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Abstract: This paper explores the impact of gravity disturbances on INS accuracy and presents a
method for real-time compensation during the navigation process. By utilizing data from the precise
gravity model, EGM2008, a novel approach to compensate for the DOV in real time on the INS’s built-
in NPU was introduced. This method predicts gravity disturbances while traveling for platforms on
both land and water, utilizing the MLP technique. To predict these gravity disturbances, four distinct
MLP models, MLP1~MLP4, were designed and their supervised learning results were compared
using HMSE and RMSE. This comparative analysis allowed us to identify that the MLP4 model
exhibited the best performance. In order to validate the proposed method, MLP4 was implemented
inside the NPU and the measured execution time was 1.041 ms. The field test was conducted with
real-time execution of the MLP4 model on the NPU of the INS. The results of this field test clearly
demonstrated the effectiveness of the proposed approach in enhancing position accuracy. Over the
course of a 2 h field test, it was evident that employing the proposed method improved position
accuracy by a notable 27%.

Keywords: inertial navigation system (INS); earth gravity model (EGM); deflection of vertical (DOV);
multi-layer perceptron (MLP)

1. Introduction

The Inertial Navigation System (INS) is an autonomous system capable of continu-
ously determining a platform’s attitude, speed, and position using its built-in gyroscope
and accelerometer [1,2]. This self-contained feature makes the INS impervious to external
interference, rendering it invaluable in both military and civilian applications such as
missile navigation and civil aircraft. However, the INS, particularly in the case of the
dead reckoning approach, is susceptible to accumulating errors stemming from its own
inertial sensor inaccuracies. Among these error sources, gyroscope and accelerometer
drift bias emerge as significant contributors to INS inaccuracies. Substantial efforts have
been invested in reducing the magnitude of these biases. On the one hand, advanced
technologies like cold atom interferometry have been employed to enhance the precision
of inertial sensors [3]. On the other hand, system-level compensation methods, such as
rotational modulation, have significantly improved INS performance [4]. As INS perfor-
mance has improved, previously overlooked error sources have come to the forefront, with
gravity disturbances being one of the key factors limiting the further enhancement of INS
accuracy [5].

Typically, the INS has used a value known as “normal gravity” to compensate for
gravitational acceleration. This normal gravity is always perpendicular to the Earth’s
ellipsoid, resulting in a horizontal component of ‘0’ and only a vertical component. The
value can be computed using the Taylor series expansion of the Somigliana formula. The
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difference between normal gravity and actual Earth gravity is termed gravity disturbance,
encompassing the gravity anomaly (magnitude of the difference between normal and actual
gravity) and the horizontal gravity disturbance known as the Deflection Of the Vertical
(DOV), which represents the angular deviation from normal gravity to Earth gravity.
In error analysis of the INS, the DOV primarily impacts initial alignment and velocity
calculation accuracy. Several studies, including those by Kwon and Jekeli [4], Jekeli [6],
and Jekeli et al. [7], have explored the performance enhancement achieved through gravity
compensation in error-free INS.

Hanson [8] investigated why DOV compensation is not universally applied in initial
alignment and found a correlation between uncompensated accelerometer drift bias and
the DOV. However, the conclusions in ref. [8] were qualitative, and the compensation
procedure presented was specific to certain cases. George [9] introduced LN-93E, a military-
standard ring laser inertial navigation device that improved performance through DOV
compensation during alignment. It is worth noting that in prior studies, DOV compensa-
tion values were preloaded before alignment, relying on precalculated or measured values
along the route rather than real-time calculations. Determining high-quality DOV compen-
sation values over a large area requires significant computational resources, limiting DOV
compensation to initial alignment in practice.

In [10], gravity disturbance compensation for the INS using measured gravity data
was studied. The gravity disturbance was first predicted based on measured gravity data
and compensated for in the INS error equations to restrain position error propagation.
In [11], an artificial neural network called Extreme Learning Machine (ELM) was applied
to compensate for gravity disturbances in real time with high precision, providing gravity
and DOV values.

Recently, there has been increasing interest in employing high-resolution global gravity
field models to compensate for gravity disturbances in the INS. Many such models are
based on Spherical Harmonic Models (SHMs), with Earth Gravity Model 2008 (EGM2008)
being a prominent example, featuring a maximum spherical degree and order of 2160.
Studies [12–16] have investigated how SHMs, particularly EGM2008, can enhance INS
performance. However, much of this work focused on simplifying SHMs for real-time
applications due to limited computing power, especially in onboard INS computers. For
instance, Wang et al. [13] assessed the feasibility and accuracy of a modified SHM for
real-time INS applications, while Wang et al. [14] proposed a simplified 2D second-order
polynomial model derived from an SHM. Wu et al. [15] explored the effective minimum
update rate of gravity using an SHM for marine and airborne INS. In research [16], DOV
compensation was investigated using EGM2008 for both initial alignment and navigation
solution calculation, with the concluding that compensating for the DOV only during
navigation solution calculation is most desirable. Wide research into gravity disturbance
compensation, particularly for initial alignment and INS navigation computation, has
been continuing.

Through many research results referenced in this paper, it has been proven that the
position error of the INS is reduced by compensating for the DOV. However, the INS must
provide real-time data on position, velocity, and attitude. Therefore, compensating for
the DOV in real time must occur during the process of navigation computation inside
the INS. However, it is difficult to find satisfactory research results about real-time DOV
compensation in previous studies. Nevertheless, notable research results were found in
the literature [11,14], but these also had certain issues. The research in [11] did not present
the training results for the ELM and computation time in the INS’s embedded computer,
which can vary based on the network size and computing environment. In paper [14]
presented a short calculation time and high DOV prediction accuracy, but this required an
external high-performance computer outside the INS to calculate the DOV and generate
polynomial coefficients.

Considering this, we will discuss an MLP-based DOV compensation technique that
can be executed in real time on the embedded Navigation Processing Unit (NPU) built into
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the INS. The key point covered in this study is to ensure that the designed MLP model can
be executed in real time on the INS’s NPU. Therefore, the goal of this paper is to design
an MLP network model that can accurately predict the DOV calculated in real time on the
NPU and prove its performance through field tests. To achieve this, gravity disturbances
will be calculated using the 2160th order EGM2008 SHM to generate the training data
for MLP.

Afterwards, four MLP models will be designed that meet the required computational
complexity, trained, and their final validation errors will be used to select the optimal
model. The weights and biases of the trained network model will be transferred to the NPU
for DOV computation, and the execution time will be measured, proving the feasibility of
real-time DOV compensation inside the NPU. Furthermore, field tests will be performed to
show that the real-time MLP compensation technique can actually improve the position
accuracy of the INS.

To achieve this goal, the paper is organized as follows: the involved reference frames
in the INS and gravity disturbance calculation using an SHM are established in Section 2. In
Section 3, an analysis of the relationship between attitude errors in the initial alignment of
the INS and gravity disturbance is performed to understand the reasons for compensating
for gravity disturbances. In Section 4, the theory and framework of the MLP-based real-
time gravity disturbance prediction method are described and the results of field tests are
presented. Finally, conclusions are drawn in Section 5.

2. Reference Frames and Definition of Gravity Disturbance
2.1. Reference Frames

In the context of the INS, it is essential to define parameters within specific reference
frames, as shown in Figure 1. Additionally, vectors initially expressed in one frame often
need to be transformed into another. Hence, this section explores the coordinate frames
employed in deriving the INS [5].
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Figure 1. The definition of reference frames.

• Earth-Centered Inertial Frame ‘e’: The Earth-Centered Inertial (ECI) frame is at
the center of the Earth. Its z-axis aligns with the direction of the North Pole, the
x-axis extends toward the mean vernal equinox, and the y-axis forms a right-handed
orthogonal frame to complete the orientation. Importantly, the ECI frame remains
nonrotating in relation to distant galaxies. Consequently, the outputs of both the
gyroscope and accelerometer are referenced relative to this fixed ECI frame.

• Earth-Centered Earth-Fixed Frame ‘e’: The origin of this coordinate frame is located
at the center of the Earth. The z-axis extends in the direction of the North Pole, the
x-axis aligns with the Greenwich meridian, and the y-axis completes a right-handed
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orthogonal frame. This coordinate frame rotates along with the Earth at a constant rate,
denoted ωe

ie =
[
0 0 Ω

]
. Ω represents the angular velocity of the Earth’s rotation.

• Body coordinate frame with Right-Forward-Up definition ‘b’: This frame is defined
based on the input axis of the inertial sensor, mounted on the platform, and points to
the right-forward-up of the platform.

• Navigation coordinate frame with East-North Up definition ‘n’: This frame is the local
geodetic coordinate frame with its origin at the vehicle’s position. Its x, y, and z-axis
point towards east, north, and up, respectively. The INS calculation is conducted in
the navigation frame. Therefore, all vectors should be transformed into this frame,
represented by geodetic latitude (L), longitude (λ), and height (h). The position vector
in the Earth-Centered Earth-Fixed (ECEF) frame can be obtained according to the
geodetic values as:

x
y
z

 =

 (RN + h)cosLcosλ

(RN + h)cosLsinλ(
RN
(
1− e2)+ h

)
sinL

. (1)

where RN is the radius of curvature in the prime vertical and e is the first eccentricity of
the reference ellipsoid. The Direction Cosine Matrix (DCM) between the ECEF frame and
navigation frame is a function of the geodetic position. This relationship will be employed
in the subsequent gravity calculation.

Cn
e =

 −sinλ cosλ 0
−sinLcosλ −sinLsinλ cosL
cosLcosλ cosLsinλ sinL

. (2)

The previously mentioned reference frames are commonly utilized in the INS. Com-
monly, spherical harmonic expansion is used to represent the Earth’s gravitational field
with high fidelity [14]. To use high-precision gravity data effectively, we need to establish
the connection between Cartesian coordinates and spherical coordinates. In the spherical
coordinate system, the position vector is represented as (r, θ, λ′) with θ representing the
spherical polar angle, as illustrated in Figure 1. As Figure 1 suggests, we can define the
relationship between Cartesian coordinates and spherical coordinates using Equation (3).
By combining Equations (1) and (3), we can determine the position (r, θ, λ′) in the spherical
coordinate system based on the geodetic position (L, λ, h).

r =
√

x2 + y2 + z2

θ = tan−1 y
x

λ′ = λ

(3)

2.2. Gravity Disturbances and Deflection of Vertical

Figure 2 illustrates the concept of gravity disturbance. According to potential theory,
the gravity vector corresponds to the perpendicular line of an equipotential surface of
gravity. The Earth’s equipotential surface of gravity is highly complicated, and for practical
purpose, we often approximate it using a reference ellipsoid model like WGS-84. As
depicted in Figure 2, g represents the Earth’s gravity vector at point P and γ denotes the
normal gravity vector at the same point. The gravity disturbance vector, in turn, is the
difference between the Earth’s gravity vector and the normal gravity vector. The disparity
in their magnitudes defines the gravity disturbance, while the difference in their directions
gives rise to the DOV. Owing to the DOV, there exist certain projection components of the
Earth’s gravity vector within the horizontal plan, which are referred to as the horizontal
gravity disturbance.
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The gravity disturbance, ∆gn, is defined as the difference between Earth’s true gravity,
gn, and the normal gravity, γn, and can be expressed as:

∆gn = gn − γn =
[
∆gE ∆gN gU

]n −
[
0 0 γ

]n
=
[
∆gE ∆gN ∆gU

]n. (4)

where the eastern and northern components of the gravity disturbance are denoted by ∆gE
and ∆gN . ∆gU is called the normal gravity perturbation or gravity anomaly. And γ is the
norm of the normal gravity vector. The superscript n means that these vectors are projected
onto n-coordinate frames.

For the DOV, the northern and eastern angular components are represented by ξ and η,
respectively, as shown in Figure 3. The relationship between horizontal gravity disturbance
and the DOV is as follows [7]:

ξ ≈ tanξ = −
∆gN
gU

, η ≈ tanη = −
∆gE
gU

. (5)

where gU is the magnitude of vertical gravity and can be calculated directly using the
EGM2008 model.
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For a global target, the magnitude of the DOV component can reach up to 100 arc-
sec (1 arcsec = 1º/3600), corresponding to 500 mGal (1 mGal = 10−5 m/s2) in terms of
accelerometer bias. This value is significantly larger than the bias value of 10 mGal, typical
for high-precision accelerometers [6]. By incorporating Equation (5) into Equation (4), the
gravity disturbance can be expressed as:

∆gn =
[
−ηg −ξg ∆gU

]n. (6)

where the horizontal gravity disturbance can be calculated through a spherical harmonic
model (SHM) of the Earth’s gravity field, as follows [3,17]:

∆gN = −GM
r2

nmax

∑
n=2

n

∑
m=0

( a
r

)n[
C∗nm·cosmλ + Snm·sinmλ

]dPnm(cosϑ)

dϑ
. (7)

∆gE =
GM

sinϑ·r2

nmax

∑
n=2

n

∑
m=0

( a
r

)n
m
[
C*

nm(−sinmλ) + Snm·cosmλ
]

Pnm(cosϑ). (8)

where G is the gravitational constant, M is the mass of the Earth, a is the length of the
principal axis of the reference ellipsoid, r is the radial distance from the calculated point to
the center of the reference ellipsoid, and ϑ is the latitude defined in the spherical coordinate
system. λ is the longitude of the calculated point; n and m are the degree and order of the
SHM. C∗nm and Snm are the coefficients of the SHM. nmax is the highest degree used in the
SHM calculation; and Pnm(cosϑ) is the fully normalized Legendre function of degree n and
order m.

3. The Effect of DOV on Initial Alignment Attitude Errors in INS

In this chapter, we will analyze the impact of the DOV on the INS initial
alignment procedure.

3.1. Kinematic Equations of INS

The attitude kinematics equation using DCM parameterization is defined as:

.
C

n
b = Cn

b

(
ωb

nb×
)

. (9)

where ωb
nb is the angular velocity of the body relative to the navigation frame and is

defined as:
ωb

nb = ωb
ib − Cb

n(ω
n
ie + ωn

en). (10)

where ωb
ib is the angular velocity of the body relative to the inertial frame and is measured

by the gyroscope, and ωn
ie is the angular velocity of the Earth’s rotation and is defined as:

ωn
ie =

[
0 ωiecosL ωiesinL

]
. (11)

Also, ωn
en is the angular rate of the navigation frame relative to the ECI frame caused

by the linear motion of the object on the ellipsoidal surface. ωn
en is given as:

ωn
en =

[
− Vn

N
RM+h

Vn
E

RN+h
Vn

E
RN+h tanL

]
. (12)

where RM and RN are the meridian and transverse radius of the curvature of the ellipsoid,
respectively. Vn

E and Vn
N are the eastern and northern components of velocity, respectively.

The velocity kinematics equation of the navigation frame is defined as:

.
V

n
= Cn

b f b − (2ωn
ie + ωn

en)×Vn +
∼
g

n
. (13)
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where f b is the specific force measured by the accelerometer.
∼
g

n
is the gravity vector, which

can be the high-precision gravity calculated through the EGM2008 gravity model or the
normal gravity model.

The position kinematics equations are as follows:

.
L =

1
RM + h

Vn
N ,

.
λ =

secL
RN + h

Vn
E ,

.
h = Vn

U (14)

where Vn
U is the vertical component of the INS’s velocity represented in the n-frame.

3.2. Error Equations

Typically, the initial alignment is performed in a stationary state, so the actual velocity
of the INS is nearly zero. In this case, the non-zero velocity output of the INS represents the
velocity error, and the Kalman filter (KF) can be used to estimate the corresponding error
of the INS. The KF for initial alignment is built based on the error equations of the INS.

If the attitude error and velocity error are expressed as Φ and δVn, respectively, the
corresponding linear error equation is given in [5], as follows:

.
Φ = Φ× (ωn

ie + ωn
en) + δωn

ie + δωn
en − εn. (15)

δ
.

V
n
= f n ×Φn − (2δωn

ie + δωn
en)×Vn − (2ωn

ie + ωn
en)× δVn + Cn

b∇
b + δgn. (16)

where Φ is the attitude error vector, φE is the east component of the attitude error vector,
φN is the north component, and φU is the vertical component. δVn is the velocity error
vector, ∇b is the noise of the accelerometer, Cn

b is the direction cosine matrix (DCM) from
the b-frame to the n-frame, and [ f n×] is the skew symmetric matrix of the specific force of
the n-frame, as shown in Equation (17):

[ f n×] =

 0 − fU fN
fU 0 − fE
− f N fE 0

 (17)

where fE is the eastern component of the specific force, fN is the north component, and fU
is the upper component.

Next, we will focus on the influence of δgn on the INS error equation. Gravity dis-
turbance is defined as the difference between true gravity and normal gravity in the INS
calculation. In practice, the true value of gravity or absolutely exact gravity cannot be
obtained, so normal gravity is traditionally used in the INS. We can assume that the gravity
obtained by an ultra-precision gravity model like EGM2008 can be regarded as the true
gravity, and the disturbance is denoted as:

δgn = gn − ĝn = ∆gn (18)

It is evident that gravity disturbances directly affect velocity error propagation and
have an impact on attitude and position errors through error coupling. When a high-
accuracy gravity model can be obtained, gravity disturbances should be considered as one
of the sources of INS error and compensated for. However, the effect of δgn is influenced
by the error source Cn

b∇
b. If the magnitudes of these two error sources are similar and

the signs are opposite, their effects on velocity error can cancel each other out. In this
case, using a high-precision gravity model for the INS may result in higher performance
compared to using a normal gravity model. However, it is important to note that the sign of
Cn

b∇
b, especially in dynamic cases, cannot be determined in advance, as it is time-varying

under the influence of Cn
b . Therefore, in such cases, it is still advisable to conservatively use

a normal gravity model.
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If the accelerometer drift bias is pre-calibrated or modulated through rotation, gravity
disturbances become the dominant error source in the velocity error equation. In this
scenario, they must be compensated for. Conversely, if the accelerometer drift bias is
much larger than the gravity disturbance, the compensation performance is expected to
be reduced.

3.3. Initial Alignment Attitude Error Analysis by DOV

Assuming an initial alignment process in a stationary state, we can derive the velocity

errors of the INS. The errors δ
.

V
n
, δVn, δωn

ie, and δωn
en can be determined through calcula-

tions and treated as parameters. Therefore, by rearranging Equation (16), we obtain the
following Equation:

α = f n ×Φn +∇n + δgn = δVn + (2δωn
ie + δωn

en)×Vn + (2ωn
ie + ωn

en)× δVn. (19)

where α is a linear combination of known parameters and converges to ‘0’ since we assume
a stationary state. Expanding Equation (19), we can express the east and north components
as follows:

αE = fUφN + fNφU +∇E + ∆gE ≈ 0. (20)

αN = fUφE − fEφU +∇N + ∆gN ≈ 0. (21)

where αE and αN represent the east and north components of α, respectively. ∇E and ∇N
are the east and north components of the accelerometer drift bias in n-frame, respectively.

In this paper, we focus on analyzing only the east and north components as we
separate the vertical and horizontal channels. We assume that the platform is in a stationary
state with a negligible inclination angle. Therefore, we establish fE ≈ 0, fN ≈ 0, and
fU ≈ gU . Substituting these into Equations (20) and (21), we can express the east and north
components of the attitude error as follows:

φE =
αN −∇N − ∆gN

gU
≈
−∇N − ∆gN

gU
. (22)

φN =
−αE +∇E + ∆gE

gU
≈
∇E + ∆gE

gU
. (23)

by combining Equation (5), Equations (22) and (23) can be rewritten as:

φE = φ̂E + δφE =
αN −∇N

gU
+ ξ ≈ −∇N

gU
+ ξ. (24)

φN = φ̂N + δφN =
−αE +∇E

gU
− η ≈ ∇E

gU
− η. (25)

where φE can be divided into two parts. φ̂E is independent of the DOV and the random
bias of the northern accelerometer component acts as a major error factor. Residual δφE
means the eastern component of the attitude estimation error due to the DOV is equal to ξ.
It can be divided into φ̂N and δφN in the same way for φN . Similarly, φ̂N is independent of
the DOV and the random bias of the accelerometer to the eastern accelerometer component
is a major error factor, while δφN is the north component of the attitude estimation error
due to the DOV, and has a negative relationship with η.

The attitude error transition function of the INS in the n-frame is expressed in
Equation (15). Since in Equation (15), δωn

ie and δωn
en are relatively small compared to the

other error terms, we can reasonably ignore their effects in the following analysis.
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Expanding Equation (15), we can express the corresponding east, north, and vertical
components as follows:

.
φE = (ΩU + ωU)φN − (ΩN + ωN)φU − εE. (26)

.
φN = −(ΩU + ωU)φE + ωEφU − εN . (27)

.
φU = (ΩN + ωN)φE −ωEφN − εU. (28)

where εE, εN , and εU denote the east, north and vertical components of gyro random bias
represented in the n-frame. ΩN and ΩU denote the north and vertical components of
ωn

ie(ΩE = 0).
From Equations (26)–(28), it is evident that φE, φN , and φU are coupled to each other.

Therefore, if the DOV causes an error in the inclination angle of the platform, it can also
affect the estimation of the azimuth angle. By rearranging Equation (26) for φU , we obtain:

φU = β− εE
ΩN + ωN

(29)

β =
(ΩU + ωU)φN −

.
φE

ΩN + ωN
(30)

The azimuth error can be calculated from Equation (29). Since the platform’s velocity
is close to ‘0’ during initial alignment, we can assume ωE ≈ ωN ≈ ωU ≈ 0 and β can be
expressed as follows:

β ∼= φN −
.
φE
ΩN

(31)

Therefore, Equation (29) can be expressed as:

φU = φN −

( .
φE + εE

)
ΩN

(32)

Combining Equations (24), (31), and (26), we can rewrite Equation (32) as:

φU = φN −

( .
φE + εE

)
ΩN

≈
(
∇E
gU
− η

)
− 1

ΩN

( .
∇N
gU

+
.
ξ

)
. (33)

From Equation (33), we can see that φU has a negative correlation with η and
.
ξ

ΩN
.

Additionally, it can also be influenced by the magnitude of η rather than by ξ.

4. Theory and Framework of the MLP-Based Real-Time DOV Compensation in INS

With the current increase in computing power and widespread adoption of GPUs,
neural network technology has demonstrated its value across a wide range of fields,
consistently delivering exceptional results. It has become one of the most utilized tools
for tackling complex problems that traditionally required intricate mathematical models.
Notably, it has shown promise in addressing real-time prediction of the Degree of Vertical
(DOV) in a high-order precise gravity model.

Artificial neural networks, often referred to simply as neural networks, draw loose
inspiration from biological neural networks found in animal brains. A fundamental char-
acteristic shared by both artificial and biological neural networks is their ability to learn
tasks from examples rather than relying on explicit programming. Neural networks consist
of interconnected nodes known as artificial neurons, which model the neurons present in
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biological systems. These nodes, connected via synapses, transmit or inhibit information in
response to specific activation functions [18].

The inception of artificial neural networks can be traced back to 1943 when they were
introduced by McCulloch and Pitts [19]. Earlier implementations, known as perceptrons,
comprised a series of artificial neurons connected to an output layer. It was not until 1975
that Werbos developed the backpropagation algorithm, making training of multi-layer
networks feasible and efficient [20]. As computing power continues to advance, thanks to
GPUs and distributed systems, the depth of neural network models can increase. These
deep learning networks excel at solving image and visual recognition challenges.

4.1. Multi-Layer Perceptron Basic Theory

MLP, the most commonly used neural network in genomics, consists of multiple fully
connected layers, namely input, hidden, and output layers connected by a dense network
of neurons. The input layer consists of all of the input features. The first hidden layer uses a
different number of neurons to learn a weight parameter with a constant bias while training
the model. The output of the first hidden layer acts as input for the second hidden layer and
continues in this sequence. The final layer is known as an output layer, wherein input from
the last hidden layer converges to a single value. MLP networks excel at modeling complex
nonlinear relationships. For instance, in an object identification neural network, each object
can be represented as a hierarchical composition of basic image elements. Additional layers
can then gradually amalgamate features from lower layers. MLP networks can be trained
using standard backpropagation algorithms [21]. The weights are updated through the
gradient descent method using the equation below:

∆wij(t + 1) = ∆wij(t) + ε
∂C

∂∆wij
. (34)

where ∆wij represents the weight, ε is the learning rate, and C denotes the cost function.
The choice of the cost function depends on factors like the training type and activation

function. For supervised learning in multi-class classification problems, softmax and
cross-entropy functions are commonly employed as the activation and cost functions,
respectively.

Despite their effectiveness, deep neural networks, including MLPs, can encounter chal-
lenges such as overfitting and high time complexity. To mitigate overfitting, regularization
methods like weight decay (l2 regularization) or sparsity (l1regularization) and dropout
regularization have emerged. Dropout involves randomly excluding some units from
hidden layers during training. Error backpropagation and gradient descent are favored for
their ease of implementation and local optimization capabilities. However, training deep
neural networks with these methods can be computationally intensive. To address time
complexity and overfitting concerns, techniques such as mini-batch training and dropout
have been developed, offering partial solutions. Additionally, specialized GPUs optimized
for matrix and vector computations have significantly enhanced learning speed.

In this study, we designed a multi-layer perceptron deep neural network using a
hidden layer composed of two or more fully connected layers. We analyzed accuracy by
varying the number of hidden layers and nodes in the neural network model.

4.2. Training Dataset

To train the MLP and evaluate its accuracy, a database of gravity disturbances corre-
sponding to the positions of grid points is essential. Achieving accurate gravity disturbance
calculations requires a precise gravity model, with the 2160th degree and order EGM2008
model developed by the National Geospatial-Intelligence Agency (NGA) of the United
States being a representative choice for the entire Earth. In this study, we constructed
a gravity disturbance database for the Korean Peninsula by calculating the SHM of the
EGM2008 model on a workstation PC. The gravity disturbance data used for network
training were computed at 3 arcsec(= 1◦

3600 ) intervals for areas near the Korean Peninsula,
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covering latitudes from 33◦ to 39◦ and longitudes from 124◦ to 132◦. This resulted in a
dataset of 61,924,800 points used for MLP network training. To validate prediction ac-
curacy during MLP training, a verification dataset of 6,192,480 random locations (10%
of the training data) was created. The results are displayed in Figure 4 by MATLAB. In
Figure 4a, the ∆gE parameter of the gravity disturbances over the Korean Peninsula is
depicted in a MATLAB graph using the calculated MLP training data. The calculation
revealed a positive ∆gE value in the eastern coastal area of the Korean Peninsula and the
nearby sea, contrasting with a predominantly negative gravity disturbance distribution
in the western part. Figure 4b displays a MATLAB graph illustrating ∆gN values across
the gravity disturbances of the research area. Notably, ∆gN exhibited distinct distribution
changes in island areas such as Jeju Island, Ulleungdo, and Dokdo, as well as near Mt.
Jirisan. The data presented in Figure 4 constitute the gravity disturbance dataset for MLP
supervised learning.
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Figure 4. Horizontal gravity disturbance map of the Korean Peninsula used for MLP neural network
training: (a) represents the eastern component of horizontal gravity disturbance, and (b) depicts the
northern component of horizontal gravity disturbance.

However, a significant challenge arose during its generation. The EGM2008 gravity
model is mainly determined by latitude, longitude, and height, represented in spherical
coordinates. When creating neural network learning data for a platform moving in 3D,
generating an extensive amount of data becomes practically impossible, making neural
network training unfeasible. To overcome this problem, this paper introduces a constraint
by limiting the traveling path of the platform. Given the assumption that the platform,
which is the focus of this study, moves exclusively on the Earth’s surface, height can be
consistently specified based on the platform’s horizontal position of latitude and longitude.
However, defining height is challenging in the presence of multiple references. This will be
discussed further in the next section.

4.2.1. Geoid Height (Geoid Undulation)

Essentially, we have 3 main categories of elevation references: ellipsoidal height, geoid
height, and orthometric height. The ellipsoidal height is the difference in the vertical
distance between a point on the Earth’s surface and the ellipsoid. The ellipsoidal height
is also known as the geodetic height and should not be confused with geodetic datum.
When capturing coordinates with a GPS receiver, the elevation data reference the WGS84
ellipsoid, which means each captured coordinate needs to be calculated to match elevations
with more accurate geoid height. The geoid height (undulation) is the difference of the
vertical distance between the reference geoid and the reference ellipsoid. The geoid is a
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hypothetical shape of the Earth that often coincides with the average of the Earth sea level
and its imagined extension above or below land areas; the geoid height may sometimes be
referred to as elevation at Mean Sea Level (MSL). The orthometric height is the difference
between the vertical distance from a location on the Earth’s surface and the geoid. Because
the geoid coincides with MSL, whenever you see elevation data described as ‘0’ meter
above or below sea level, they are referring to the orthometric height.

The relationship between ellipsoidal height (h), MSL height (H), and geoid height (N)
can be defined as follows:

h = H + N (35)

The geoid height can be calculated using the EGM2008 gravity model or interpolated
with pre-calculated geoid height values, as described in [22]. To establish a 3D position in a
spherical coordinate system, you need the latitude, longitude, and height in the navigation
coordinate system. Here, the height in the navigation coordinate system refers to the
ellipsoidal height. Therefore, if you have the orthographic height and geoid height of a
point, you can compute the ellipsoidal height on the Earth’s surface.

Figure 5a clearly shows the definitions for each of the 3 reference heights and the
relationships between each. Figure 5b illustrates the distribution of geoid undulation of
geoid height around the Korean Peninsula, displaying a gradual gradient from southeast
to northwest, ranging from approximately 15 m to 31 m [23].
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Figure 5. The definitions of different heights: (a) illustrates the relationship between geoid height,
ellipsoidal height, and orthometric height; (b) represents geoid undulation (geoid height) around the
Korean Peninsula.

4.2.2. Extracting Orthometric Height from SRTM DEM

In order to calculate the ellipsoid height at a specific location, as shown in Equation (35),
the orthometric height of the location must be known. Unlike geoid height, orthometric
height does not have a computational model and can only be obtained through interpola-
tion from a dataset known as a Digital Elevation Model (DEM). Therefore, in this section,
we will explain DEM and how to obtain an open-source DEM for use in this paper.

At sea, the orthometric height is ‘0’. However, for land areas, the process is more
complex. It involves determining the elevation of the ground surface, accounting for terrain
irregularities and the shape of the ground or road. A digital elevation model (DEM) is used
for this purpose. A DEM is a grid raster data representation of terrain, excluding terrain
vector features (e.g., streams, ridges) and artificial structures (wires, buildings, towers), as
well as natural features like trees and vegetation.
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Various definitions are associated with DEMs, with two major models being the Digital
Terrain Model (DTM) and Digital Surface Model (DSM). In most cases where distinguishing
between bare ground and surface objects is not critical, the generic term DEM suffices.
DEMs are created from remote sensing data collected via satellites, drones, airplanes,
typically employing technologies like laser scanning (LiDAR), geodetic surveying, or radar
interferometry (InSAR).

• Digital terrain model (DTM): DTM represents a three-dimensional portrayal of terrain
or surface topography, featuring points with defined heights. DTM includes feature
points such as rivers, ridges, and breaklines but excludes natural or man-made objects
found on the Earth’s surface, like vegetation and buildings. It approximates the
height of bare land without accounting for surface features. DTM encompasses a
set of 2D points with height values approximating the vertical distance between a
feature point and a datum plane or geodetic data. In certain research fields, DTMs are
considered vector datasets augmented with linear features of bare ground terrain (e.g.,
breaklines, ridges). Photogrammetric processing of aerial and space stereo images is
often used to create DTMs. It is noteworthy that DTMs can also be derived from DSMs
by calculating the difference between the height values of surface objects (e.g., trees,
buildings) and their surroundings.

• Digital surface model (DSM): DSM represents a three-dimensional portrayal of the
Earth’s surface height, encompassing both natural and man-made objects on the
Earth’s surface. It characterizes the MSL height of reflective surfaces, including
vegetation, buildings, and other objects above the bare ground. DSM typically overlays
a canopy model onto the bare ground surface. In this paper, we will use the Shuttle
Radar Topography Mission (SRTM) DEM as an orthometric height, which employs
NASA’s satellite-based InSAR DEM technique to cover around 80% of the Earth’s
landmass. The SRTM DEM can be freely downloaded from the (http://earthexplorer.
usgs.gov accessed on 1 July 2023) website, offering global coverage with 1 arcsec
resolution [24].

• DEM vs. DTM vs. DSM: It is important to distinguish between these three models. A
DEM is the all-encompassing term, including both DTM and DSM. DTM is a DEM that
focuses on bare earth elevation, while DSM incorporates all surface objects. Figure 6
illustrates the difference between DTM and DSM, with DTM following the ground’s
contours and DSM capturing the surface structures such as the tops of buildings
and trees.
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Strictly speaking, when using the SRTM DEM, there is an error equivalent to the
height of surface features when converting to ellipsoid height using Equation (35) and
geoid height. However, this study focused on ground vehicles or water vessels, assuming
that they move on land with no obstacles or car load. Therefore, it was reasonable to assume
that the DSM height provided by the SRTM DEM coincided with orthometric height within
the scope of this research.

http://earthexplorer.usgs.gov
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4.3. Framework of Multi-Layer Perceptron Design and Training

In this study, we designed and trained MLPs using the MATLAB Deep Learning
Toolbox [25]. The target of our work was an INS that calculates navigation solutions in
real time with a 5 ms period on an embedded NPU that has a PPC-P2020 dual-core 1
GHz processor [26]. To meet the strict real-time requirements, all calculations must be
completed within a maximum of 1.2 ms [27]. Before designing the MLPs, we checked the
computational complexity of the MLP models to predict the execution time in an embedded
NPU according to the size of the neural network model.

The computational complexity, denoted as Tc, can be calculated as follows [27]:

Tc = (N ×M)MUL + (N + M)ADD (36)

Based on Equation (36), preliminary research confirmed that an execution time of
approximately 1.2 ms is required when the computational complexity (Tc) is 13,250 [27].
This is similar to the execution time of a neural network model with 5 hidden layers, each
containing 50 nodes, when the input and output dimensions are 2 and 1, respectively.
Therefore, we designed a network with parameters existing near 13,250 Tc. As a result, four
MLP networks were designed and their architectures are summarized in Table 1.

Table 1. MLP networks: numbers of hidden layers, neurons, and time complexity.

Input
Dimension

Hidden Layer
Size (HL)

Node Size of
Hidden Layer (L)

Output
Dimension Computational Complexity (Tc)

MLP1 2 31 20 1 13,740
MLP2 2 20 25 1 13,625
MLP3 2 14 30 1 13,590
MLP4 2 5 50 1 13,250

In this network design, the input layer contains two neurons to host the input vector el-
ements [latitude, longitude]. Layers from the 2nd to the Nth work as internal hidden layers,
and each layer is fully connected. The output layer yields the eastern and northern com-
ponents of the DOV. To train the neural network, the hidden layers (excluding the output
layer) consist of a ‘fullyConnectedLayer’ for full connectivity, a ‘batchNormalizationLayer’
to expedite learning and resolve local optima, and a ‘swishLayer’ as an activation function.
The ‘Swish’ activation function, given by Equation (37), is a Google-developed function
that is shown to outperform ‘ReLU’ in deep layer training. The detailed architecture of the
MLP model is presented in Figure 7.

f (x) =
1

(1 + e−x)
x,

.
f (x) = f (x) + sigmoid(x)(1− f (x)) (37)

The MLP training tool was MATLAB R2021a. The network sizes for each case are
shown in Table 1, and the learning conditions are detailed in Table 2. We utilized the ‘adam’
optimization function, suitable for regression analysis, with an initial learning rate of 0.1,
decreasing by a factor of 0.4 every 5th epoch. This dynamic learning rate initially increased
validation error variance but ultimately enhanced learning speed. As epochs progressed,
the learning rate decreased, leading to reduced validation error deviation.

To evaluate the training results, we calculated the loss using half mean squared error
and validated MLP network performance with root mean squared error, as defined in
Equations (38) and (39).

Half-MSE =
1

2n∑(ŷi − yi)
2 (38)

RMSE =

√
1
n∑(ŷi − yi)

2 (39)
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increased validation error variance but ultimately enhanced learning speed. As epochs 

progressed, the learning rate decreased, leading to reduced validation error deviation. 

Table 2. Training options for DOV prediction MLP networks. 

Optimizer  Adam Learning rate schedule Piece wise 

Mini-batch size 1,238,496 Shuffle Once 

Activation function Swish function Validation frequency Every 25th epoch 

Initial learn rate 0.1 Epoch 100 

Learn rate drop factor 0.4 Iteration 5000 

Learn rate drop period 5 Iteration per epoch 50 

To evaluate the training results, we calculated the loss using half mean squared error 

and validated MLP network performance with root mean squared error, as defined in 

Equations (38) and (39). 

Half-MSE =
1

2𝑛
∑(𝑦̂𝑖 − 𝑦𝑖)

2 (38) 

RMSE = √
1

𝑛
∑(𝑦̂𝑖 − 𝑦𝑖)

2 (39) 

The MLP model training process was executed on a workstation PC based on an Intel 

Xeon Gold 2.5 GHz dual processor. Figure 8 illustrates the evolution of the training 

process, with the upper part representing RMSE prediction error and the lower part 

showing RMS loss. A mini-batch size of 1,238,496 was used, meaning the network received 

500 database items, and neuron weight adjustments were made using the 

backpropagation algorithm. This resulted in 5000 training iterations, given a total of 

61,924,800 datasets in the full learning dataset. To enhance learning rate stability and 

prevent abrupt fluctuations toward the end of training, we initialized the learning rate at 

0.1 and reduced it by a factor of 0.4 every 5 epochs. Every 50 calibration iterations, we 

assessed network accuracy against 6,192,480 validation set items, represented in black in 

Figure 7. MLP showing the working of the neural network using input, hidden, and output layers.
The bottom left of the figure shows the weights associated with each neuron and transformation
using an activation function. ‘Y’ represents the final output from the neural network and is achieved
by optimizing other hyper-parameters. The bottom right of the figure shows the ‘ReLU’ and ‘Swish’
activation functions.

Table 2. Training options for DOV prediction MLP networks.

Optimizer Adam Learning rate schedule Piece wise
Mini-batch size 1,238,496 Shuffle Once
Activation function Swish function Validation frequency Every 25th epoch
Initial learn rate 0.1 Epoch 100
Learn rate drop factor 0.4 Iteration 5000
Learn rate drop period 5 Iteration per epoch 50

The MLP model training process was executed on a workstation PC based on an Intel
Xeon Gold 2.5 GHz dual processor. Figure 8 illustrates the evolution of the training process,
with the upper part representing RMSE prediction error and the lower part showing RMS
loss. A mini-batch size of 1,238,496 was used, meaning the network received 500 database
items, and neuron weight adjustments were made using the backpropagation algorithm.
This resulted in 5000 training iterations, given a total of 61,924,800 datasets in the full
learning dataset. To enhance learning rate stability and prevent abrupt fluctuations toward
the end of training, we initialized the learning rate at 0.1 and reduced it by a factor of
0.4 every 5 epochs. Every 50 calibration iterations, we assessed network accuracy against
6,192,480 validation set items, represented in black in the plot. This evaluation determined
if the network was learning effectively. The training process was configured to conclude
after 5000 training iterations. Input and output data were pre-normalized to eliminate
training bias.

Figure 8 illustrates an overview of creating the learning dataset and training an MLP
model for supervised learning. On the left side of Figure 8, a sequence of steps outlines
the creation of a learning dataset comprising input and reference values. Although in
theory, the ellipsoid height is necessary to compute gravity disturbances using an SHM,
in this study, it was assumed that it can be derived from surface height based on specific
position. Consequently, to determine the ellipsoid height at the location, the geoid height
was calculated, the orthometric height was extracted from the SRTM DEM, and these values
were summed to obtain the ellipsoid height. By feeding this calculated ellipsoid height and
the corresponding position (latitude and longitude) into the SHM of the EGM2008 gravity
model, the true gravity disturbances were obtained for the input positions. These true
gravity disturbances served as the reference output data during the supervised learning
process. In the learning process, the reference value was compared with the value predicted
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by the MLP network, resulting in an error. Backpropagation was then executed using this
error value to refine the MLP model.
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Figure 8. The framework of obtaining data for supervised learning and the training process of an MLP.

Figure 9 illustrates the training results for the eastern and northern components
of MLP1~MLP4, with training times of approximately 2000 min on average, except for
Figure 9b. However, due to the similar MLP size in each case, we could not find a meaning-
ful correlation between neural network size and training time in this study.

In Table 3, we present the final training loss values and validation accuracy for each
case. From the table, it is evident that MLP4 exhibited the best training performance. In the
following section, we implement MLP4 on the INS’s built-in embedded NPU and present
the field test results.

Table 3. Final validation loss and RMSE of MLP1~MLP4 training results.

MLP1 MLP2 MLP3 MLP4

∆gE ∆gN ∆gE ∆gN ∆gE ∆gN ∆gE ∆gN

HMSE 0.0477 0.3974 0.0269 0.0539 0.0391 0.0460 0.0199 0.0420

RMSE 0.3087 0.8915 0.2320 0.3283 0.2796 0.3033 0.1993 0.2899

Table 4 shows the specifications of the NPU built into the INS for real-time navigation
and DOV calculations. To ensure real-time execution, we adopted VxWorks 6.9, a commer-
cial real-time operating system [28]. The weights and biases of the trained MLP model were
stored in binary file format in the true flash file system (TFFS) created in Nor-Flash Rom.
As expected, the execution time of MLP1, with the highest computational complexity, was
the longest, with execution times decreasing as the computational complexity was reduced.

Table 4. Specifications of INS’s built-in embedded NPU used in a field test.

CPU Flash Rom RAM Real-Time OS

P2020, dual core 1
GHz, 512 k L2 Cache Nor Flash 16 M byte DDR2 400 MHz 256 M byte VxWorks 6.9
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In Table 3, we present the final training loss values and validation accuracy for each 

case. From the table, it is evident that MLP4 exhibited the best training performance. In 

Figure 9. Training progress graphs of the MATLAB Deep Learning Toolbox showing the supervised
learning results of MLP1~MLP4 models. When training was completed, we could check the final
validation accuracy: (a) 0.3087; (b) 0.8915; (c) 0.2320; (d) 0.3283; (e) 0.2796; (f) 0.3033; (g) 0.1993; and
(h) 0.2899.
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5. Experimental Study about Real-Time DOV Compensation Using MLP

In this chapter, the results from Section 4 are utilized to assess execution time. This
involves implementing four MLP models within the NPU to verify whether they meet the
execution time requirements. Furthermore, an inertial navigation system (INS) employing
the MLP4 model, which demonstrated superior training performance, is installed in a test
vehicle. A two-hour road driving test is conducted using the vehicle. Following the test, the
performance of the MLP4 model in predicting and compensating for the DOV is verified.
This is accomplished by comparing the position error of the INS with and without DOV
compensation against the GPS location.

5.1. Comparison of MLP Model Execution Time Inside NPU

After completing the MLP training, we obtained the biases and weights for each layer
of every MLP neural network. These weights and biases were implemented on the INS’s
built-in NPU to accurately measure the execution time of each neural network. A logic
analyzer was used to record the time difference before and after calculation by the MLP
models, and the execution time result of MLP4 is displayed in Figure 10 as a representative
example. For context, the execution times were recorded as 1.168 ms for MLP1, 1.113 ms
for MLP2, and 1.064 ms for MLP3.
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Figure 10. Timing marker P1 indicates the time interval between points 1 and 2, measured at
1.041 ms. This implies that the horizontal gravity disturbance comprises two components: east and
north. During each navigation cycle, NPU computes the MLP4 model twice, employing distinct
weights and biases for each component. Consequently, the total time needed for actual gravity
disturbance calculation is 2.082 ms (1.041 ms × 2).

The Figure 11 schematically illustrates the internal operational process of the NPU for
navigation and gravity disturbance compensation. Inside the NPU shown in Figure 11, the
navigation algorithm computation follows a series of steps:

(1) Data Reception: Output values from gyros and accelerometers are received by the
NPU.

(2) Navigation Algorithm Computation: Based on the received inertial sensor data, the
NPU calculates attitude, velocity, and position.

(3) Input Data for MLP: The calculated position values (latitude and longitude) are input
into the MLP model.

(4) Prediction of Gravity Disturbances: The MLP model outputs real-time predictions of
gravity disturbances based on the inputted positions.

(5) Compensation for Gravity Disturbances: These predictions are utilized to compensate
for gravity disturbances and DOV in velocity and attitude calculations.
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Figure 11. Schematic of the internal operational process of the NPU inside the INS: (a) outlines the
steps involved in the navigation algorithm calculation and real-time prediction of gravity disturbances
within the NPU; (b) photo of actual NPU.

All of these processes occur in real time at intervals of 5 ms during the navigation
task of VxWorks, that is, the RTOS of the NPU. As mentioned, the MLP4 calculation time
was 2.082 ms and there was a 2.918 ms time margin, which accounted for 58% of the total
execution cycle. In conclusion, the proposed MLP4 model in this paper demonstrated the
capability to calculate and compensate for gravity disturbances in real time inside the NPU
without the need for external auxiliary PC.

5.2. Validation of Enhanced Position Accuracy in Real-Time DOV Compensation Using MLP

To validate the real-time DOV compensation performance, a vehicle test was con-
ducted. The test setup included a navigation-grade INS and a single-antenna GNSS
receiver. The INS output position/velocity/attitude at 200 Hz, while the GNSS receiver
offered reference position information at 1 Hz. The GNSS receiver provided position accu-
racy of 2 m horizontally and 3 m vertically, serving as a sufficient reference for evaluating
INS position accuracy. The primary inertial sensor errors for the INS were a gyro drift
bias of 0.003 deg/h and accelerometer drift bias of 30 µg. The trained MLP4 model was
implemented on a built-in NPU of the INS for the vehicle test. The performances and
characteristics of the inertial sensors and GNSS receiver are listed in Table 5.

Table 5. Specifications of inertial sensors and GNSS receiver.

Types Characteristics Specification

INS Output Rate 200 Hz
Gyroscope Random Bias 0.003 deg/h

Accelerometer Random Bias 30 µg

GNSS Receiver Accuracy Horizontal Accuracy 2 m (RMS)
Vertical Accuracy 3 m (RMS)

GNSS signal tracking
GPS L1/L2

GLONASS L1
SBAS L1

The test vehicle carried a GNSS receiver, power supply, graphic user interface (GUI)
device, and the INS. The GUI was connected to both the INS and GNSS receiver to record
the position, velocity, and attitude of the INS at 200 Hz, as well as the position of the GNSS
receiver at 1 Hz. A laptop operated the GUI and stored various data received from it. The
power supply drew 220 V voltage from the vehicle and provided DC-28V to the INS and
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DC-5V to GNSS receiver. The test vehicle is shown in Figure 12 and vehicle testing followed
these steps:

Electronics 2023, 12, x FOR PEER REVIEW 20 of 26 
 

 

The test vehicle carried a GNSS receiver, power supply, graphic user interface (GUI) 

device, and the INS. The GUI was connected to both the INS and GNSS receiver to record 

the position, velocity, and attitude of the INS at 200 Hz, as well as the position of the GNSS 

receiver at 1 Hz. A laptop operated the GUI and stored various data received from it. The 

power supply drew 220 V voltage from the vehicle and provided DC-28V to the INS and 

DC-5V to GNSS receiver. The test vehicle is shown in Figure 12 and vehicle testing 

followed these steps: 

 

Figure 12. Photograph capturing the inside of the test vehicle. The power supply, GNSS receiver, 

test INS, and laptop for the GUI were installed inside the vehicle, and the GNSS antenna was 

mounted on the vehicle’s roof. 

(1) Install the required equipment on the test vehicle. 

(2) Proceed to the starting point of the driving test. 

(3) Power up the INS and GNSS receiver, obtain current location data from the GNSS 

receiver, and input them into the INS through the GUI. 

(4) After receiving the current location, the INS undergoes initial alignment for 900 s, and 

the GUI initiates data logging. 

(5) Upon completion of alignment, commence the test and drive for 2 h. 

(6) When the test is completed, stop data logging in the GUI and switch off the power 

supply. 

The test was performed on the road from Daejeon Metropolitan City to the summit 

of Mt. Jirisan. Figure 13 shows the field test trajectory. Most of the test took place on 

highways with smooth changes of attitude and speed. The vehicle’s moving trajectory 

began in the lowlands to the north and progressed southward, with a noticeable rapid 

increase in height near Mt. Jirisan. 

Figure 12. Photograph capturing the inside of the test vehicle. The power supply, GNSS receiver, test
INS, and laptop for the GUI were installed inside the vehicle, and the GNSS antenna was mounted
on the vehicle’s roof.

(1) Install the required equipment on the test vehicle.
(2) Proceed to the starting point of the driving test.
(3) Power up the INS and GNSS receiver, obtain current location data from the GNSS

receiver, and input them into the INS through the GUI.
(4) After receiving the current location, the INS undergoes initial alignment for 900 s, and

the GUI initiates data logging.
(5) Upon completion of alignment, commence the test and drive for 2 h.
(6) When the test is completed, stop data logging in the GUI and switch off the power

supply.

The test was performed on the road from Daejeon Metropolitan City to the summit of
Mt. Jirisan. Figure 13 shows the field test trajectory. Most of the test took place on highways
with smooth changes of attitude and speed. The vehicle’s moving trajectory began in the
lowlands to the north and progressed southward, with a noticeable rapid increase in height
near Mt. Jirisan.
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Figure 13. Field test trajectory. The vehicle followed a route from Daejeon Metropolitan City to the
summit of Mt. Jirisan.
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In Figure 14, the gravity disturbance distribution within the vehicle testing area is
displayed. Notably, the deviation from gravity disturbance was relatively small near the
starting point, Daejeon city, but increased as the destination, Mt. Jirisan, was approached.
Additionally, the deviation of the northern component of the gravity disturbance was
greater than that of the eastern component. The blue circles in Figure 14a,b indicate the Mt.
Jirisan area, which was the final destination area for the vehicle testing.
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Figure 14. The graph illustrates the distribution of horizontal gravity disturbance in the vehicle test
field: (a) the east component of the horizontal gravity disturbance; (b) the north component of the
horizontal gravity disturbance.

In Figure 15, a comparison is made between the real-time calculated gravity distur-
bance prediction by the MLP4 model during vehicle testing and the results calculated
post-processing using 2160th degree and order SHM. The results in the figure can be
explained for the following reasons:

(1) Difference in Frequency Components: The SHM effectively captures the high-frequency
components of gravity disturbance, indicating that the SHM accurately captures de-
tailed frequency components. In contrast, the MLP4 model removes high-frequency
components and reflects only slowly changing low-frequency components.

(2) Training Data Coverage: The MLP4 model appears to have been trained over too wide
an area, leading to a representation that is flattened overall rather than accurately
reflecting the gravity disturbance distribution in specific regions. This means that the
model may not capture regional uniqueness and may have learned characteristics
from the broader area.

(3) Weight of Terrain Data: The training data for the model include a higher proportion
of terrain data, such as oceans and flatlands, where gravity disturbances change
gradually. This might explain why high-frequency components have been removed
from the model’s predictions.

Despite these limitations, the MLP4 model was shown to perform reasonably well
when compared to the gravity disturbance error presented in [5]. This indicates that the
MLP4 model exhibited acceptable performance even though it disregarded or inaccurately
handled high-frequency components. These results illustrate the characteristics that can
arise depending on the model’s training data, training methodology, and the specific
application domain. These findings can provide insight into the strengths and limitations
of the MLP model.
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Figure 15. Analysis of the gravitational disturbance in the horizontal plane (eastern and northern
components) along the test trajectory. The data labeled as MLP4 represent real-time calculations
made by the INS’s NPU, whereas SHM denotes calculations performed afterwards, specifically
the 2160th order of SHM at the same location: (a) the eastern component of the horizontal gravity
disturbance; (b) the northern component; (c) the prediction made by MLP4, which is then subtracted
from the SHM-calculated value. The difference between these values fluctuates within a range of
approximately ± 25 mGal.

To assess navigation accuracy with and without DOV compensation, position error
was used as the evaluation metric. Real-time DOV compensation was achieved using the
MLP4 model implemented inside the NPU of the INS. To compare results with and without
DOV compensation, position data were recorded on a laptop through the GUI interface.

In Figure 16, the effect of DOV compensation on INS position calculation during the
vehicle test is illustrated. The black solid line is the result without DOV compensation
and the solid purple line is the result of calculated navigation with real-time compen-
sation for the DOV. In particular, the compensation for the DOV during INS navigation
calculation resulted in a less position error, with a maximum radial position error show-
ing approximately 27% improved performance compared to without DOV compensation
in Table 6.
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Figure 16. Position errors during the field test are compared with GPS results. In each figure, the black
line represents the result of calculating the navigation solution without compensation for the DOV.
The purple line represents the result of compensating for the DOV during navigation calculation
with the MLP4 network: (a) latitude error of field test results for both cases; (b) longitude error of
field test results for both cases; (c) radial position error of field test results for both cases.

Table 6. Maximum and mean latitude, longitude, and radial position errors without and with DOV
compensation are compared with GPS results.

Latitude Error [m] Longitude Error [m] Radial Position Error [m]

w/o DOV
Compensation

with DOV
Compensation

w/o DOV
Compensation

with DOV
Compensation

w/o DOV
Compensation

with DOV
Compensation

Mean [m] 290.0 140.0 −288.4 −234.1 446.9 361.4

Max [m] 651.6 425.1 −1547.1 −1115.2 1570.8 1146.6

In this chapter, according to the field test results, an MLP model was implemented
in the INS to compensate for the DOV and improve positional accuracy. The results of
the experiments showed that compensating for the DOV led to smaller position errors
compared to uncompensated results. Furthermore, the proposed MLP model demonstrated
the ability to calculate the DOV in real time, and its DOV prediction performance was
found to be reasonably good compared to other research results.
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6. Conclusions and Future Work

In this study, we present a real-time approach for predicting gravity disturbances (i.e.,
DOV) utilizing an MLP neural network trained on terrain surface gravity disturbance data
extracted from the EGM2008 gravity model. Our research focuses on platforms specifically
operating on flat terrain, roads, or on the water, assuming predetermined heights based
on latitude and longitude coordinates for vehicles or ships. This constraint allows us to
represent vehicle position data as a two-dimensional trajectory, enabling the application of
MLP-based learning techniques.

To ensure real-time computation, computational complexity was previously calculated
to determine the MLP neural network’s size. This ensures that computation of the gravity
disturbance’ eastern and northern components using MLP can be performed in about 1.2 ms.
As a result, four different variations of MLP models, labeled as MLP1 to MLP4, were created.
The MLP models were trained using supervised learning techniques. Each different MLP
model was evaluated based on its training accuracy using metrics like HMSE and RMSE.
HMSE is a variation of mean squared error, with only half of the squared errors used in the
calculation. This metric is often used when the focus is on underestimating errors. RMSE is
the square root of the MSE and provides a measure of the average magnitude of the errors
in the model’s predictions. In this study, the MLP4 model demonstrated the smallest error,
indicating that it performed the best among the four models assessed. The HMSE for the
DOV’s eastern component was 0.0199 with an associated RMSE of 0.1993. For the northern
component, the HMSE was 0.0420 and the RMSE was 0.2899.

Four distinct MLP models were implemented on the NPU of the INS, and their
execution times were precisely measured using a logic analyzer. The measured execution
times were recorded as 1.168 ms for MLP1, 1.113 ms for MLP2, 1.064 ms for MLP3, and
1.041 ms for MLP4. The results revealed a sequential reduction in execution time from
MLP1 to MLP4, contrary to the size of the computational complexity. Based on these
results, a vehicle test was carried out while traveling from Daejeon Metropolitan city to
the summit of Mt. Jirisan. The test results revealed a reduction in position error when
applying the suggested MLP4 model for DOV compensation, compared to results obtained
without DOV compensation. The maximum position errors when not compensating for
the DOV were as follows: latitude error was 651.6 m, longitude error was −1547.1 m,
and radial position error was 1570.8 m. On the other hand, when compensating for the
DOV, the maximum position errors were as follows: latitude error was 425.1 m, longitude
error was −1115.2 m, and radial position error was 1146.6 m. According to these results,
compensating for the DOV reduced the maximum latitude error by approximately 35.01%
(i.e., (651.6–425.1)/651.6 × 100), the maximum longitude error by approximately 28.06%
(i.e., (−1547.1–(−1115.2))/1547.1 × 100), and the radial position error by approximately
27.09% (i.e., (1570.8–1146.6)/1570.8 × 100). These results indicated that DOV compensation
improved the accuracy of the INS.

The results of this study demonstrate that it is possible to compensate for gravity
disturbances in real time by utilizing a high-precision gravity model generated by a trained
MLP neural network model implemented into an INS’s built-in NUC. These research results
provide valuable insights for enhancing the accuracy of the INS.
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