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Abstract: Planned and targeted attacks, such as the advanced persistent threat (APT), are highly
sophisticated forms of attack. They involve numerous steps and are intended to remain within a
system for an extended length of period before progressing to the next stage of action. Anticipating
the next behaviors of attackers is a challenging and crucial task due to the stealthy nature of advanced
attack scenarios, in addition to the possible high volumes of false positive alerts generated by
different security tools such as intrusion detection systems (IDSs). Intelligent models that are capable
of establishing a correlation individual between individual security alerts in order to reconstruct
attack scenarios and to extract a holistic view of intrusion activities are required to exploit hidden
links between different attack stages. Federated learning models performed in distributed settings
have achieved successful and reliable implementations. Alerts from distributed security devices can
be utilized in a collaborative manner based on several learning models to construct a federated model.
Therefore, we propose an intelligent detection system that employs federated learning models to
identify advanced attack scenarios such as APT. Features extracted from alerts are preprocessed and
engineered to produce a model with high accuracy and fewer false positives. We conducted training
on four machine learning models in a centralized learning; these models are XGBoost, Random Forest,
CatBoost, and an ensemble learning model. To maintain privacy and ensure the integrity of the global
model, the proposed model has been implemented using conventional neural network federated
learning (CNN_FL) across several clients during the process of updating weights. The experimental
findings indicate that ensemble learning achieved the highest accuracy of 88.15% in the context of
centralized learning. CNN_FL has demonstrated an accuracy of 90.18% in detecting various attacks
of APTs while maintaining a low false alarm rate.

Keywords: IDS; APT; alert correlation; centralized learning; federated learning

1. Introduction

An intrusion detection system (IDS) refers to a hardware or software entity that moni-
tors a network to detect and identify unauthorized activities or violations of established
policies. In the event that an intrusion is detected, IDS captures pertinent data regarding
the event, disseminates alerts, and executes appropriate remedial or preventive measures
as deemed required [1]. The pervasive utilization of the internet by individuals has led
to a significant escalation in network attacks, resulting in substantial detrimental conse-
quences for both institutions and individuals alike. As a consequence of the heightened
occurrence and enhanced complexity of cyberattacks, contemporary networked enterprises
are compelled to adopt rigorous security protocols in order to ensure the integrity of their
data transmissions. Consequently, IDS has become an indispensable component of any
security framework [2,3].

IDS is a form of passive monitoring system utilized to detect potential threats, sup-
ply a comprehensive account of an ongoing or attempted theft, and initiate alerts that
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may be reviewed by analysts stationed in a security operations center (SOC) or incident
responders. The majority of attacks are executed through the examination of network
communications, wherein packets traversing the network are intercepted and subjected
to analysis. This process involves the identification of heuristics and patterns, commonly
referred to as signatures, which serve as means to detect and classify common attacks.
Upon detection, operators are promptly alerted, thereby enabling appropriate action to be
taken [4]. Network attacks often involve a series of concerted attempts to attack various
parts of the system. Defending against these multi-stage attacks requires knowledge of
the current attack state and the expected future attack phase. The sub-components in
a web network are interlinked, and analyzing the logs of one device may reveal events
triggered in another [5]. Advanced attack scenarios are a contemporary form of attack
employed by adversaries, characterized by the utilization of sophisticated and elusive
exploits and payloads. The primary objective of APTs is to establish prolonged persistence
within a targeted system and subsequently move laterally to accomplish various goals,
including but not limited to extensive data collection, disruption of operations, or denial of
services [6]. In addition, it should be noted that anomaly-based detection methods have
been found to produce an extensive amount of false positive results [7]. The concept of
alert correlation (AC), also referred to as IDS post-processing, has been suggested as a
means to address these constraints. The system that is able to predict full or part of attack
scenarios can provide early and preventive measures to reduce the severity and threat
caused by network attacks, hence adopting a proactive approach [8]. In the context of
IDS models based on learning, one additional challenge is the insufficiency of datasets
that adequately describe various advanced attacks and APT patterns, which is crucial for
effectively training a robust detection model [9]. So, to protect enterprise networks from
cyberattacks, IDS is continuously developed to solve various limitations, one of which is
the production of a substantial quantity of alerts that are of low quality. Furthermore, a
significant proportion of the alerts generated by IDSs are classified as false positives. It is
essential to have a robust level of security to ensure transparent and reliable communication
between parties to find malicious trends and help administrators fine-tune, organize, and
deploy efficient controls.

Machine learning (ML) is a form of artificial intelligence methodology that has the
capability to autonomously extract valuable insights from extensive datasets [10]. ML-
based IDS can attain reasonable levels of detection performance given the availability of
ample training data. Additionally, these IDS employ machine learning models that possess
enough generalization capabilities to identify attack variations and novel attacks [11].
Deep learning (DL) is a subfield within the broader domain of machine learning that
has demonstrated remarkable capabilities in achieving exceptional levels of performance.
DL approaches have demonstrated superior performance in handling large datasets as
compared to traditional machine learning techniques. Furthermore, DL techniques possess
the capability to autonomously acquire feature representations from unprocessed data,
afterwards generating outcomes encompassing multiple hidden learning layers. DL trains
several neural nodes instead of one like linear regression in statistical learning [12].

In addition, our study examined the concepts of centralized and federated learning
in order to assess the accuracy of detection while taking into account concerns regarding
privacy, heterogeneity, and data availability. Federated learning (FL) is a collaborative
ML learning approach that is implemented across various clients, ensuring that clients’
personal data are not transferred to a central server provider and instead remain stored on
the local client device. The conventional approach to neural network (NN) training involves
the utilization of local datasets by all clients, which are then shared with a central server.
On the other hand, distributed convolutional neural network training employs parallel
training methods. The training of federated learning is operated under the assumption
that local client datasets are separate and cannot be accessed or shared by others. The
study is to provide a comparative analysis between an ensemble centralized model that
combines three machine learning algorithms and a CNN_FL federated learning model. The
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evaluation process is to examine the detection rate in addition to the metrics typically used
in such a design. In the FL approach, several local models using heterogeneous algorithms
are trained in each device (clients), and the outcomes of these models are used to build
and update a global model (server). The inputs of the global model are the results of the
effective collaboration of data across multiple clients. This collection of various trained
models contributes to the building of an intelligent IDS able to perform detection and
prevention facilities with higher performance. Multistage attacks are modeled based on
typical attack frameworks such as cyber kill chains [13]. The primary contributions of this
study are as follows:

- Perform an extensive analysis of alert data from various datasets to model multi-stage
and sophisticated attacks in order to reconstruct intrusion scenarios.

- Design a security system utilizing collaborative federated learning models to detect
the cross-correlation between alerts generated from different sources and with var-
ious formats. Zero-day and novel attacks can be predicated by building high-level
abstraction of attacker actions against protected systems.

- Evaluate the proposed system using a benchmark dataset based on different metrics
of performance and accuracy.

The rest of the paper is organized as follows: Related work is described in Section 2.
In Section 3, the suggested method is described, and in Section 4, the results are discussed.
Conclusion and future work are described in Section 5.

2. Related Work

The potential damage of multi-stage and advanced attacks necessitates the establish-
ment of a comprehensive analysis to identify the steps conducted by intruders to perform
such attacks. Detection of the links between different activities based on triggered alerts
is crucial to create a global view of the attack in progress. This knowledge, whether it is
complete or partial, can provide network administrators with valuable information in order
to counter these attacks and to apply a mitigation procedure.

In their study, Rahman et al. [14] devised models for detecting advanced attack
scenarios by employing a centralized approach. The NSL-KDD dataset is employed for
evaluating the efficacy of federated architecture in IDS [7]. The study considers a range of
practical scenarios and instances of intrusion attacks. Based on the empirical findings, a
comprehensive evaluation is conducted to compare the FL, centralized, and self-learning
methodologies. FL consistently demonstrated superior performance compared to the
alternative methodologies in nearly all training iterations. The concept of “virtual reality”
pertains to the procedure of developing programs that simulate a virtual reality experience.
The intrusion detection capabilities of a federated network increase proportionally with
its scale. In [15], an IDS in Wireless Edge Networks (WENs), combining GRU and SVM
models under a custom FL algorithm, was proposed. They used Attention Mechanism
to determine the significance of the uploaded model parameters. This is conducted with
the goal of both measuring the global model’s performance improvement and sorting the
clients according to their importance. The authors [16] provided a strategy to improve the
training effect by sharing a limited sample of data globally. This offers a scheme for the
case of non-IID data in federated learning, which is an important consideration.

To detect distributed anomaly intrusion on an IoT-based industrial control system,
a hybrid model that includes federated learning, autoencoder, transformer, and Fourier
mixing sublayer was developed [17]. It delivered a high detection performance for time-
series data while simultaneously solving the problem of anomaly detection on a minute-by-
minute time scale with rapid learning. F. Wilkens et al. [18] used a kill chain state machine
(KCSM) to detect complex attacks like advanced persistent threats (APTs) without having
to spend more time analyzing large volumes of alerts. Their method generated scenario
graphs from state machines by deriving potential attack stages from single and meta-alerts
and modeling the resulting attack scenarios. The algorithm generates APT scenario graphs,
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which are graphical representations of the attack, with nodes representing involved hosts
and edges representing infection activity.

The researchers in [17] proposed a model called MLAPT [19], which generates a
correlation between alerts and the corresponding APT scenarios. Subsequently, ML models
were employed to forecast APT events at their first stages, achieving a prediction accuracy
of 84.8%. The authors [20] suggested a machine learning-based intrusion detection system
that uses DT, RF, SVM, KNN, and DNN in both models of centralized and federated
learning. A used Edge-IIoT set that had more than 10 different kinds of IoT devices was
used to collect a dataset that categorized 15 attacks. These attacks were grouped into five
threats, and some of their features were identified with high correlations. In centralized
learning, the best DDN accuracy was found to be 94.67% for 15-class and 96.01% for 6-class.
On the other hand, RF obtained 99.9% in binary classification. However, the federated
learning results achieved were better; the accuracy results of the global model training with
10 clients and 10 iterations were 93.37%, 95.99%, and 100%, respectively, for 15-class, 6-class,
and binary classification. M. Khosravi et al. [21] proposed a method for detecting (APTs)
that relies on causal analysis and correlation between alerts. Multiple sensors’ alarms are
monitored over a lengthy period to determine which ones are most likely to be part of the
APT attack’s well-known IKC. Finally, it acceptably calculated the host infection score over
all APT phases using a semi-real-world dataset and simulation.

A system for detecting APT attacks based on federated learning was proposed in [22]
to differentiate various APT attack patterns. The global model is updated across multiple
clients with various iterations. The malicious events collected as alerts are then fed to the
correlation module to determine which alerts are most relevant to APT attack steps. Based
on alert type-determined APT stages, an APT scenario indicated the probability of the
change of the attack’s step. With 400 iterations, their model applied to UNSW-NB15 datasets
and synthetic datasets from five clients obtained 96.7% accuracy, which is higher than local
models. The authors [23] proposed models for anomaly detection on two datasets, namely
Contagio and CICIDS2017, using an unsupervised learning approach. Subsequently, the
study will explore various known malware attacks targeting networks.

The authors [24] presented federated learning and CNN to detect abnormal IoT traffic
without alert correlation. Mayfly optimization was used to minimize feature dimension,
and the FL framework was then trained for each CNN local model for collaborative training
without sharing private data. The Aposemat IoT-23 dataset detected anomalous IoT traffic
with 97.73% accuracy using multi-class detection. The researchers [25] presented a federated
learning framework to identify APT attacks in an SDN environment. They employed ML
and DL techniques to categorize harmful indications. The researchers ran an experiment
using the NF-UQ-NIDS dataset and models to showcase the viability of FL in addressing
cyber threats while preserving privacy for data holders within the SDN environment.
W. Giura et al. [26] proposed a model for APT detection that can be applied to general
occurrences, expanding beyond the scope of IDS alerts. The attack stages are structured
in a hierarchical pyramid, wherein the ultimate objective occupies the apex, while the
preceding steps are organized into several strata. HTTP-based connections are considered
more advantageous compared to alternative options for several reasons. Firstly, HTTP-
based command and control (C&C) traffic is generally recognized as permissible within the
majority of enterprise environments. Secondly, alternative C&C protocols like peer-to-peer
(P2P) and Internet Relay Chat (IRC) exhibit distinctive network characteristics, such as
specific ports and package content, which can be readily detected and obstructed [27].
The propagation of malware occurs through the utilization of custom encrypted partitions
on removable media, as well as the exploitation of vulnerabilities within authentication
protocols [28,29]. Kasongo et al. [30] suggested an ensemble model incorporating feature
selection, specifically targeting the 19 most significant features out of the total 42 features
available in the UNSW-NB15 dataset. The performance accuracy yielded a result of 75%.
The study [31] presented an improved CNN architecture for the purpose of identifying
malicious attack traffic, with a particular focus on zero-day attacks that have not been
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previously reported within the network. The binary classification findings of the study
indicate that the model exhibited superior performance in detecting previously undetected
instances of intrusion, as compared to the standard CNN model. The authors [32] conducted
a study on intrusion anomaly detection, specifically examining different kernel functions
within Support Vector Machines. They also utilized the Principal Component Analysis
feature selection technique in their investigation. The datasets provided are the UNSW-
NB15 datasets. The Gaussian kernel achieved the highest level of accuracy, measuring at
93.94% when applied to the UNSW-NB15 datasets.

Multi-step attack detection in IDSs using analysis of correlated logs or alerts is still
not sufficiently studied from all angles. The majority of research efforts focus on analysis
of network traffic features as shown in Table 1. This is the research gap addressed in
our proposal to extract causal relationships between events in device logs and IDS alerts
by training distributed models. This can provide insight into the operations of attack
behaviors. FL is a technique for decentralized learning that protects users’ privacy by
not transferring data but instead training models locally and sending the parameters to
a centralized server, making FL an appropriate choice for improving the results of IDS
applications. In this work, attack phases are characterized by alerts triggered from various
IDSs and possibly server logs. This methodology is based on the assumption that alerts
and logs have valuable information if we extract the logical links between these alerts. We
propose a security analysis system consisting of a centralized global model in addition to a
number of federated models to effectively identify and classify various attack scenarios.

Table 1. Related works and the proposed models for the detection of multi-stages attacks.

Work Year Dataset Approaches Moel Weakness

M. A. Ferrag [20] 2022 Edge-IIoTset
Modeling attacks traffic and
process used DT, RF, SVM,
KNN, and DNN.

Centralized and
federated
learning

Identified 61 features with
high correlations for traffic,
did not include scenario for
alerts, and generated
meta-alerts.

M. Khosravi
et al. [21] 2020 Semi real-world

dataset

Modeling attacks process,
generating meta-alerts with
APT steps and host score for all
risk levels.

Finding IKCs
using Causal

Relation Analysis

No centralized and
federated learning to
classify APT attacks.

Z. Li et al. [22] 2020 UNSW-NB15 and
synthetic datasets

Modeling attacks process,
correlating alerts to APT stages
and identifying the probability
of APT stage change.

Federated
Gain correlation method
determines association but
cannot predict causation.

I. Ghafir et al. [19] 2018 Simulation dataset

Created a correlation
framework to link the alerts to
the APT attacks and use ML
models to predict
network events.

ML Only considered network
events.

H. Neuschmied
et al. [23] 2022 Contagio and

CICIDS2017

Detection of abnormal behavior
based on network traffic
analysis.

Several
autoencoders

Lack of generality and only
identified network events.

Q. Xia et al. [24] 2022 Aposemat IoT-23 Detection of abnormal behavior
based on network traffic. FL CNN Did not study the causal

relation of alerts.

H. T. Thi et al. [25] 2022 UNSW-NB15 Detection of APT attacks based
on network traffic in SDN. FL Considered network events.

Yin, Y.,
Jang-Jaccard [29] 2023 UNSW-NB15

Filter methods were employed
to assess the impact of less
significant features in relation to
high-frequency values.

MLP

Only classification network
attacks based on features
filtering without studying
the causal relation of alerts.

Kasongo et al. [30] 2021 UNSW-NB15
Detection of abnormal behavior
based on network
traffic analysis.

Ensemble models Did not conduct the causal
relation of alerts or stages.
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Table 1. Cont.

Work Year Dataset Approaches Moel Weakness

B. I. Hairab [31] 2022 Bot-IoT dataset
Focus on zero-day attacks that
have not been previously
reported within the network.

ML and DL
methods

Only considered DoS and
DDoS scenarios for traffic
attacks.

M. A. Almaiah
et al. [32] 2022 UNSW-NB15 Detection of abnormal behavior

based on network traffic.
PCA and kernals

of SVM

Only classification network
attacks based on features
filtering without studying
the causal relation of alerts.

3. Materials and Methods

The proposed system comprises several components, some components as shown
in Figure 1. Security alerts are collected from different security devices configured in the
network or hosts. In this research, alerts are generated from the UNSW-NB15 dataset [33]
using Snort [34,35] and Zeek [36]. First, the resulting alerts are normalized and aggregated,
encompassing hyper-alerts to remove redundancy. Then, a preprocessing stage is applied
to the collected alerts to create a reliable and accurate training dataset. Null and extreme
values are removed, and some values are normalized to make the training process faster
and more stable. The rows of the dataset are assigned a label representing the attack
stage. Dataset features are extracted and engineered to handle imbalanced data. Synthetic
minority over-sampling technique (SMOTE) [37] is used to balance the label distribution.
The next stage is to divide the whole dataset randomly into groups that are used to train
models configured in each client. Local models configured in clients’ machines are trained
using the assigned sub-datasets in order to build the detection model. The global model is
built and optimized using the resulting trained models from the distributed client models.
In other words, the global model is designed based on cooperation between the detection
of attack data supplied by individual client models. This federated learning paradigm
maintains the data privacy of involved clients, more accurate detection and prediction
functions, and higher performance of elaborate systems.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 18 
 

 

Kasongo et al. [30] 2021 UNSW-NB15 
Detection of abnormal behavior 
based on network traffic 
analysis. 

Ensemble models 
Did not conduct the causal 
relation of alerts or stages. 

B. I. Hairab [31] 2022 Bot-IoT dataset 
Focus on zero-day attacks that 
have not been previously 
reported within the network. 

ML and DL 
methods 

Only considered DoS and 
DDoS scenarios for traffic 
attacks. 

M. A. Almaiah et al. 
[32] 

2022 UNSW-NB15 Detection of abnormal behavior 
based on network traffic. 

PCA and kernals 
of SVM 

Only classification network 
attacks based on features 
filtering without studying the 
causal relation of alerts. 

3. Materials and Methods 
The proposed system comprises several components, some components as shown in 

Figure 1. Security alerts are collected from different security devices configured in the 
network or hosts. In this research, alerts are generated from the UNSW-NB15 dataset [33] 
using Snort [34,35] and Zeek [36]. First, the resulting alerts are normalized and 
aggregated, encompassing hyper-alerts to remove redundancy. Then, a preprocessing 
stage is applied to the collected alerts to create a reliable and accurate training dataset. 
Null and extreme values are removed, and some values are normalized to make the 
training process faster and more stable. The rows of the dataset are assigned a label 
representing the attack stage. Dataset features are extracted and engineered to handle 
imbalanced data. Synthetic minority over-sampling technique (SMOTE) [37] is used to 
balance the label distribution. The next stage is to divide the whole dataset randomly into 
groups that are used to train models configured in each client. Local models configured 
in clients’ machines are trained using the assigned sub-datasets in order to build the 
detection model. The global model is built and optimized using the resulting trained 
models from the distributed client models. In other words, the global model is designed 
based on cooperation between the detection of attack data supplied by individual client 
models. This federated learning paradigm maintains the data privacy of involved clients, 
more accurate detection and prediction functions, and higher performance of elaborate 
systems. 

 
Figure 1. The proposed federated learning-based model for alert detection of multi-stage attack 
scenarios.  

3.1. Modeling Multi-Stage Attack Scenario 

Figure 1. The proposed federated learning-based model for alert detection of multi-stage
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3.1. Modeling Multi-Stage Attack Scenario

The cyber kill chain [13] models security attacks as a sequence of seven stages, in-
cluding: (1) Reconnaissance, (2) Weaponization, (3) Delivery, (4) Exploit, (5) Installation,
(6) Command and Control, and (7) Actions on Objectives. Moreover, the MITRE ATT&CK
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framework [38] is to map alerts to various attack stages. This framework is an integra-
tion of tactics and approaches based on summaries of actual attacks [22]. It is possible to
summarize the attack stage by looking at the techniques that can be employed for specific
tactical reasons, which are listed in a matrix format in ATT&CK. Each alert’s advanced
attack scenario stage can be identified using the mapping.

We assumed a similar modelling paradigm, but the stages are not hardcoded; instead,
we anticipate a flexible model to consider full or partial sequential stages and satisfy the
dynamic nature of the attack security. Initially, the attacker passively fingerprints the target
system to collect relevant information; this stage is known as passive reconnaissance. This
stage can be skipped because it does not involve any contact with the target system and
does not cause any alerts to be produced. Subsequently, the target system is scanned to
determine the status of the connection and identify running services and protocols. Then,
vulnerability scanning is performed to discover any weaknesses or a point to obtain access.
The actual attack is executed during the exploit stage, and that is based on the scanning
obtained from previous stages. Malicious code is delivered and installed, and at this point,
the target machine becomes compromised. After that, latent activities are performed during
the latent movement stage, such as attacking other machines and being a part of denial
access attacks. Thus, in this research, we consider five stages as they are a part of the
UNSW-NB15 dataset [22,33]. It is worth noting that missing one or more stages from the
sequential stages will not affect the construction of the scenario; for instance, the attack
path can jump directly to any later stages. This is considered partial knowledge of the
attack in progress. In Table 2, we outline the five phases of an attack and assign each alert
type to the appropriate phase.

Table 2. Advanced attack scenario stages and alerts.

Stages of APT Type of Alert No of Records Encoding Label

1st: Reconnaissance Gathering information 13,987 0
2nd: Initial Access Fuzzer, Analysis 26,923 1
3rd: Exploitation Exploits 44,525 2
4th: Persistent Backdoor, Shellcode 3840 3
5th: Lateral Movement Worms 174 4

3.2. Alert Correlation Model

The main objective of the design is to reconstruct the attack scenario inferred from
alert information from multiple sources. Once the alert set is acquired, similar alerts gener-
ated by the same event are aggregated to provide hyper-alerts and avoid duplicated data.
Then, these hyper-alerts are mapped to a specific attack phase. Mapping functionality is
determined based on model learning, which reflects the causality relationship between
any two or more alerts. Similarity score methods have been widely used to perform alert
correlation [22,39]. However, these methods require several probabilities in advance col-
lected from comprehensive experimental efforts. The outcome of the correlation component
yields multiple alert groupings vertically and alert correlation horizontally. The concept
of alert correlation relies on the utilization of a similarity score, which serves as a metric
for assessing the causal relationship between two alerts, as described in [22]. However,
the model parameters to achieve a reliable correlation task are generated by the learning
stage. Alerts that are both relevant and part of multi-stage attack activities are inferred from
the correlation model. Hence, the correlated alerts are used to reconstruct attack phases
based on the strategies and tactics employed by the adversary at that phase. Accordingly,
hyper-alerts are mapped to one of the attack stages, considering temporal and spatial
attributes of each alert. The attack scenario is constructed based on the attack scenario
model described in Section 3.1. Figure 2 illustrates the attack stages ordered from the initial
phase to represent the attack sequential stages.
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3.3. Dataset Description

In this research, we have analyzed the UNSW-NB15 intrusion detection dataset, which
contains attacks classified as Fuzzers, Analyzers, Backdoors, Denial-of-Service Attacks,
Exploits, Generic Attacks, Reconnaissance Attacks, Shellcode, and Worms. It has 49 features,
as well as the class label and 2,540,044 records. The majority of the data are regular traffic;
however, we have analyzed the records of attacks that belong to the advanced attack
scenario, as indicated in Table 3.

Table 3. The types of attacks utilized in this study.

Alert Type Records

Exploits 44,525
Fuzzers 24,246

Reconnaissance 13,987
Analysis 2677
Backdoor 2329
Shellcode 1511

Worms 174

3.4. Implementation

Federated learning can be implemented using two settings: centralized FL, which
requires a central server to coordinate multiple clients and contains the global dataset, and
decentralized FL, which allows client devices to train on their own data and share the
model. We have implemented the proposed federated system in the centralized architecture
for comparison of its results of individual ML and ensemble algorithms with decentralized
CNN_FL. The implementation stages are explained in the following sections.

3.4.1. Preprocessing

During the preprocessing stage, we first determined all features for null label values
to assign each record by the ‘Normal’ label. Some features have extreme values, such as
ct_flw_http_mthd and is_ftp_login; thus, we replaced those values with the median value.
In addition, using the OrdinalEncoder library encodes the categorical features (‘proto’,
‘state’, ‘service’, ‘ct_ftp_cmd’, and ‘attack_cat’) to generate numeric values. In the final step,
we normalized and scaled the data by employing the MinMaxScaler.

3.4.2. Feature Selection

Analyzing the dataset’s features to ensure that they are normalized and in a stable
state is crucial for obtaining a more accurate model. Feature importance is calculated using
the Forest algorithm, as shown in Table 4 and Figure 3. We have excluded any feature
less than the threshold value (0.012). Features with high correlation strength are excluded
using a threshold of 95%, and that is due to their lack of involvement in the generalization
process. We added two features to represent the total number of bytes directed from source
to destination and vice versa.
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Table 4. The order of features according to values of importance.

Feature Name Importance Value Feature Name Importance Value

bytes 0.129649 loss 0.023135
means 0.106072 Sujit 0.023083

ct_srv_dst 0.072535 dur 0.022949
state 0.052549 Spkts 0.022914
bytes 0.052046 snack 0.022460

ct_srv_src 0.044081 Dintpkt 0.021106
ct_dst_src_ltm 0.042994 Dpkts 0.020949

means 0.039951 Sloss 0.018946
Sload 0.039715 tcprtt 0.017903
proto 0.034719 Djit 0.013530
Dload 0.034529 Ackdat 0.013002
service 0.031950
Sintpkt
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3.4.3. Data Splitting, Training, and Testing

The data from each class are randomly divided into training and testing sets, with
80% allocated to the training set and 20% allocated to the testing set. However, there is
an imbalance in the labeling of APT scenario attacks. To address this issue, we employed
the SMOTE technique to oversample the data, specifically focusing on the majority class
of Exploitation.

3.4.4. Centralized Learning Models

We selected some classical machine learning models, such as XGBoost, RF, CatBoost,
and ensemble model to be applied to the whole dataset in the centralized context. The im-
plementation of the centralized learning method requires the utilization of a central server
for the purpose of aggregating the data and conducting training on the integrated model.
The process of centrally training machine learning and DL models requires huge amounts
of data and robust computational resources [40,41]. In this experimental study, the dataset
is fed within the centralized models and distributed for the federated model for all training
purposes. The voting classifier technique in ensemble learning is used, merging multiple
ML models to generate an optimal result. In this approach, we conducted an ensemble
voting model by fusing the state-of-the-art ML models mentioned above to enhance the
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performance of attack detection. We also conducted a CNN model that comprises an input
layer with dimensions corresponding to the number of features, followed by four hidden
dense layers, ReLU activation, and a SoftMax output layer.

3.4.5. Federated Learning Model

FL is referred to as a distributed approach in machine learning where global models
are trained through the collaborative efforts of multiple clients. Data privacy is preserved
through the utilization of local models contributed by participants rather than the sharing
of private local data. Nevertheless, the efficacy of federated learning is heavily contingent
upon the number of individuals involved and the extent of their contributions [42]. The
participants updated their local models to serve in specified rounds. In federated learning,
the global model is trained among a large number of clients in a distributed manner. In
order to provide data privacy, computational efficacy, and a broader detection range, clients
only train the model locally and share the model parameters to update the global model.
This technique has great advantages for many distributed learning scenarios. Assuming
that there are K clients with the same goal in federated learning to jointly train a model, at
each iteration, the global model is distributedMg to the clients, and the clients train the
model individually through local data. After the local training is completed, each client
sends the model parameters back to the central machine, and the global model is generated
by aggregating the model parameters of each client. The update process of the global model
is shown in Formula (1).

Mt+1
g =Mt

g + α
1
K

K

∑
1

ωK
t (1)

where Mt
g is the global model, ωK

t is the model parameters, and α is a weight for the
update process. The federated averaging algorithm can be solved by several methods,
such as gradient computation. However, to perform this task efficiently, all clients perform
local training on available data. Then, the updated model version is transmitted to the
server to update the global model that is distributed to the clients. The averaging process is
described in Algorithm 1.

Algorithm 1: CNN_FL: K Clients, Model parameter ωt, Global Model Mg

Input: Dataset UNSW-NB15, Dk: local dataset, k: number of Clients C, i: number of rounds
Output: Model parameter ωt, Global Model Mg

Server
# Initialize the global model parameters ωt
Initialize Mg
for each round i do # Repeat until Mg converges
C← set of k clients # Repeat optimization of global model Mg

for each client do
ωk

t+1 ← updatClient(ωt)

Mt+1
g =Mt

g + α 1
K

K
∑
1

ωK
t #aggregate local models Mk

distributeMt+1
g on k clients

UpdateClient
For each local round

#train local models Mk
Train (Mk, Dk, ωk

t ) # train local models

This study leverages federated learning, employing the tensorflow federated library
to aggregate local models through the process of averaging. The data should be read on
a per-client basis, with each client’s model being trained until all clients have completed
the training process. Algorithm 2 illustrates the implementation process using the UNSW-
NB15 dataset. The function learning.build_federated_averaging_process is responsible for
computing the global model by aggregating all local models and afterwards transferring
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the updated weights to the clients based on the specified number of rounds. Algorithm 2
shows the pseudo-code for implementation procedures.

Algorithm 2: Experimental implementation of the proposed CNN_FL model

1. START
2. import tensorflow federated liberary as tff
3. Declare No_of_Clients, No_of_rounds,lr,labels
4. for c in range (No_Of_Clients):
5. Read data(c)
6. Preprocessing(c)
7. Splitting(data)
8. Call function createModel()
9. Trainer=tff.learning.build_federated_averaging_process(createModel,optimizer)
10. build CNN model(trainlist[0])
11. for j in range (No_of_rounds):
12. state, metrics = trainer.next(state, train):
13. print(metrics[‘train’][‘loss’]}, Accuracy={metrics[‘train’][‘accuracy’]
END

3.5. Experimental Setup

For the centralized approaches, the three models, XGBoost, RF, and CatBoost, are
designed with n_estimators = 150, max_depth = 10, base_score = 0.5, booster = ‘gbtree’,
learning_rate = 0.001, max_bin = 256, and random_state = 45. The CNN_FL model is
designed to construct the APT detection classifier using the Tensorflow Federated library.
The model consists of an input layer, four hidden layers with ReLU activation, and a
SoftMax layer, Dropout (0.2), after each hidden layer. Table 5 shows the rest parameters of
the CNN_FL model [20].

Table 5. The parameters of the CNN_FL model.

Parameter Description

N_CLIENTS = 4 The total number of clients

TEST_FRAC = 0.2 The fraction of the complete dataset that will be taken for
the test set

N_CLASSES = 5 APT scenario attacks
LEARNING_RATE = 0.0001 Learning rate

BATCH_SIZE = 32 Batch size
N_EPOCHS = 50 The number of epochs (times the dataset will be repeated)
N_ROUNDS = 20 Rounds between clients and server to update weights

3.6. Evaluation

The models that were obtained were afterwards examined by employing the test data
and taking into account the following criteria for detection:

1. Accuracy is a metric employed to assess the ratio of accurate classifications of the
overall number of entries, as expressed by the following formula:

Accurac (ACC) =
TP + TN

TP + TN + FP + FN
(2)

2. Precision refers to the ratio of accurately expected attack classes to the total number of
predicted attack results. This can be calculated using the formula:

Precision (PRE) =
TN

TN + FP
(3)

3. Recall refers to the ratio of correctly classified attack occurrences to the total num-
ber of samples that should have been identified as attacks. It is mathematically
represented as:

Recal (REC) =
TP

TP + FN
(4)
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4. The F1-score is a metric that measures the ratio between Precision and Recall by
calculating their Harmonic Mean.

F1− Score =
2Precision× Sensitivity
Precision + Sensitivity

(5)

4. Results and Discussion

The findings of the detection process were showcased through the utilization of central-
ized learning as well as federated learning approaches. The experimental findings indicate
that the ensemble model attained the highest accuracy of 88.15% among the centralized mod-
els. In contrast, the federated learning model CNN_FL is outperformed in terms of accuracy,
with a rate of 90.01%, while also ensuring privacy, data balance, and integrity.

4.1. Centralized Model Results

The implementation of the stand-alone models has been performed using machine
learning techniques, including XGBoost, RF, and CatBoost, in separate experiments. Sub-
sequently, an ensemble voting model is employed to combine these algorithms. Each
classifier has been trained to classify APT scenario attacks, as specified in the previous
section, using the following parameters: n_estimators = 150, max_depth = 10, and learn-
ing_rate = 0.001. The XGBoost algorithm has been identified as the most effective model for
classification among many individual machine learning models. However, the ensemble
learning approach produced greater classification performance, with an accuracy of 88.15%.
This outperforms the XGBoost model, which achieved an accuracy of 88.00%, as shown in
Table 6, and the confusion matrix of XGBoost and ensemble learning in Figure 4.

Table 6. Classification evaluation results of the individual ML models and ensemble model.

Models ACC REC PRE F1-Score AUC

XGBoost 0.8809 0.8809 0.8879 0.8823 0.925
RF 0.8795 0.8795 0.8833 0.8803 0.8803
CatBoost 0.8529 0.8529 0.8629 0.8547 0.8547
Ensemble model 0.8815 0.8815 0.8876 0.8827 0.9259
CNN 0.8457 0.8457 0.8452 0.8393 0.8639
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4.2. FL Model Results

The proposed model uses the CNN algorithm for all clients. The CNN_FL model is
trained using the local models of four participants. These models are trained independently
without any contact between them. The training process involves 10 rounds of weight
updates to the server due to four clients, as shown in Table 7. The model has an input
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layer, four hidden layers with ReLU activation, and a SoftMax layer. A dropout rate of 0.2
is applied after each hidden layer, and the model is trained for 30 epochs per participant.
In this study, we conducted a comparison between the outcomes of a CNN implemented
using centralized learning and federated learning approaches.

Table 7. Distribution of dataset per clients in training the federated model.

Stages of APT Records Client 1 Client 2 Client 3 Client 4

1st: Reconnaissance 13,987 3570 3496 3514 3407
2nd: Initial Access 26,923 6817 6718 6688 6700
3rd: Exploitation 44,525 11,005 11,120 11,098 11,302
4th: Persistent 3840 931 984 1015 910
5th: Lateral Movement 174 49 44 47 43
Total 89,449 22,372 22,362 22,362 22,362

The analysis revealed that the centralized learning approach achieved an accuracy
rate of 84.57%, while the federated learning approach yielded an accuracy rate of 90.18%,
as shown in Table 8 and Figure 5. The FL approach addresses the issue of privacy and the
imbalanced distribution of APT data. Additionally, it improves the classification accuracy
of models with a large increase in the number of repetition rounds, as shown in Figure 6.

Table 8. Classification evaluation results of the proposed CNN_FL model for multi-stage attack
classification.

Strategy ACC SEN SPE F1-Score AUC

The proposed CNN_FL Model 0.9018 0. 9018 0.9011 0.9009 0.9322
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Figure 5. The proposed CNN_FL model result of accuracy per round with updated weights to the
server.

Figure 7 shows the performance comparison findings for all ML models, including
the ensemble model and the proposed CNN_FL model. For ML models, the XGBoost
algorithm demonstrates superior classification performance across all evaluation measures,
particularly in terms of total accuracy and F1-score, achieving an 88.09% accuracy. The RF
model demonstrates predictive performance, achieving an overall accuracy of 87.95%. In
contrast, the CatBoost and CNN models showed comparatively inferior performance when
compared to other ML models.
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Figure 6. The proposed CNN_FL model result of loss per round with updated weights to the server.
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and ML models.

The ensemble learning model is formed by combining the previous three machine
learning models. The accuracy of the multi-stage attacks employing ensemble learning
surpassed that of ML models, as evidenced by the evaluation performance results. In
contrast, the CNN_FL model exhibited superior performance, achieving an accuracy rate
of 90.18%.

4.3. Comparison of the Results of Work with Related Works

Quantitatively comparing the detection performance of the proposed system with
other similar efforts is not a direct task due to variations in the evaluation process and
the absence of standardized datasets for advanced attack scenarios. Additionally, certain
studies were carried out to examine the association between alerts and the process of
determining the procedures of the advanced attack scenario for host scoring. In contrast,
other studies focused on the application of FL for classifying the threats discovered from
network traffic. In our research, we consider alerts generated from security devices. Then,
we train the models to extract the correlation between individual alerts. Table 9 shows a
comparative analysis of our suggested methodology and other relevant studies in terms of
the reported performance metrics for alerts or classification.
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Table 9. A comparative analysis of the outcomes obtained from the proposed study and those of
other related research endeavors.

Approach ACC

M. A. Ferrag [20]
Identified 61 features with high correlations for

traffic but did not include scenarios for alerts and
generating APT.

M. Khosravi et al. [21]
Modeling attacks process, generating meta-alerts

with APT steps and host score for all risk levels, not
AI classification

W. Giura, P., and Wang [26] 81.80%
X. Wang and K. Zheng [27] 83.30%
Lajevardi et al. [28] 84.21%
Yin, Y. [29] 84.26%
M. Khosravi and B. T. Ladani [21] 87.10%
The proposed work 90.01%

5. Conclusions and Further Work

Alerts reported by various security devices can assist in the recognition of advanced
multi-staged attack scenarios using an intelligent analysis of the attack data. Moreover,
novel and unknown attacks can be detected using the prediction facility of trained models.
For intrusion prevention systems to operate as intended, it is necessary to identify the next
phase of any attack with a sequence of steps, which can be derived after monitoring several
previous steps of the attack in progress. This study proposed a centralized and federated
learning architecture consisting of multi-components in order to recognize multi-stage
attacks and further predict the expected next stage/stages. These functions have been
performed through alert correlation, which is constructed using a training task resulting
from distributed components. The experimental results showed excellent accuracy in the
detection of attack stages and the prediction of the next attack stage. Phases of preparation
of data were conducted, including handling null values, encoding categorical values,
selecting features, oversampling, and, finally, training models. The evaluation of the FL
system based on the CNN algorithm demonstrates higher performance. The findings from
the federated learning experiment demonstrate that the CNN_FL model outperforms in
terms of accuracy in detecting advanced attack scenarios. The ensemble mode combines
three machine learning models, namely XGBoost, RF, and CatBoost. In addition, FL can
be used to satisfy other design requirements, such as privacy, data diversity, real-time
model updates, and improved prediction. In future work, it is recommended to explore
the utilization of various ensemble DL models [43], hybrid models of CNN [44], XAI [45],
and transformer models [46] in combination with federated learning. In addition, we will
broaden our analysis to include real-world network traffic. Attacks targeting the model
itself, such as poisoning attacks, require a robust security framework. Available datasets
in the IDS field that simulate multi-stage attacks are generally limited, and as a result,
developing more datasets is a significant requirement.
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