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Abstract: As federated learning continues to increase in scale, the impact caused by device and
data heterogeneity is becoming more severe. FedProx, as a comparison algorithm, is widely used
as a solution to deal with system heterogeneity and statistical heterogeneity in several scenarios.
However, there is no work that comprehensively investigates the enhancements that FedProx can
bring to current secure federation algorithms in terms of privacy protection. In this paper, we combine
differential privacy and personalized differential privacy with FedProx, propose the DP-Prox and
PDP-Prox algorithms under different privacy budget settings and simulate the algorithms on multiple
datasets. The experiments show that the proposed algorithms not only significantly improve the
convergence of the privacy algorithms under different heterogeneity conditions, but also achieve
similar or even better accuracy than the baseline algorithm.

Keywords: privacy protection; FedProx; differential privacy; personalized differential privacy

1. Introduction

The amount of application data uploaded, stored and used by various smart termi-
nals is continuously increasing and federated learning (FL) [1], as a solution to achieve
data sharing and fusion across devices and organizations is facing new challenges, such
as privacy protection, system and data heterogeneity and the expansion of the scale of
distributed devices.

Federated learning, represented by FedAvg, can deal with the problems of heterogene-
ity and high communication costs by allowing low user participation and local update
optimization. In each iteration, FedAvg selects some user devices to participate in the
computation and updates the model parameters by performing stochastic gradient descent
(SGD) for a certain number of rounds, and a central server aggregates the local parameters
of all users to update the global parameters. Since FedAvg is unable to perform a variable
number of training rounds based on system constraints, devices that cannot complete
a specified number of rounds within a specified time window are discarded in cases of
system heterogeneity. To enhance the anti-heterogeneity of federated learning algorithms,
Li et al. [2] proposed FedProx, which addresses system heterogeneity and statistical het-
erogeneity by allowing the occurrence of inadequately trained local models and adding
proximal terms to the original loss function, respectively.

To achieve privacy protection for federated learning, secure federated learning can
currently be realized via algorithms such as secure multi-party computation [3,4], homo-
morphic encryption [5,6] and differential privacy (DP) [7]. Compared to the first two
approaches, DP can provide rigorous and robust privacy protection based on low computa-
tional and communication costs and thus is widely used in various modeling algorithms to
protect privacy. The current work on applying DP for privacy protection can be divided
into two categories based on the privacy settings: uniform privacy budget settings and
personalized privacy budget settings [8]. Points of interest regarding the work in the uni-
form privacy budget scenario are reducing the impact of added noise on the model through
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privacy amplification [9], user/data filtering and parameter selection [10–13]. This kind
of work does not take the user’s personalized privacy needs into consideration, resulting
in a certain amount of wasted privacy; the focus of the work in the personalized privacy
budget scenario is to realize the personalization of privacy protection by optimizing the
user selection and privacy-budget-allocation mechanism [14–17].

The most representative algorithm for applying DP to the federated learning scenario is
DP-SGD [18], which closely combines DP and SGD. By adding noise to the clipped gradient
values, DP-SGD can effectively protect the data information, so DP-SGD is adopted as
a local solver for model updating in most of the work. However, DP-SGD is proposed
without specific consideration of heterogeneity.

Inspired by the DP-SGD algorithm and based on the advantages of FedProx in ad-
dressing system heterogeneity and statistical heterogeneity, this paper combines DP and
PDP with FedProx and proposes two algorithms, DP-Prox and PDP-Prox, respectively,
to explore the utility of privacy algorithms of FedProx under different privacy budget
settings. The primary contributions of this study are as follows:

• We propose the DP-Prox algorithm under a unified privacy budget scenario to improve
the convergence of the model algorithm under the condition of heterogeneity.

• We propose the PDP-Prox under a personalized privacy budget scenario to improve
the balance between privacy and utility through multiple rounds of the adaptive
sampling mechanism.

• We conduct a series of comparison experiments with the baseline algorithm on both
synthetic and real datasets to demonstrate that our proposed algorithm is not only
more adaptable to heterogeneous environments, but also achieves up to nearly 6%
improvement in algorithmic accuracy when compared to the commonly used SGD
algorithm.

This study follows the following format: In Section 2, we give a summary of the
background information and associated research on FL and DP. We examine recent relevant
studies in Section 3. In Section 4, we go into further detail about our proposed algorithm
and the mechanisms that connect to it and in Section 5, we perform an experimental
evaluation of the proposed method. Finally, Section 6 brings the paper to a close.

2. Preliminaries

In this section, we introduce three key elements of the new modeling algorithm,
namely DP, PDP and the FL framework FedProx.

2.1. Differential Privacy and Personalized Differential Privacy

We start by introducing the idea of (ε, δ)− DP [19]. Due to the originally proposed
ε − DP’s strict privacy protection [20], a sizable privacy budget is required in order to
implement it in practical applications. The size of the privacy budget is inversely correlated
with the practicality of the algorithm and excessive use of privacy counting will significantly
lower the accuracy of the computation results. Since the method can still satisfy the
DP within a certain gap, Dwork et al. [19] added a relaxation element ε to the original
specification. (ε, δ)− DP is consequently a relaxation of ε− DP.

Definition 1. ((ε, δ)− DP) A randomized mechanismM : D −→ R with value domain D and
range R satisfies (ε, δ)− DP if for any two adjacent inputs d, d′ ∈ D such that ‖ d− d′ ‖≤ 1 and
for any subset of outputs O ⊆ R it holds that

Pr[M(d) ∈ O] ≤ eεPr[M(d′) ∈ O] + δ (1)

The DP process can be realized via random response (RR) [21], Laplace noise [22]
or Gaussian noise [19]. Gaussian noise is chosen throughout this study since it is more
adaptable in data processing and is ideal for developing (ε, δ)− DP mechanisms.
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Definition 2. (Gaussian Mechanism) For a function f : D −→ R with sensitivity ∆2(f) =
maxd,d′∈D ‖ f(d)− f(d′) ‖2, the random mechanismM(d) = f(d) +N (0, σ2) obeys (ε, δ)−DP
if for any δ ∈ (0, 1), given random noise obeying a normal distribution N (0, σ2), where:

ε ≥
√

2ln(1.25/δ)
σ

∆2f
(2)

As can be seen from Definition 1, the traditional DP ignores the various privacy
demands and preferences of users and sets the privacy criteria of all users to a standard
privacy budget value of ε; meanwhile, setting a uniform privacy budget to satisfy the
privacy demands of all users will negatively affect the utility of the modeling algorithm.
In order to strike a compromise between privacy and utility, Jorgensen et al. [8] presented
PDP (ε− PDP), which improves the utility of the algorithm by adopting various privacy
budget values. Based on ε− PDP, Heo et al. [23] expanded it to (φ, ∆)− PDP.

Definition 3. ((φ, ∆) − PDP) In the context of the privacy budget φ and the set of users U,
a randomized mechanismM : D −→ R satisfies (φ, ∆)− PDP, if for any two adjacent datasets

D, D′ ⊂ D, D d−→ D′ and for any subset of outputs O ⊆ R, it holds that

Pr[M ∈ O] ≤ eεi × Pr[M(D′) ∈ O] + δi (3)

where ui ∈ U is the user associated with tuple d, εi ∈ φ represents the privacy needs of user i
and δi ∈ φ represents the probability of user i’s information leakage.

Definition 3 is a generalization of Definition 1 and φ− PDP. A definition transforms to
φ− PDP if for all users u ∈ U the value of δi is 0. The definition transforms to (ε, δ)− DP
if for all users u ∈ U, εi = ε and δi = δ.

Sampling Mechanism

The sampling mechanism, which is based on the sampling approach of privacy
amplification and may effectively limit the loss of privacy, was initially put out by Jor-
gensen et al. [8] and can be employed in any ε − DP algorithms. Poisson distribution
sampling, uniform sampling and shuffle shuffling [24] are the sampling techniques that are
employed most often. Heo et al. [23] proposed a sampling technique that fulfills (ε, δ)−DP
by extending the mechanism described in [8]. This also established that the mechanism
Ms satisfies (φ, ∆)− PDP when ∆ = {δi|δi = πiδ, ui ∈ U}.

Definition 4. ((ε, δ)−DP Mechanism with Sampling) We use SMPDP to represent a randomized
algorithm that satisfies (τ, δ)− DP. For a dataset D ⊂ D, a privacy budget φ = {ε1, . . . , εn} and
a sampling threshold τ ∈ [minφ, maxφ], we let RS(D, φ, τ) represent the preprocessing step of
probabilistically independent sampling of each data point x ∈ D:

πi =

{ eεi−1
eτ−1 if εi < τ

1 otherwise
(4)

The output of a sampling mechanismMs can be defined as

Ms(D, φ, τ) = SMPDP(RS(D, φ, τ)) (5)

when ∆ = {δi|δi = πiδ, ui ∈ U}, the mechanismM satisfies (φ, ∆)− PDP.

2.2. FedProx

FL securely enables decentralized data sharing by coordinating data collection, training
and fusion across several dispersed end devices and a central server. Let k represent the
set of all terminals of size | K |= N and Dk denote all possible data distributions. Let
fk(w; xk) stand for the loss function of terminal k over model w and sample xk and Fk(w) :=
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Exk∼Dk [fk(w; xk)] represent the loss function (possibly non-convex) of terminal k. The FL
method minimizes the objective function by solving

min
w
{f(w) = ∑

k∈K

nk
n

Fk(w)} (6)

to perform collaborative training, where n = ∑k∈K nk is the total value of the size of all
terminal datasets.

Each iteration of FL uses a different sampling technique for device selection in an effort
to lower communication costs. Utilizing local solvers, the chosen devices optimize each
of their local objective functions before uploading the modified local model parameters
to the centralized server. The central server changes the global model parameters by
combining the provided specific update parameters. Most existing methods only permit
a certain number of uniform training cycles for each participating device, not taking
system heterogeneity into account. Since various devices have varied computing, storing
and communication capacities, the completion time of equivalent training rounds will be
sequential. A frequent practice is to discard the device models that do not successfully
complete the training within the allotted time because waiting for all devices to finish can
slow down the training process of the entire system. The total training accuracy might
however be impacted by model bias caused by the abandoned devices.

Flexibly adapting the number of training cycles for each device in each round can be
realized by solving the inexact solution of each local objective function in FL.

Definition 5. (γ − inexact solution) For a function h(w; w0) = F(w) + µ
2 ‖w− w0‖2, γ ∈

[0, 1], we say that w∗ is an γ − inexact solution of minwh(w; w0) if
‖∇h(w∗; w0)‖ ≤ γ‖∇h(w; w0)‖, where ∇h(w; w0) = ∇F(w) + µ(w − w0). Notice that
smaller values of γ correspond to higher accuracy.

Li et al. [2] extend Definition 3 by defining γt
k for each device in each round of iterations,

i.e., FedProx allows each device to solve its own local objective function inexactly according
to its own situation and is not configured with a uniform value of γ across devices and the
variable number of local iterations can be viewed as a proxy for γt

k.

Definition 6. (γt
k − inexact solution [2]) For a function hk(w; wt) = Fk(w) + µ

2 ‖w− wt‖2,
γ ∈ [0, 1], we say that w∗ is an optimal solution of minwhk(w; wt) if ‖∇hk(w∗; wt)‖ ≤ γt

k
‖∇hk(wt; wt)‖, where ∇hk(w; wt) = ∇Fk(w) + µ(w − wt). Notice that smaller values of γ
correspond to higher accuracy.

Another manifestation of heterogeneity is statistical heterogeneity, i.e., the data are
non-independently and identically distributed (non-IID). After mitigating the effects of
system heterogeneity, more devices will typically take part in each round of iterative
training and the more devices that participate locally in model updating, the greater the
divergence caused by statistical heterogeneity in the system is likely to be. Therefore,
FedProx adds a proximal term to limit the deviation of local updates between rounds while
solving the local function. Specifically, instead of only updating the model parameters
via minimization of the local function Fk(w), device k employs its local selection solver to
approximate and minimize the following target hk:

min
w
{hk(w; wt) = Fk(w) +

µ

2

∥∥w− wt∥∥2} (7)

FedProx is modified from FedAvg in terms of the inexact solution and proximal term
and transforms to FedAvg when (1) the proximal term is not invoked, i.e., µ = 0, (2) system
heterogeneity is not taken into account, i.e., γ is a constant, and (3) the local solver is chosen
to be SGD. Because it can handle the negative effects of system heterogeneity and statistical
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heterogeneity on the algorithm, FedProx is more generic in real settings than FedAvg and
is therefore more adaptable.

3. Related Work

The current work on privacy-protection research through DP in FL can be classified
into centralized DP (GDP) [25,26] and localized DP (LDP) [10,11,27–31] based on the class
of DP. Liu et al. [25] introduced DP into FL for the first time to achieve user-level privacy
protection by protecting the user’s entire dataset; Lian et al. [26] further assumed that the
communication channel is not entirely secure and proposed an NbAFL scheme that satisfies
the DP requirements by adding appropriate noise perturbations to the client and server. In
contrast, LDP achieves data privacy locally to the user based on the assumption of unreliable
third-party work, which can significantly enhance the privacy protection. Hu et al. [27]
proposed LDP-Fed, an FL system with LDP guarantees. Given that different dimensions
of data have varying degrees of importance, Liu et al. [10] proposed a fedSel algorithm
to reduce the amount of noise injection by choosing the Top-k dimensions based on the
contribution of the dimensions in the SGD iteration. In order to reduce the communication
cost, Lian et al. [11] did not use common methods such as random selection through the
client, but designed a layer-based parameter-selection method to select valuable parameters
for global aggregation, while Geyer et al. [29] provided DP guarantees by adding noise to
locally uploaded parameters in a personalized FL framework.

Even though the literature on privacy preservation and trade-off optimization is
extensive, all known efforts operate on a single privacy budget framework. The algorithm’s
usefulness is significantly impacted by protecting data from diverse users with the same
degree of security and the uniform protection strategy does not satisfy the growing need
for personalized privacy protection.

PDP [8,32,33], on the other hand, delivers different levels of privacy protection for
users with various privacy demands by setting different privacy budgets on top of the
uniform privacy protection level of DP. Current PDP research under FL focuses on person-
alized LDP (PLDP) [14–16,34–36]. Facing the two major challenges of user privacy level
selection and model optimization, Shen et al. [14] proposed the PLU-FedOA algorithm
based on the PVLDP [11] to solve it in modules. Based on the stochastic response mech-
anism, Chen et al. [34] proposed a perturbation algorithm, PDPM, to satisfy the PLDP.
Shen et al. [36] designed three models based on the existing LDP mean estimation scheme
in order to provide customized privacy for each user. All of the above works incorporate
the concept of PDP into FL in different perspectives, but they do not take into account the
wastage of the user’s personalized privacy budget due to user selection and noise addition
in the process of multiple iterations. The most recent study [23] was based on Ada-PDP,
as proposed by Niu et al. [32]. It extends the DP-SGD algorithm to PDP-SGD through a
utility-sampling mechanism and recycles the privacy budget wasted in each iteration.

All of the above works aim at optimizing the algorithm to achieve a higher level of
privacy protection and do not view the impact of heterogeneity on the model as a major
research issue. In this regard, in this study, we use FedProx as the base framework and intro-
duce the concepts of DP and PDP, respectively, to propose new algorithms to evaluate the
performance of FedProx in terms of privacy protection in different heterogeneous scenarios.

4. Differential Privacy in FedProx

As one of the most popular deep learning algorithms under the DP mechanism, DP-
SGD trains the model parameters by minimizing the empirical loss function. The model
is trained in a total of T rounds. In each round of training, firstly, a subset of the whole
training set is selected by subsampling with probabilistic no-putback sampling; in the
second step, the gradient of the loss function is computed for each subset of samples; in the
third step, the gradient is clipped by the gradient paradigm thresholding; in the fourth step,
Gaussian noise is added to the clipped gradient and all the local parameters are aggregated;
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and in the fifth step, the model parameters are updated by the gradient that satisfies the DP.
The specific algorithm flow is shown in Algorithm 1.

Algorithm 1: Differential Privacy SGD (DP-SGD).

1 Input: Example D = {x1, . . . , xn}, loss function L(θ) = 1
N ∑i L(θ, xi), learning

rate ηt, noise scale σ, group size L. Initialize: θ0 for t ∈ [T] do
2 Lt = qL, q = L/N ; /* subsampling */
3 gt(xi)← ∆θtL(θi, xi), i ∈ Lt ; /* compute gradient */

4
−
gt(xi)← gt(xi)/ max(1, ‖gt(xi)‖2

C ) ; /* clip gradient */

5
∼
gt ← 1

L (∑i
−
gt(xi) +N (0, σ2C2 I)) ; /* add noise and aggression */

6 θt+1 ← θt − ηt g̃t ; /* take gradient step */
7 end
8 Output: θT

4.1. DP-Prox

In this study, we introduce DP into the FedProx framework and modify the DP-SGD
algorithm in two ways. On the one hand, the objective function for calculating the gradient
adds the proximal term γ to address the statistical heterogeneity and the bias introduced
by the addition of noise; on the other hand, the imprecise solution is computed for the
model and the impact of the system heterogeneity on the model is addressed by setting an
unfixed value for the subset of devices participating in the training. The specific algorithm
flow is described in Algorithm 2.

Algorithm 2: Differential Privacy FedProx (DP-Prox) (Proposed Framework).

1 Input: inexact parameter µ,γ, devices k = {k1, . . . , kn}, subset size KR, number of
rounds R, sample probability qk procedure Server Execution Initialize: w0 for
each round r = 1, . . . , R do

2 Sr ← qk × {k1, . . . , kn} ; /* subsampling */
3 for each devices k ∈ Sr do
4 ∆wt+1 ← LocalUpdate(k, wt); /* client update */
5 end

6 wr+1 ← wr + 1
K (∑

K
k=1 ∆wr+1

k / max(1, ‖∆wr+1‖2

C ) +N (0, σ2C2)) ; /* global
aggression */

7 end
8 function LocalUpdate (k, wr) for each local epoch t = 1, . . . , T do
9 wr+1 ≈ arg min h(w; wr) = F(w) + µ

2 ‖w− wr‖2; /* update parameter */
10 end
11 ∆wr+1 = wr+1 − wr return ∆wt+1

4.2. PDP-Prox

We propose the PDP-Prox algorithm based on DP-Prox. By introducing PDP into
FedProx using a personalized sampling mechanism, the PDP-Prox algorithm can set distinct
privacy budgets on different user devices according to the user’s personalized privacy
needs under the FedProx framework to reduce the waste of the privacy budget.

Multi-round adaptive sampling mechanism

Since a uniform value is used in DP-Prox, it is challenging to make a trade-off between
privacy protection and model utility. As a result, Nui et al. [32] proposed a utility-aware
sampling mechanism to implement PDP, which improves the utility of the algorithm while
accommodating users’ various privacy needs.
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The realization of PDP is mainly achieved through a two-step operation of sampling
and noise addition, while the existence of randomness in both will cause sampling error and
noise error, respectively. Sampling error refers to the impact of the sampling operation on
the training effect of the original dataset and a high percentage of sampling corresponds to
a low sampling error, whereas noise error refers to the degree of perturbation of the training
results by different degrees of privacy requirements, with a high privacy requirement
corresponding to a high noise error. The sampling mechanism mentioned in Definition 4
has some limitations. By defining the sampling threshold, the original dataset is divided
into the unsampled part and the sampled part, and the users in the unsampled part will
cause a sampling error due to the wastage of the privacy budget as the data are not used;
meanwhile, if the privacy budget of the users in the sampled part is higher than the
threshold, the users’ data will be protected by the noise, which is higher than the privacy
requirement, causing a noise error. Sampling error and noise error are defined, respectively,
as

ωs(φ, τ) = ∑
i:εi<τ,εi∈φ

εi(1− πi)

ωn(φ, τ) = ∑
i:εi>τ,εi∈φ

εi − τ
(8)

Therefore, the selection of the sampling threshold needs to measure both types of
errors to lessen the influence of the errors on the algorithm. Since the adjustment of the
sampling threshold has an opposite effect on the sampling error and noise error, a large
threshold reduces the impact of the noise error on the algorithm; however, a drop in the
sampling probability results in an increase in sampling error. To achieve the best sampling
threshold in each computation round, we determine the minimum value of the utility
loss function and allow the weights of the two types of errors be automatically modified
according to the percentage of weights via adaptive means. The utility loss function can be
defined as

waste(φ, τ) =
ωs

ωs + ωn
× ∑

i:εi<τ,εi∈φ

εi(1− πi) +
ωn

ωs + ωn
× ∑

i:εi>τ,εi∈φ

(εi − τ) (9)

For a given φ, the optimal τ can be obtained by solving the following optimization
problem

min waste(φ,τ)
s.t. minφ ≤ τ ≤ max φ

(10)

The user data are sampled using the optimal sampling threshold calculated in each
round and the privacy budget remaining after each round of sampling is utilized in multiple
iterations until the remaining value of the privacy budget is less than a given value.

Algorithm Process

We now apply the multi-round adaptive sampling mechanism to DP-Prox in order to
implement PDP-Prox. We define R as the overall iteration round count, n as the number of
iterations in each round and εR as the target round R privacy budget. Each round’s noise
scale is calculated depending on the sampling threshold, which is initially calculated by
the utility loss function. Then, using the sampling approach described in Definition 4, we
select the user devices that will participate in the calculation for each round and we use the
noise scale computation function described in [23] to calculate the variance parameter of
the Gaussian noise for each round. The model parameters are then iteratively computed
using DP-Prox and the privacy accountant is computed using RDP accountant [37]. Finally,
each device updates its remaining privacy budget. Figure 1 schematizes the algorithm flow,
while Algorithm 3 describes the particular algorithm flow.
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Figure 1. PDP-Prox algorithm flow diagram.

Algorithm 3: Personalized DP-Prox (PDP-Prox) (Proposed Framework).

1 Input: inexact parameter µ,γ, devices k = {k1, . . . , kn}, subset size KR, privacy
budgets φ = εi, . . . εn, number of rounds R, probability of privacy leakage δ
procedure Server Execution Initialize: w0, τ for each round r = 1, . . . , R do

2 τR ← min(waste(φ, τ), min φ ≤ τ ≤ max φ) ; /* compute threshold */
3 σ← NoiseMultiplier(τR, δ, R); /* compute noise multiplier */
4 Sr ← Ms(K, φ, τR); /* subsampling */
5 for each devices k ∈ Sr do

6

∼
∆wr+1

k ← LocalUpdate(k, wt); /* client update */
7 end

8 wr+1 ← wr + 1
Kr

∑Kr
k=1

∼
∆wr+1

k ; /* global aggression */

9 ε
′ ← Accountant(σ, k, R); /* compute remain budgets */

10 εk ← max(εk − ε
′
), ∀i ∈ {i|ki ∈ Sr}

11 end
12 function LocalUpdate (k, wr) for each local epoch t = 1, . . . , T do
13 wr+1 ≈ arg min h(w; wr) = F(w) + µ

2 ‖w− wr‖2; /* update parameter */
14 end

15 ∆wr+1 = wr+1 − wr
∼

∆wr+1
k = ∆wr+1

k / max(1, ‖∆wr+1‖2

C ) +N (0, σ2C2) ; /* add
noise */

16 return
∼

∆wr+1
k

5. Experiment

In this section, we compare our proposed approach with the respective baseline
models under unified privacy budget (DP) and personalized privacy budget (PDP) settings,
respectively, to assess the usefulness of the FedProx-based privacy model and the extent to
which each parameter affects the model.

5.1. Setting

Datasets. We use one synthetic dataset and two real datasets. Synthetic dataset [2]:
for each device k, the samples (Xk, Yk) are generated according to the model y = argmax
(so f tmax(Wx + b)), x ∈ bk ∼ N (uk, 1), W ∈ R10×60, b ∈ R10. We follow the model
Wk ∼ N (uk, 1), bk ∼ N (uk, 1), uk ∼ N (0, α); xk ∼ N (vk, ∑), where the covariance matrix



Electronics 2023, 12, 4364 9 of 15

∑ is diagonal with ∑i,j = j−1.2. Each element in the mean vector vk is drawn fromN (Bk, 1),
Bk ∼ N (0, β). Real datasets: 1. MNIST [38], which consists of handwritten images of
numbers 0-9 and contains a total of 60,000 training samples and 10,000 test samples; and
2. Fashion-MNIST [39], which consists of images of 10 types of clothes and contains a total
of 60,000 training samples and 10,000 test samples.

Baseline. Under a consistent privacy budget setting, the DPSGD algorithm acts as
a baseline for comparison with the proposed DP-Prox method. In this experiment, our
main goal is to determine if the proposed DP-Prox enables more robust convergence
in the presence of many heterogeneous circumstances. Under a personalized privacy
budget, the PDP-Prox algorithm is compared to the PDP-SGD method as a baseline. In this
experiment, our main objective is to evaluate the extent to which the proposed PDP-Prox
enhances the algorithm’s accuracy compared to the baseline under several rounds of the
adaptive sampling mechanism.

Environment. We use a simple convolutional neural network (CNN) in our experi-
ments, which is modeled by two convolutional layers, two fully connected layers and two
pooling layers. All experiments were conducted in a GPU: NVIDIA RTX 3080, CPU: 12
vCPU Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz environment. Due to the random-
ness of the algorithmic mechanism, all experiments were repeated five times with different
random seeds.

5.2. DP-SGD and DP-Prox

We evaluate the effectiveness of FedProx in improving the convergence of DP algo-
rithms through both system heterogeneity and statistical heterogeneity. In the experiments,
the parameter δ = 1× 10−5 is chosen and the gradient clipping threshold C is set to the
median value of the update parameters supplied by various individuals. In DP-Prox, we
choose µ = 1 as the default value of the parameter µ and a random imprecision value γt

k is
set for each device after each round of iteration.

System heterogeneity

We adjusted the system heterogeneity to 0%, 50% and 90% under a uniform privacy
budget (DP) condition in order to assess the effect of system heterogeneity on the model,
which corresponds to the scenarios of low system heterogeneity, medium system hetero-
geneity and high system heterogeneity, respectively (we model the number of devices
that fail to complete training and exit the training process within a given communication
round in a systematic heterogeneous environment by setting different heterogeneity ratios.
The training results of such devices will not be used in the experiments). With a total of
100 rounds of iterations, there will be 10 user devices in each round.

Figure 2 illustrates how system heterogeneity affects the convergence of the model
method to varying degrees: the higher the degree of heterogeneity, the poorer the conver-
gence. Under various heterogeneous dissimilarity circumstances, the suggested DP-Prox’s
convergence robustness is superior to the baseline, while the DP-SGD method exhibits
significant fluctuations. In terms of accuracy, the final performance of DP-Prox can also be
slightly better than the baseline.

Statistical heterogeneity

We set (α, β) = (0, 0), (0.5, 0.5), (1, 1), respectively, to generate three non-identical
distributed datasets. According to how the sample data are generated, α controls how
much local models differ from each other and β controls how much the local data at each
device differ from those of other devices. In this experiment, we do not consider system
heterogeneity (setting the parameter of system heterogeneity to 0%).

As shown in Figure 3, as data become progressively more heterogeneous, the conver-
gence of the SGD-based privacy algorithm DP-SGD becomes worse. In terms of accuracy,
the overall gap between the two types of algorithms is small, but as the number of training
rounds increases, the DP-Prox algorithm shows a more pronounced advantage.
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Figure 2. Training loss and test accuracy of the models trained on baseline (DP-SGD) and DP-Prox
on the two datasets with the system heterogeneity setting.

Figure 3. Training loss and test accuracy of the models trained on baseline (DP-SGD) and DP-Prox
on the two datasets with the statistical heterogeneity setting.
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Parameter µ

For FedProx, the parameter µ is one of the most critical parameters. It regulates the
disparity between the parameters and significantly affects the convergence of the algorithm.
We set five different µ values for DP-Prox (0.01, 0.1, 0, 1 and 1.5, respectively) and set
the total number of iteration rounds to 200 to evaluate the impact of the value of µ on
the algorithm in the context of system heterogeneity, as shown in Figure 4. Based on the
experimental findings, it can be deduced that the method converges poorly when the
µ value is 0, i.e., when no dissimilarity measure is used in the derivation of the model
parameters. This has a major detrimental effect on the algorithm. Selecting a smaller value
of µ is likewise ineffective since the convergence is poorer when the µ value is lower. It
is difficult for the model to calculate better values in the iterative process since choosing
a smaller µ will make the parameters generated across various rounds extremely similar.
This makes it simple to cause overfitting in the training, which has a higher influence on
the algorithm’s accuracy. The algorithm’s convergence is substantially enhanced, the pace
of convergence is quick and the fluctuation between rounds is minimal when the µ value is
larger than 0. Since µ = 1 performs marginally better than µ = 1.5 in terms of accuracy,
we may draw the conclusion that permitting the new model parameters to diverge greatly
from the original parameters, i.e., choosing bigger amounts of dissimilarity, can also have a
detrimental impact on the algorithm’s utility.

Figure 4. Impact of parameters on the loss and accuracy of the model.

5.3. PDP-SGD and PDP-Prox

PDPs can improve the utility of model algorithms while providing personalized
protection by conserving privacy budgets. Therefore, in this section of experiments, we
focus on evaluating the performance of the proposed PDP-Prox algorithm in terms of
model utility.

Under the personalized privacy budget (PDP) setting, we use the PDP-SGD algorithm
as a baseline and evaluate the proposed approach using the MNIST and Fashion-MNIST
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datasets. Based on the experimental settings in [23], we set the privacy budget inter-
val to ε ∈ [0.5, 1] and apply an exponential distribution technique to create the privacy
budget values for various users. Specifically, we split the privacy budget intervals into
20 groups on average and the number of users in different intervals is generated by
User(ε) = (ezε/ ∑ε∈[0.5,1] ezε)× Dtrain, where Dtrain stands for the dataset size and ε repre-
sents the privacy size of the group. The parameter z takes three values of −0.2, 0 and 0.2,
which represent the three cases of users with generally larger privacy needs, users with
the same privacy needs and users with generally smaller privacy needs, respectively (see
Figure 5). The privacy budgets of the data points in the remaining unallocated privacy
groups are set to be the maximum value of the privacy budget intervals as a consequence
of rounding the exponential mechanism’s findings.

Figure 5. Schematic of privacy budget allocation.

Table 1 shows that the proposed PDP-Prox can achieve similar accuracy to the baseline
on both the MNIST and Fashion-MNIST datasets and that the results of multiple experi-
ments can be better than the baseline results. In scenarios with high privacy requirements,
the accuracy can be increased by up to nearly 5%. Through multiple experiments, the PDP-
Prox algorithm is verified to converge better than PDP-SGD and the mean function loss
value of each experiment can be between 0.2 and 0.5 less than that of the PDP-SGD algo-
rithm.

Table 1. Test accuracy and loss of the models trained on baseline (PDP-SGD) and PDP-Prox on the
two datasets.

PDP-SGD PDP-Prox
Dataset Skew Accuracy Loss Accuracy Loss

z = −0.2 94.08 ± 0.64 0.68 ± 0.07 94.99 ± 0.14 0.22 ± 0.02

z = 0 95.14 ± 0.20 0.34 ± 0.02 95.34 ± 0.14 0.20 ± 0.01MNIST
z = 0.2 94.06 ± 0.27 0.42 ± 0.04 93.80 ± 0.26 0.31 ± 0.03

z = −0.2 75.80 ± 1.01 1.09 ± 0.05 80.04 ± 0.70 0.83 ± 0.03

z = 0 79.42 ± 0.77 1.13 ± 0.04 81.12 ± 0.49 0.79 ± 0.03Fashion-MNIST
z = 0.2 79.72 ± 0.78 1.45 ± 0.11 78.55 ± 0.82 0.92 ± 0.04

The comparison results of the experiment are highlighted in bold font.

Parameter ε. We established various privacy demand intervals in the following tests
to assess the viability of PDP-SGD, because the PDP algorithm depends on the choice of
privacy budget intervals. Specifically, beginning from 0.6 to 2, the maximum value of the
privacy interval is increased by 0.2 increments, while the lowest value is maintained at 0.5.
A wider privacy interval denotes a laxer necessity for privacy. In trials using the MNIST
dataset, we set z = −0.2, while in studies using the Fashion-MNIST dataset, z = 0.2.

In several sets of trials with various privacy intervals, the proposed PDP-SGD delivers
flat baseline or better-than-baseline accuracy, as shown in Figure 6. There are fewer training
rounds for shorter intervals since the privacy budget interval affects the overall number of
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training rounds in the trials. It is clear that PDP-SGD performs worse than the baseline with
fewer training rounds—the method of restricting the model parameters by dissimilarity
necessitates more rounds of updating to prevent entering a local optimum solution.

Figure 6. Impact of parameter ε on the accuracy of model testing.

6. Conclusions

This paper investigates how well FedProx is optimized for currently used algorithms in
different scenarios involving privacy preservation. In this study, we merge the concepts of
DP and PDP with the FedProx framework and propose two classes of algorithms, DP-Prox
and PDP-Prox, to comprehensively evaluate the utility of FedProx for privacy algorithms
to address heterogeneity and improve model accuracy. The experimental results show that
the proposed algorithms converge significantly better than the baseline algorithm under
the heterogeneity condition and the convergence performance is more stable; through full
validation under the PDP setting, PDP-Prox can obtain higher model accuracy.

In our current research work in combining FedProx and DP, there are shortcomings
in various aspects such as the setting of imprecise values and the effect of system hetero-
geneity on the recycling of privacy budgets. As a future direction of work, we would
like to standardize how to base the selection of imprecise values on practical situations
in experiments on heterogeneity; in terms of privacy protection, on the other hand, we
would like to carefully categorize and select user privacy levels and further investigate the
allocation and utilization of privacy budgets under conditions of system heterogeneity.
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