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Abstract: Scene classification is one of the areas of remote sensing image processing that is gaining
much attention. Aiming to solve the problem of the limited precision of optical scene classification
caused by complex spatial patterns, a high similarity between classes, and a high diversity of classes,
a feature cross-layer interaction hybrid algorithm for optical remote sensing scene classification
is proposed in this paper. Firstly, a number of features are extracted from two branches, a vision
transformer branch and a Res2Net branch, to strengthen the feature extraction capability of the
strategy. A novel interactive attention technique is proposed, with the goal of focusing on the strong
correlation between the two-branch features, to fully use the complementing advantages of the feature
information. The retrieved feature data are further refined and merged. The combined characteristics
are then employed for classification. The experiments were conducted by using three open-source
remote sensing datasets to validate the feasibility of the proposed method, which performed better in
scene classification tasks than other methods.

Keywords: vision transformer; remote sensing image; Res2Net; scene classification

1. Introduction

The rapid development of remote sensing technologies with satellites and unmanned
aerial vehicles has produced a large number of high-resolution remote sensing images
with rich scenes. These images can be applied in forest state assessment, urban planning,
ecological environment monitoring, and many other applications [1]. By extracting and
evaluating the properties of the remote sensing images, the primary application goal is to
reliably identify the target categories included in the images, such as buildings, forests, and
wetlands. A significant area of remote sensing research is scene classification [2]. Effective
scene differentiation is especially crucial since remote sensing images have substantial
intra-class differences and small inter-class differences.

In general, the scene classification approaches for remote sensing images can be di-
vided into three primary kinds: low-level methods, mid-level methods, and high-level
feature methods [3]. For early traditional scene classification methods, low and mid-level
features are mostly obtained from remote sensing images manually. Low-level methods
usually use handcrafted features, e.g., local binary patterns, scale-invariant feature trans-
form features, and histograms of oriented gradients [4]. Handcrafted features perform well
in remote sensing images with a neat texture and uniform spatial distribution, but they
have difficulties in depicting the semantic information of complicated images. Mid-level
methods use statistical calculations or the coding of low-level features, e.g., bag of visual
words [5], and probabilistic topic models [3]. However, low-level and mid-level methods
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need a large amount of experience and time. These manual methods have the shortcomings
of providing little information and having a low effectiveness, and they have difficulties in
satisfying the needs of remote sensing applications. Therefore, high-level methods using
deep learning are applied to efficiently extract visual information for scene classification.

Recently, it was found that convolutional neural networks (CNNs) can significantly
improve the efficiency of remote sensing scene classification [6,7]. Different from tradi-
tional classification methods, CNNs (e.g., AlexNet, VGGNet, GoogLeNet, ResNet, and
DenseNet) [8] have the characteristics of local perception and weight sharing. Only using
the features of the CNN middle layer or the full connection layer as the image feature
representation will ignore the complementary advantages of different levels of information,
resulting in a low portrayal capability of the network. Although algorithms based on CNNs
capture local texture, they are not able to depict the global structure of scene images, so
the classification accuracy will encounter a bottleneck. Bahdanau et al. [9] designed a new
attention method, which aimed to solve the problem of a too-long training time. This model
not only solves the information bottleneck in machine translation, but also alleviates the
gradient disappearance of recurrent neural networks (RNNs) in long-distance dependency.
Recent advancements in the field of natural language processing (NLP) have highlighted
the potential of a technique with a self-attention mechanism, named Transformer [10],
which has the ability to refresh the parameters of a deep learning model using global
computing on the input sequence. Inspired by the Transformer application in NLP, Doso-
vitskiy et al. [11] applied an attention mechanism with a vision transformer (ViT) for image
classification and recognition tasks. This model can effectively extract the long-distance
dependent (image structure) information of natural images and overcome the conduction
bias in CNNs. To enhance the recognition rate of scene features, Deng et al. [12] proposed
an efficient combined approach by integrating ViT into a CNN model.

To obtain the overall structure and local texture details of scene images at the same
time, a feature cross-layer interaction hybrid method based on Res2Net and Transformer,
called FCIHMRT, is proposed in this paper. According to the characteristics of spatial
information diversity, small objects and inter-class diversity of remote sensing images, an
effective attention mechanism is introduced into the designed model. Meanwhile, multiple
features are fused for classification to enhance feature utilization. The main contributions
of this paper are summarized as follows:

(1) A novel hybrid network is developed to effectively combine the advantages of trans-
former and Res2Net in order to extract numerous features with high-value information
and to increase classification efficiency.

(2) A cross-layer interactive module is proposed to integrate multi-feature information.
This module can fuse the two extraction features of the ViT branch and the Res2Net
branch to enhance the representation ability.

(3) A new interactive attention mechanism is designed for focusing on the deep cor-
relation between the two-path features. The mechanism uses two global pooling
operations to reduce the dimension of the channel. Attention weights are used to
enhance the feature response of valuable feature information.

(4) Training on the three public datasets UC-Merced (UCM), Aerial Image Dataset (AID),
and NWPU-RESISC45 (NWPU) is completed. The results of the experiments show
that the proposed approach outperforms the current advanced CNN techniques.

The remainder of this article is structured as follows. The relevant work is introduced
in Section 2, and the designed algorithm is covered in Section 3. Section 4 illustrates
the experimental investigation and relevant comparisons. In Section 5, the conclusions
are discussed.

2. Related Work
2.1. CNN-Based Methods

A convolutional neural network (CNN) [13] is a special artificial neural network struc-
ture, which has a wide range of applications in image recognition, speech recognition,
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natural language processing, etc. The characteristic of CNNs is that they can automatically
extract the features of input data, so as to realize the efficient classification and recognition
of the input data. Generally, CNNs include a convolutional layer, pooling layer, fully
connected layer, and activation function. The convolutional layer extracts features from
input data through the convolutional operation, which is a mathematical operation that
generates a new feature map by sliding a convolution kernel over the input data and
calculating the dot product of the convolution kernel with a local region of the input data.
The pooling layer is used to reduce the dimensions of the feature map, thus reducing
the amount of computation. The fully connected layer integrates the features extracted
by the convolutional layer and the pooling layer, and it performs nonlinear transforma-
tions through the activation function to output the classification result. The activation
function is used to introduce nonlinear factors so that the neural network can fit complex
nonlinear relationships.

CNN-based methods have been the predominant technique used in scene classification
due to their remarkable performance [14]. The CNN-based methods includes three groups:
improved existing CNNs, transfer learning, and generative adversarial network [15], which
are listed in Table 1 along with the general benefits and limitations of each group. The first
group comprises improved CNN methods. Lu et al. [16] suggested a complete supervised
feature-encoding technique using a CNN to incorporate feature learning and aggregation
for examining semantic labeling data. To minimize the high-dimensional characteristics,
Li et al. [17] presented an enhanced bilinear pooling technique based on a compact bi-
linear CNN framework. CNNs are also coupled with other networks to increase the
precision of scene classification. For the purpose of classifying remote sensing scenes,
Zhang et al. [18] established a hybrid feature learning strategy using a CNN and capsule
networks. Peng et al. [19] presented a multi-output model for classifying scenes using a
graph neural network and CNN with a combined loss using the backpropagation process.
Although the improved CNN methods can perform classification tasks well, it is difficult
to improve their performance further due to the excessive dependence on local spatial
information [20]. The second group comprises transfer learning methods. For instance,
Wang et al. [21] developed two promising architectures for collecting generic features from
pre-trained CNNs for scene categorization. Additionally, it offers a baseline for adapting
pre-trained CNNs for various remote sensing applications. In order to address input feature
disparities between the target and source datasets, Zhao et al. [22] presented a heteroge-
neous methodology for using transferring CNNs in remote-sensing scene classification
tasks. The pre-trained CNN network is utilized as a feature extractor on the chosen target
dataset. Wang et al. [23] developed an adaptive learning technique for transferring CNNs
to determine which important information should be transferred to the scene categoriza-
tion model. The third group of scene classification uses generative adversarial networks
(GANs) [24]. Han et al. [25] presented a scene categorization methodology for producing
high-resolution annotated samples using remote sensing images, and it is based on GAN.
In order to provide remote sensing image samples with label information, Ma et al. [26]
constructed a supervised progressive evolving conditional GAN.

Table 1. CNN-based methods for remote sensing image classification.

Group Benefit Limitation

Improved CNN methods Flexible to model Excessive dependence on local
spatial information

Transfer learning methods Reduce the cost of training Not easy to converge model
parameters

Generative adversarial
network methods Produce high quality images Difficult to achieve training

balance
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2.2. Attention-Based Methods

Attention-based techniques for remote sensing scene classification of high-level fea-
tures are effectively used to learn deeper feature information [27,28], including conven-
tional attention-based and transformer-based methods. Conventional attention-based
methods are usually applied. To concentrate on the useful features, Wang et al. [29], for
instance, built a deformable CNN based on the spatial and channel attention processes. Tian
et al. [30] created a multiscale dense convolutional model with a squeeze-and-excitation
attention mechanism to successfully establish the association between features and enrich
the feature channels with helpful information. To obtain more precise feature information,
Wang et al. [31] suggested using deep convolution neural networks that utilized a channel-
wise attention method. Shen et al. [32] used dual CNNs to extract features and introduced
a spatial attention mechanism into the classification model to avoid irrelevant information.
Transformer-based approaches, which resort to a self-attention mechanism to determine
the link between sequence parts, fall under the second category. With the purpose of en-
hancing the quality of the feature expression, Yu et al. [33] developed an innovative hybrid
capsule-based ViT model that takes advantage of three feature semantics. To enhance the
model learning ability, Zhang et al. [34] constructed an innovative remote sensing image
classification approach based on a CNN and transformer with a multi-head self-attention
layer. Sha et al. [35] created a multi-instance ViT framework for scene recognition by
fusing multiple instance learning with ViT to take advantage of the important local features.
Recently, Wang et al. [36] suggested a new architecture of plug-and-play CNN features
integrated with a hybrid vision transformer by combining the benefits of CNN and ViT.

3. The Proposed Method
3.1. Framework Overview

The presented model of scene classification (FCIHMRT) comprises a processing branch
based on ViT (left side) and a processing branch based on Res2Net (right side) for feature
extraction, as depicted in Figure 1. In the branch based on ViT, the image is first divided
into a number of image blocks, and their corresponding spatial positions are embedded.
ViT encoders are used to process the embedded image blocks. The last feature is output
by the ViT layers with the concat and reshape operations. In the other branch, the process-
ing branch based on Res2Net is first utilized. The four processing blocks with Res2Net
are utilized to extract features from scene images. Thus, ViT and Res2Net features are,
respectively, processed with the convolution and pooling layer in the proposed cross-layer
interaction module. They are also fused into a feature map in the attention module, which
is used to produce the feature representation weights for dual-path features. In addition,
the two-path features are concatenated with the extracted features of the other path in the
cross-layer interaction module before weighting. Finally, the fused feature is fed to the
Softmax classifier for classification. The prediction label of the scene image is output.
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3.2. Feature Extraction of Dual Branches

A structure with dual branches is proposed in order to address the issue of one CNN
being incapable of feature extraction. Here, we build ViT and Res2Net as two efficient
feature extractors.

3.2.1. ViT Branch

A ViT encoder consists of one stack of the same layer, each layer is composed of
two sub-layers, and a multi-head self-attention (MSA) and multi-layer perceptron (MLP)
modules, as displayed in Figure 2. Before the input data goes into each sublayer, layer
normalization (LN) is used for normalization processing. After each sublayer, the obtained
data are fused directly with the inputs using the residual connection. Finally, after L layers
of network coding, the first element of the sequence x0

L is sent into the category header
composed of the MLP so as to predict the category y of the image. The intermediate variable
x′l and the output xl of the l-th layer are expressed as

x′l = MSA(LN(xl−1)) + xl−1, l = 1, 2, . . . , L (1)

xl = MLP(LN (x′l)) + x′l , l = 1, 2, . . . , L (2)

The final output can be obtained using

y = LN(x0
L) (3)
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3.2.2. Res2Net Branch

We chose Res2Net [37] as a feature extractor to capture details and global characteristics
at a finer level of granularity. In the Res2Net network, the feature maps are decomposed
into four groups (pi, i = 1, 2, 3, 4) from the input layer with a 1 × 1 convolution. The model
is shown in Figure 3. The first group p1 is not operated on, and the other groups are
processed with a 3 × 3 convolution operation (κi, i = 2, 3, 4). The third and fourth groups
are added with the last feature map. The above operations can be expressed as follows:

qi =


pi i = 1
κi(pi) i = 2
κi(pi + qi−1) i = 3, 4

(4)
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The feature maps are fused in the channel dimension. Then, the output is obtained
with a 1 × 1 convolution operation. In the branch, Res2Net-50 is used to construct a feature
exactor with four blocks.

3.3. Interactive Attention Mechanism

Considering the complexity of remote sensing images, a novel interactive attention
mechanism is proposed to concentrate on the significant association between the two-path
features and a two-branch fusion technique is utilized to maintain the integrity of the
feature information.

The two features from the two branches of the feature extraction are concatenated,
and they are sent to the global average pooling (GAP) layer and global max pooling (GMP)
layer to produce two feature maps. GAP can focus on background information, and GMP
can focus on texture information. In this block, GAP and GMP are turned into the attention
weights of learning.

yGAP = GAP(concat(y1, y2)) (5)

yGMP = GMP(concat(y1, y2)) (6)

where y1 and y2 represent the feature maps from the ResNet and ViT branches, respectively.
The linear layer with shared weights is used to extract channel attention weights

y = FC(yGAP)⊕ FC(yGMP) (7)

The weight is defined as

wweight = Softmax(FC(y)) (8)

3.4. Cross-Layer Interaction Module

In order to enhance feature utilization, a cross-layer interactive model is designed
to guide the features of the two branches. This module also has two paths: the input of
one path is obtained from the Res2Net branch, and the other is obtained from the ViT
branch. In the first branch, the ViT-extracted features are fed into a convolution layer and
concatenated with the Res2Net-extracted feature map. In the other branch, the Res2Net-
extracted features are fed into a convolution layer and concatenated with the ViT-extracted
feature map. The two path outputs of the cross-layer interaction module are obtained
via element-wise multiplication with the weight wweight, which is calculated using the
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interactive attention mechanism. The feature information of the two paths and the input
feature are fused with the addition operation.

In order to make the network converge faster and better, the activation function uses
the Gaussian error linear unit (GeLU) [38], whose expression is

GeLU(x) = 0.5x
(

1 + tanh
(√

2/π(x + 0.044715x3)
))

(9)

where µ and σ are the mean and standard deviation of the normal distribution, respectively.

4. Experiments and Results

In order to verify the viability of our classification model (FCIHMRT), we performed
extensive experiments and evaluations on three datasets for the categorization of general
scenes. The experimental conditions and these datasets are first introduced. After that, the
performance disparities between FCIHMRT and a number of cutting-edge techniques are
then compared quantitatively.

4.1. Experimental Datasets

The following three widely used datasets are selected in order to test the performance
of FCIHMRT:

(1) UCM [39]: This dataset is compiled by the United States Geological Survey. There are
21 classes of remote sensing scenes, involving airplanes, rivers, beaches, buildings,
etc., and 100 images with a resolution of 0.3 m and a fixed size of 256 × 256 pixels
make up each class. With fewer classes in the UCM data set, the distinctions between
them are more pronounced. In Figure 4, a few samples from the UCM dataset
are displayed.
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Figure 4. Some samples from the UCM dataset.

(2) AID [40]: Sample photos of this sizable dataset were compiled from Google Earth
imagery. There are 30 classes in total, including resorts, bare land, and railroad stations.
With between 220 and 420 images each class, there are 10,000 images total. The pixel
resolution spans from 1 m to 8 m, and the image size is 600 × 600 pixels. Figure 5
displays some samples from the AID dataset.
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Figure 5. Some samples from the AID dataset.

(3) NWPU [41]: This is a sizable dataset that was produced by Northwestern Polytech-
nical University. The NWPU database contains 31,500 images with 256 × 256 pixels.
The collection includes 700 images for each of the 45 classes of remote sensing scenes
with a pixel resolution from 30 m to 0.2 m. Some samples from the NWPU dataset are
shown in Figure 6.
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4.2. Experimental Settings

All experiments were carried out on a computer with an Intel Core i9-10900K processor
and an NVIDIA GeForce RTX 3080 GPU with 12 GB. For the UCM dataset, the training
ratios were set to 80% and 50%, and the remaining portion was used for testing. The
training ratios were set at 50% and 20% for the AID dataset, and the training ratios were set
to 20% and 10% for the NWPU dataset. The batch size was specified as 64, and all images
were resized to 224 × 224. The number of transformer layers (l) was set to 12. In order to
boost the data diversity, some images were transformed during model training via random
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shifting, rotating, and flipping. To ensure more accurate findings, each experiment was run
five times.

4.3. Evaluation Metrics

The two most often used evaluation indicators for image classification tasks are the
overall accuracy (OA) and confusion matrix (CM).

OA was used to measure the performance of FCIHMRT. OA is determined as the
proportion of correctly classified samples out of the total number of samples in the test set.
It reflects the classification performance on the whole data set. The calculation formula is

OA =
S
N
× 100% (10)

where S is the number of correctly classified samples in the test set and N is the total
number of samples in the test set.

A CM presents the error between categories more intuitively in the form of a matrix.
The value in each column of the CM denotes the number of predicted images, and the
value in each row of the CM denotes the number of true images.

4.4. Experimental Results
4.4.1. Results Using UCM

FCIHMRT was compared with some of the latest remote sensing scene classification
algorithms using UCM, as exhibited in Table 2. FCIHMRT outperformed the conventional
scene categorization techniques when the training ratio was 80% or 50%. It can be observed
that, compared with other methods, FCIHMRT had the highest OA of 99.31% and 98.84%,
at training ratios of 80% and 50%, respectively. For instance, when 80% of the images were
used for training, the overall accuracy of the proposed technique was roughly 0.02% greater
than the overall accuracy of the ViT method without the Res2Net blocks. The OA of the
proposed approach outperformed ViT by 0.09% when training with 50% of the images.
In addition, FCIHMRT outperformed GAN by 0.73% and 1.30%. This demonstrates that
FCIHMRT is effective in generally enhancing classification accuracy.

Table 2. Overall accuracy (%) using UCM.

Method 80% Training Ratio (OA) 50% Training Ratio (OA)

GoogLeNet [40] 94.31 ± 0.89 92.70 ± 0.60
VGG-16 [40] 95.21 ± 1.20 94.14 ± 0.69
CRAN [42] 95.75 ± 0.80 94.21 ± 0.75

MobileNet V2 [43] 99.01 ± 0.21 97.88 ± 0.31
SE-MDPMNet [44] 98.95 ± 0.12 98.36 ± 0.14

Two-Stream Fusion [45] 98.02 ± 1.03 96.97 ± 0.75
ViT [4] 99.29 ± 0.34 98.75 ± 0.21

CFDNN [46] 98.62 ± 0.27 97.65 ± 0.18
Inception-v3-CapsNet [18] 99.05 ± 0.24 97.59 ± 0.16

GSSF [47] 99.24 ± 0.47 97.86 ± 0.56
PCNet [48] 99.25 ± 0.37 98.71 ± 0.22
GAN [26] 98.58 ± 0.33 97.54 ± 0.25

Ours 99.31 ± 0.21 98.84 ± 0.26

As shown in Figure 7, the confusion matrix with all 21 classes was also created to
further examine the performance of FCIHMRT with an 80% training ratio. It can be seen that
the accuracy of 19 classes reached 100%. The other two classes also had an accuracy of 95%.
These misclassified images may be relatively similar, and this usually reduces accuracy.
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4.4.2. Results Using AID

Since there are only few samples in the UCM dataset, a larger dataset must be used
to evaluate FCIHMRT. Additional trials were carried out using the massive dataset AID,
which consists of 10,000 images with 30 classes. The experiment was split into two parts,
using 50% of the training samples or 20% of the test samples. Table 3 displays a comparison
of the test results.

Table 3. Overall accuracy (%) using AID.

Method 50% Training Ratio (OA) 20% Training Ratio (OA)

GoogLeNet [40] 86.39 ± 0.55 83.44 ± 0.40
VGG-16 [40] 89.64 ± 0.36 86.59 ± 0.29
CRAN [42] 96.65 ± 0.20 95.24 ± 0.16

MobileNet V2 [43] 95.96 ± 0.27 94.13 ± 0.28
SE-MDPMNet [44] 97.14 ± 0.15 94.68 ± 0.07

Two-Stream Fusion [45] 94.58 ± 0.25 92.32 ± 0.41
ViT [4] 96.88 ± 0.19 95.58 ± 0.18

CFDNN [46] 96.56 ± 0.24 94.56 ± 0.24
Inception-v3-CapsNet [18] 96.32 ± 0.12 93.79 ± 0.13

GSSF [47] 97.65 ± 0.80 95.71 ± 0.22
PCNet [48] 96.76 ± 0.25 95.53 ± 0.16
GAN [26] 96.45 ± 0.19 94.51 ± 0.15

Ours 97.92 ± 0.29 95.82 ± 0.25

Table 3 shows that FCIHMRT produced the greatest outcomes at both 50% and 20%
training rates. For instance, compared with GSSF as an outstanding method, the accuracy
increased by 0.27% when 50% of the samples were used for training. When 20% of the
samples were used for training, the accuracy rate increased by 0.11%. Note that the OA
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of FCIHMRT is much higher than that of the ViT method without the Res2Net blocks. In
addition, the accuracy of FCIHMRT was 1.22% higher than that of PCNet under a training
ratio of 50%. This proves that FCIHMRT is also effective with large-scale datasets.

The CM using AID with all 30 classes under a training ratio of 50% is shown in
Figure 8. It can be observed from the CM that the accuracies of the industrial, park, school,
and square classes were less than 95%, while the remaining classes could be accurately
classified, which also proves the difficulty of this dataset. The suggested strategy could
solve the problem of large intra-class differences and small inter-class differences of remote
sensing images to a certain extent.
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4.4.3. Results Using NWPU

In order to validate the generalization ability of FCIHMRT, NWPU with 45 classes can
be used as a multiclass database. Table 4 compares the classification accuracy of FCIHMRT
with that of other methods using the NWPU dataset. Only a 93.63% accuracy was obtained
using GAN. When the training ratio was 20%, the accuracy was 94.86%, which is higher
than that of the ViT and PCNet models. This further verifies that FCIHMRT can effectively
obtain the deep features of scenes with a stronger expression ability.

Figure 9 reveals that the classification accuracies of all 45 classes in NWPU obtained
using FCIHMRT with a 20% training ratio were higher than 80%. Among them, the
classification accuracy of the golf course and mobile home park classes reached 99%, which
indicates that FCIHMRT has a good classification performance for scenes with a small
feature complexity. Meanwhile, it was demonstrated that the OA of palace scenes was
reduced to 80%, in which some palace scenes were categorized into the church intersection
and island classes, indicating that the classification capacity of FCIHMRT still requires
improvement for similar scenes but in general, it can distinguish different scenes with rich
spatial information.
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Table 4. Overall accuracy (%) using NWPU.

Method 20% Training Ratio (OA) 10% Training Ratio (OA)

GoogleNet [40] 78.48 ± 0.26 76.19 ± 0.38
VGG-16 [40] 79.79 ± 0.15 76.47 ± 0.18
CRAN [42] 94.07 ± 0.08 91.28 ± 0.19

MobileNet V2 [43] 83.26 ± 0.17 80.32 ± 0.16
SE-MDPMNet [44] 94.11 ± 0.03 91.80 ± 0.07

Two-Stream Fusion [45] 83.16 ± 0.18 80.22 ± 0.22
ViT [4] 94.50 ± 0.18 91.17 ± 0.13

CFDNN [46] 93.83 ± 0.09 91.17 ± 0.13
Inception-v3-CapsNet [18] 92.6 ± 0.11 89.03 ± 0.21

GSSF [47] 94.48 ± 0.26 91.98 ± 0.19
PCNet [48] 94.59 ± 0.07 92.64 ± 0.13
GAN [26] 93.63 ± 0.12 91.06 ± 0.11

Ours 94.86 ± 0.21 92.67 ± 0.26
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5. Conclusions

In this paper, a new network model (FCIHMRT) was proposed for remote sensing
scene classification. In the overall network model, the features of Res2Net and ViT are
obtained by using a two-channel structure as the feature extractor. The feature information
extracted from the two branches is fused to enlarge the receptive field and enrich the
scene information of remote sensing features, effectively overcoming the shortcoming of
CNNs using a single fixed-size convolution kernel. The proposed interactive attention
mechanism enhances the model’s focus on the key regions of the image and avoids the
interference caused by redundant background details. By using the cross-layer fusion mod-
ule to fuse multilevel features, a distinguishable and robust fusion feature representation
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can be obtained. Finally, a performance improvement over the current approaches was
demonstrated by training and testing them using three commonly used datasets: UCM,
AID, and NWPU. The results of the experiment demonstrate that FCIHMRT is better suited
to the task of scene classification. However, it should be noted that FCIHMRT can achieve
a high classification accuracy, but it is still limited by increased computation time. In future
work, from the perspective of accelerating network training, we will focus on constructing
efficient and high-precision models, which can be combined with lightweight networks
and data dimension reduction methods.
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