe−ĀT(t−t0)Z−1(t0)x0

− R−1BT
[
e−ĀT(t−t0)

]
,rij Z−1(t0)x0

− R−1BTe−ĀT(t−t0)Z−1(t0)Z,rij (t0)Z−1(t0)x0,

(A42)

yielding M matrix partial derivative calculations.

Appendix C.7.3. Partials with Respect to sij

The partial derivatives of u(t) with respect to sij are defined by

u,sij (t) =− R−1BTSssΦ,sij (t, t0)x0

− R−1BTe−ĀT(t−t0)Z−1(t0)Z,sij (t0)Z−1(t0)x0.
(A43)

The partial derivatives are computed over N number of components.

Appendix D. Additional Simulation Study

On top of the simulation study described in Section 5, additional simulations were
performed using different initial weight matrices for each example problem. That is,
all simulation parameters remain the same, except for the state, control, and terminal
state weight matrices listed in Table 3. New initial conditions considered are tabulated
in Table A1.

Table A1. Newly considered initial weight matrices.

Parameter
Value

1 DOF 2 DOFs

State weight matrix Q 2I2×2 2I4×4
Control weight matrix R 1 5I2×2

Terminal state weight matrix Sf 4I2×2 2I4×4

Table A2 displays the initial and optimized results for the one-DOF example problem.
Although the norm of the augmented state at the final time using initial weight matrices
does not meet the requirement, the norm of the augmented state of 5.34× 10−6 that satisfies
the requirement is obtained after the optimization with the closed-form solutions. Figure A1
depicts the history of the norm of the augmented state and the performance index for the
one-DOF example, and it shows that both values are decreased during optimization from
the initially evaluated values. Furthermore, from Figures A2–A4, although the history of the
updated elements for the weight matrices is similar to the ones discussed in Section 5 and
the norm of the augmented state satisfies the requirement, the performance index value is a
larger value because this example starts from the weight matrices composed of larger values.
From these results, one can say that the optimized weight matrices are highly dependent
on the initial weight matrices, and there are multiple solutions that satisfy the requirement.
The state and control trajectories for all iterations are shown in Figures A5 and A6. When
the optimized weight matrices are utilized, the rate of convergence to a value close to zero
becomes faster to meet the requirement.
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Table A2. Optimization results for the 1-DOF problem with different weight matrices.

Initial Optimized

Norm of the augmented state ||yf|| 3.97× 10−3 5.34× 10−6

States at the final time x(tf) [1.15 − 0.92]T × 10−3 [0.55 − 1.09]T × 10−6

Control at the final time u(tf) 3.69× 10−3 5.20× 10−6

State weight matrix Q 2I2×2

[
3.84 0.15
0.15 1.65

]
Control weight matrix R 1 0.28

Terminal state weight matrix Sf 4I2×2

[
4.15 1.35
1.35 2.01

]
Performance index L 3.29× 102 3.08× 102

250 300 350 400
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Optimal

Requirement

Figure A1. History of the norm of the augmented state and the performance index (1 DOF).

Figure A2. History of symmetric components of Q (1 DOF).
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Figure A3. History of symmetric components of Sf (1 DOF).
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Figure A4. History of symmetric components of R (1 DOF).
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Figure A5. Changes in state trajectories over iterations (1 DOF).
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Figure A6. Changes in optimal control trajectory over iterations (1 DOF).

The optimization results for the two-DOFs example problem using different initial
weight matrices are listed in Table A3 and displayed in Figures A7–A12. The proposed
optimization process successfully finds the weight matrices that satisfy the requirement
(||yf|| = 7.71× 10−6 < 10−5) as shown in Table A3. Similar to the other results, the history
of the norm of the augmented state and the performance index over iterations has a decreas-
ing trend as depicted in Figure A7. Figures A8–A10 illustrate the history of the updated
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elements of the weight matrices. It is shown that the updated history for each component is
different compared to the ones discussed in Section 5. However, the proposed optimization
process finds the solution within 11 iterations without violating the definiteness condition.
As shown in Figures A11 and A12, the controlled states obtained using the optimized
weight matrices converge into near zero values faster compared to the ones using the initial
weight matrices. Also, it is displayed that the states and control trajectories are different
from the results displayed in Section 5 because the different initial guesses are used in the
optimization process.

Table A3. Optimization results for the 2-DOFs problem with different weight matrices.

Initial Optimized

Norm of the augmented state ||yf|| 1.93× 10−1 3.85× 10−6

States at the final time x(tf)


1.82× 10−1

−4.50× 10−2

−3.61× 10−2

2.52× 10−2




1.79× 10−6

−9.53× 10−7

−1.79× 10−6

−6.19× 10−8


Control at the final time u(tf)

[
1.45
−1.01

]
× 10−2

[
2.72× 10−6

−2.82× 10−7

]

State weight matrix Q 2I4×4


5.20 0.18 1.80 0.04
0.18 6.09 1.24 −0.02
1.80 1.24 1.95 1.67
0.04 −0.02 1.67 3.17


Control weight matrix R 5I2×2

[
0.23 0.23
0.23 1.17

]

Terminal state weight matrix Sf 2I4×4


3.80 1.28 0.83 −0.05
1.28 1.98 −0.27 0.22
0.83 −0.27 1.30 −0.07
−0.05 0.22 −0.07 1.90


Performance index L 2.56× 102 1.22× 102

100 150 200 250 300
10

-6

10
-4

10
-2

10
0

Optimal

Requirement

Figure A7. History of the norm of the augmented state and the performance index (2 DOFs).
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Figure A8. History of symmetric components of Q (2 DOFs).

Figure A9. History of symmetric components of Sf (2 DOFs).
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Figure A10. History of symmetric components of R (2 DOFs).
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Figure A11. Changes of state trajectories over iterations (2 DOFs).
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Figure A12. Changes of optimal control trajectories over iterations (2 DOFs).
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