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Abstract: A blind super-resolution network with dual-channel attention is proposed for images
captured by the 0.37 mm diameter sub-millimeter fiberscope. The fiberscope can used in scenarios
where other image acquisition devices cannot be applied based on its flexible, soft, and minimally
invasive characteristics. However, the images have black reticulated noise and only 3000 pixels.
To improve image quality, the Butterworth band-stop filter is used to reduce the frequency of the
reticulated noise. By optimizing the blind super-resolution model, high-quality images can be
reconstructed that do not require a lot of synthetic paired fiberscope image data. Perceptual loss is
utilized as a loss function, and channel and spatial attention mechanisms are introduced to the model
to enhance the high-frequency detail information of the reconstructed image. In the comparative
experiment with other methods, our method showed improvements of 2.25 in peak signal-to-noise
ratio (PSNR) and 0.09 in structural similarity (SSIM) based on objective evaluation metrics. The
learned perceptual image patch similarity (LPIPS) based on learning was reduced by 0.6. Furthermore,
four different methods were used to enhance the resolution of the fiberscope images by a factor of
four. The results of this paper improve the information entropy and Laplace clarity by 0.44 and 2.54,
respectively, compared to the average of other methods. Validation results show that the approach in
this paper is more applicable to sub-millimeter-diameter fiberscopes.

Keywords: sub-millimeter-diameter fiberscope; reticulated-noise reduction; blind super-resolution;
dual-channel attention

1. Introduction

The sub-millimeter-diameter fiberscope is a miniature endoscope that transmits images
through fiber optics and consists of an eyepiece, a cold light source, a fiber-optic bundle,
a CCD, and a probe, as shown in Figure 1a. The light is sent from the cold light source
to the target region through the fiber-optic bundles. Then, the probe focuses the light
and collects optical information. Following this, the fiber optic transports the light signal
to the eyepiece, and the CCD converts the signal into an electrical signal. Finally, the
imaging system transmits the electronic signals to an external imaging device where the
images are processed by filtering, noise reduction, and magnification for the user to observe.
Compared to the traditional endoscope, the sub-millimeter-diameter fiberscope is thinner,
more flexible, softer, more portable, and less invasive, which makes it suitable for narrow
spaces. Based on these features, the sub-millimeter-diameter fiberscope possesses a wide
range of application scenarios in medical and industrial fields [1–3]. For example, it can be
applied to the checking of the digestive tract system. Due to its thinner diameter and softer
material, it can enter the body through small incisions or body cavities to assist in surgical
treatment, reducing patient discomfort, trauma, and recovery time. It may become the
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next generation of minimally invasive surgical endoscopes [4,5]. It is possible to address
medical problems by applying deep learning technology to medical image data with the
advancement of artificial intelligence. By enabling automatic analysis, diagnosis, and
prediction of conditions and improving the quality of medical images, it could ultimately
help doctors with disease diagnosis and analysis [6]. However, the image captured by
the sub-millimeter-diameter has black reticulated noise because each fiber-optic bundle
transmits a signal point of light. The percentage of noise in the image increases as the
diameter of the fiberscope decreases, affecting the image quality and user experience. There
is also a close relationship between the diameter of the fiberscope and the resolution of
the image. The fiber-optic bundle has a fixed diameter, so the thinner fiberscope, the less
fiber is used to capture the image. Thus, the image captured by a sub-millimeter-diameter
fiberscope with a diameter of 0.37 mm has only 3000 pixels. The above disadvantages result
in less detailed information in the captured images.
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Image noise reduction is an important part of improving image quality. Because
spatial filtering works directly on the pixels in the image, it is less complex and is often
used to deal with image noise, such as median filtering, mean filtering, and Gaussian
filtering [7–10]. However, the resulting images may be blurred due to kernel effects. Fre-
quency domain filtering is the process that transforms the image into the Fourier domain.
Since the noise in endoscopic images is regular, the range of noise in the frequency do-
main can be reduced [11,12]. Image resolution can be improved at a lower cost than
optimizing the fiber-optic bundles manufacturing process by using image post-processing
methods. Interpolation-based methods, such as bilinear interpolation and bicubic interpo-
lation [13,14], simplify the image super-resolution (SR) [15] problem and lead to blurring
and distortion. With the development of neural networks, many excellent algorithms have
made significant breakthroughs in the field of image SR, such as SRCNN, ESPCN, and
SRGAN [16–18]. These network models achieve SR by finding the mapping relationship be-
tween lots of low-resolution (LR) images and high-resolution (HR) images. However, these
deep learning methods are unsuitable for processing images captured by sub-millimeter-
diameter fiberscopes with complex blur kernels. Moreover, the HR images in the training
data were processed using the ground truth kernel, making the model inapplicable to the
images acquired in real scenarios. To address the above problems in practical scenes, many
blind super-resolution methods have been proposed [19–21]. These methods are trained
for estimating blur kernels and recovering super-resolution images. The blur kernel was
obtained using only a limited number of LR images, resulting in unsatisfactory results
of the generated SR images. Recently, an excellent blind super-resolution network [22]
has been proposed that uses alternative restorer and estimator modules to obtain more
realistic blur kernels and improve the ability of the model to reconstruct the SR image.
Although the performance of this network is good, it used mean absolute deviation as the
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loss function in the training process, which may lead to over-enhancement of the image,
introduction of noise with inappropriate details, and ultimately, an unsmooth reconstructed
image. Moreover, only the channel attention mechanism is used in the training process,
ignoring the information of the spatial feature map.

This research sequentially employs a Butterworth band-stop filter and an optimized
blind super-resolution network to address the reticulated noise and low-resolution issues
discussed above. The captured fiberscope images were Fourier transformed, and the
Butterworth band-stop filter reduced its reticulated noise. Then, the filtered spectrogram is
inverted and input into the blind super-resolution model for processing. We use perceptual
loss based on mean square error as the loss function to make the reconstructed image more
detailed and natural. Spatial and channel attention mechanisms are incorporated into the
network to make the model pay more attention to more significant areas and channels in
the image while reducing redundancy and noise. The detailed perception of the model is
improved for better recovery and enhancement of details and high-frequency information.
By applying the above method to fiberscope images, the resolution can be improved while
removing reticulated noise. Finally, this paper also compares objective evaluation metrics
of different methods applied to public datasets and referenced and unreferenced evaluation
metrics of practical image reconstruction results. In summary, the main contributions of
our work are as follows:

1. The acquired sub-millimeter-diameter fiberscope images were Fourier transformed,
and the reticulated noise was reduced from the images by employing a Butterworth
band-stop filter in the frequency domain.

2. To prevent the resulting image from becoming smooth and to preserve more details,
the perceptual loss based on image features is employed as a loss function throughout
the model training phase. In addition, the generated image gets more realistic by
concentrating on the perceived quality of the image.

3. The generalization and robustness of the model are enhanced by adding spatial and
channel attention mechanisms. In this way, the model’s attention is drawn more to
the image’s more crucial regions and channel characteristics when reconstructing the
image.

2. Experimental Principle and Method
2.1. Butterworth Band-Stop Filter

The sub-millimeter fiberscope with a diameter of 0.37 mm shown in Figure 1b. Due to
the special fabrication process of the fiberscope, each fiber transmits light independently,
and the information transmitted by all the fibers is combined to form a complete image. So,
there is reticulated noise in the images captured by the sub-millimeter-diameter fiberscope.

The reticulated noise appears as a regular texture in the image and degrades the image
quality, as shown in the Figure 2 original (ORI) images. Reticulated noise can be reduced
by post-processing, such as applying spatial filters and frequency domain filters. Spatial
filtering makes the image blurrier and loses high-frequency information due to the size
of the kernel. Therefore, a more appropriate Butterworth band-stop filter [23] is used to
reduce the noise at specific frequencies. The formula is as follows Equation (1):

H(u, v) =
1

1 +
[

D(u,v)W
D2(u,v)−C0

2

] (1)

The C0 denotes the center of the frequency band, W is the bandwidth, and D(u, v)
represents the distance from the mid-point (u, v) in the frequency to the center of the
band-stop function.

Figure 2 shows three images captured by the fiberscope for the reticulated-noise reduc-
tion process. The original images were first Fourier transformed into the frequency domain.
From the Fourier-transformed images in Figure 2, it can be observed that the frequency
range of the reticulated noise is represented as a bright circle. Then, the Butterworth band-
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stop filter is used to process the spectrum images, as shown in Figure 2 (Filter). Finally,
the filtered result is inverse transformed to the result images shown in Figure 2. From the
result, it can be seen that there is no apparent reticulated noise in the image.
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2.2. Blind Super-Resolution Network with Dual-Channel Attention

The sub-millimeter fiberscope with a diameter of 0.37 mm used in this paper captured
images of only 3000 pixels. Since the diameter of the fiber-optic bundle is fixed, the number
of fiber-optic bundles decreases as the diameter of the fiberscope becomes thinner, which
reduces the image resolution. It is possible to enhance the resolution of the captured images
by upgrading the production process of fiber-optic bundles, but the cost is expensive.
Otherwise, increasing the number of fiber-optic bundles can also improve image resolution,
which will cause the sub-millimeter-diameter fiberscope to lose its minimally invasive
character. Image post-processing is less expensive than upgrading the fiberscope hardware.
With the advancement of deep learning, it is now possible to recover more details from LR
images using an image super-resolution method, boosting the visual impact and informa-
tion. When signals are transmitted through optical fibers, part of the signal is lost due to
the thin diameter of the fiber, resulting in a blurred image. The pixels of the image decrease
as the number of fiber bundles is reduced, and there is also reticulated noise in the image.
Therefore, the degradation process of a sub-millimeter-diameter fiberscope image can be
expressed by the following equation [24]:

ILR = (IHR ⊗ k) ↓s +n (2)

The HR image IHR is convolved ⊗ with the blur kernel k to obtain the blurred image,
the downsampling ↓s is performed to reduce the image resolution, and the reticulated noise
n is added to obtain the sub-millimeter-diameter fiberscope LR image ILR.

Blind super-resolution is based on LR images for estimation and reconstruction [20].
It can learn feature information from the LR image to reconstruct without the original HR
image. According to Formula (2), it is known that the super-resolution training model is the
process of solving the SR image ISR, k, and n. The noise n in the image can be reduced by
the denoising algorithm [25]. This paper uses the Butterworth band-stop filter to reduce the
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reticulated noise. Thus, super-resolution needs to solve for ISR and k; its solution process
can be optimized using the following formula:

arg min
k,x

||ILR − (ISR ⊗ k) ↓s ||22 + φ(x) (3)

||ILR − (ISR ⊗ k) ↓s ||22 is the loss between the SR and LR images, and φ(x) is the prior
information for the image. Most blind super-resolution algorithms divide this process into
two steps as follows:{

k = M(ILR)
IHR = arg min

x
||ILR − (ISR ⊗ k) ↓s ||22 + φ(x) (4)

where M(ILR) denotes the function of the SR image to estimate k. The second formula is
solved using a non-blind super-resolution method. This solution process has disadvantages:
It requires the training of two or even more models. The blur kernel can only use the
information of the LR image and cannot effectively use the information of the SR image,
which makes it difficult to solve the correct k in the process’ actual application. Furthermore,
the model training process uses the ground truth kernel, but the testing process can only
use the predicted blur kernel. The difference between the two blur kernels results in
unsatisfactory performance.

In this paper, the above problems are solved by a blind super-resolution network with
dual-channel attention [22], as shown in Figure 3. The Restorer and Estimator modules
are used to efficiently utilize the SR image and the blur kernel to obtain a better super-
resolution model. The initial blur kernel is set with the center as one and all other positions
as zero. Then, the dimensionality of the kernel is reshaped, and the feature information is
extracted using principal component analysis (PCA). A pre-trained neural network is used
to calculate the perceptual loss, which can better retain the structural details and deeper
features of the picture.
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The Estimator and Restorer modules have disparate inputs; their structures are shown
in Figure 4a,b. During the training of the model, the Estimator and Restorer are fed LR
images as a primary requirement. Borrowing the concept of residual networks [26], the
inputs of each module should be correlated with its outputs. If the training process of a
module focuses only on the LR image, the result will be constant in each iteration. Therefore,
the Restorer takes the blur kernel output from the Estimator as input, while the Estimator
module uses the SR image output from the Restorer as input. The input LR image is
known and constant, but the other two inputs are variable. Thus, the model obtained
through this alternative training will be more suited to achieving image super-resolution
for the fiberscope with a sub-millimeter diameter. The structure of the conditional residual
module is shown in Figure 4c, which consists of two 3 × 3 convolutions and a dual-channel
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attention layer. The residual module with an attention mechanism is given in Equation
(5), where R(.) is the residual mapping function, Concat(.) denotes the splicing of the
input conditions, and fbasic and fcond represent the input LR image condition and another
condition, respectively.

fout = R(Concat([ fbasic, fcond])) + fbasic (5)

The Restorer extracts the LR image features with convolutional kernels of size 3 and
stretches the blur kernel to match the spatial dimension of the extracted features. In the next
step, the kernel maps and extracted LR image features are fed into the ACRB, and the image
is upscaled to a defined magnification using Pixel Shuffle [27]. The Estimator module then
takes the down sampled SR image and the LR image characteristics as input and processes
them through the ACRB module with spatial and channel attention techniques. Finally, the
features are squeezed through global average pooling to generate the blur kernel.
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The use of the inverse Fourier transform in the image noise reduction process leads to
the loss of high-frequency information in the image. Therefore, it is necessary for the blind
super-resolution network to focus more on reconstructing the high-frequency details in the
image. The attention mechanism emulates human visual perception by allocating finite
resources to the relevant components while filtering out irrelevant data. The quality of SR
images can be enhanced by the ACRB module’s addition of spatial and channel attention
mechanisms. The spatial attention mechanism makes the model pay more attention to
specific regions of the image and better reconstruct detailed information such as texture. The
channel attention assigning weights to the channel improves the model’s understanding of
the importance of different channels in the image, such as brightness and contrast. This
paper uses the CBAM [28] dual-channel attention mechanism that combines channel and
spatial information, as shown in Figure 5a.

Considering that more attention needs to be paid to high-frequency information in
fiberscope images, the pooling in the spatial attention model is optimized for adaptive
pooling. Instead of needing to predetermine the pooling size, adaptive pooling is flexible,
enabling the size and shape of the pooling window to be selected dynamically in accordance
with the volume of the input data. In order to improve the model’s ability to recognize
local and global characteristics, it can also be weighted and averaged according to the
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significance of features at various places. The optimized spatial attention model enables
the blind super-resolution model to better reconstruct the detailed information in the image
and improve the robustness of the model.
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The Channel Attention Module [29] can be divided into two parts, as shown in
Figure 5b. The input feature F is first subjected to average pooling (AvgPool) and maximum
pooling (MaxPool) to aggregate the spatial information of the feature mapping. The pooled
results are processed through a multi-layer perceptron (MLP) with two layers of neural
networks and then summed based on element-wise operations. Finally, a sigmoid function
is applied to obtain the weight values of each channel (0–1). By adding weights to the
different channels, it can selectively improve or suppress the features of various channels
while keeping more valuable information and eliminating useless information. In this way,
it is possible to recover a high-resolution image with improved quality while also reducing
undesired effects like noise and artifacts in the SR image. The processing can be represented
by Equation (7).

M(F)c = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (6)

The Spatial Attention Module [29] shown in Figure 5c improves the effectiveness of
the model by adaptively learning weights to determine the importance of each location
in the input image, allowing the network to focus on the most relevant and vital regions.
Adaptive maximum pooling and adaptive average pooling are first performed on the
channels of the input feature map F. The two results obtained are stacked based on the
channels. A kernel f with size 7 × 7 is used for convolution to reduce the number of
channels to 1. Finally, the sigmoid activation function is performed to obtain the weights of
each feature point of the input feature layer. The equation is as follows:

M(F)s = σ( f 7x7([AdaptiveAvgPool(F); AdaptiveMaxPool(F)])) (7)

3. Experimental Results and Discussion
3.1. Dataset and Parameter Settings

We use the public dataset DIV2K [30], which contains 2000 high-resolution images of
buildings, natural landscapes, etc. This dataset is commonly used to train and evaluate
super-resolution algorithms. There are also two datasets of human gastrointestinal condi-
tions collected using endoscopes. One is a complete dataset of 600 endoscope images from
CVC labs [31], and the other is the Kvasir-SEG dataset of gastrointestinal polyp images [32].



Electronics 2023, 12, 4352 8 of 12

Both sets of data were manually annotated by expert gastroenterologists. To verify the
validity of the methods in this paper, we tested the different methods using the above
dataset. Additionally, we evaluated the experimental results of images captured with a
0.37 mm diameter sub-millimeter fiberscope utilizing several super-resolution methods.
Finally, by comparing the experimental results with and without parametric assessment
criteria, the approach adopted in this study is demonstrated to be efficient and visually
superior.

During the training process, the batch size was set to 32, the number of epochs was
300, and iterations = 300; Adam with β1 = 0.9 and β2 = 0.99 was used as an optimizer, and
the learning rate was set to 0.0001. The dataset with 80% of each category was labeled as
training and 20% as testing. All models were trained on an NVIDIA 3060 GPU with 12 GB
memory.

3.2. Public Dataset Experimental Results

The models proposed in this work, SRCNN, ESPCN, and SRGAN, are trained using
the same dataset and test set. The peak signal-to-noise ratio (PSNR) [33] and structural
similarity (SSIM) [34] metrics are calculated for the different methods applied to the public
datasets to evaluate the algorithm. The PSNR is based on the SR and HR image mean
squared error (MSE) and the maximum value of the pixel dynamic range (MAX). A greater
number indicates better image quality and less image distortion. The SSIM calculates the
degree of similarity between two images based on their brightness l(x, y), contrast c(x, y),
and structure s(x, y). The value increases with the degree of similarity. The formulas of
evaluation metrics are as follows: PSNR = 10 · log10

(
MAX2

I
MSE

)
= 20 · log10

(
MAXI√

MSE

)
SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ

(8)

Table 1 displays the results of comparing the PSNR and SSIM values of several super-
resolution methods applied to various public datasets. According to the results, deep
learning-based approaches are superior to Bicubic. Compared to the other approaches, the
method proposed in this study performs better on various datasets.

Table 1. PSNR/SSIM comparison of different super-resolution methods applied to public datasets.

Method/Datasets Set5 Set14 BSD100 Kvasir-Sessile

Bicubic 26.75/0.85 24.76/0.78 24.69/0.77 23.78/0.74
SRCNN 27.95/0.89 26.13/0.62 25.38/0.61 24.61/0.59
ESPCN 28.67/0.77 27.92/0.74 26.87/0.74 26.13/0.65
SRGAN 30.15/0.81 28.14/0.72 26.98/0.76 26.34/0.72

This paper 31.92/0.93 28.47/0.77 27.53/0.81 27.36/0.79

In addition to the above two classical image evaluation metrics, the learned perceptual
image patch similarity (LPIPS) [35] of each model is also compared. Using the VGG
model [36] to extract the deep feature information of the images, the feature differences
are computed to measure the degree of similarity between the images, simulating the
perception of human vision. The specific calculation process is shown in Formula (9);
the images are input to the network, and after extracting each layer of activation and
normalization by the VGG network, we calculate the mean squared error between the
feature vectors of each layer. Finally, the similarity d is gained by calculating the average of
the errors of all the layers. The lower the similarity, the larger the LPIPS output. The results
of comparing the effect of various networks on different datasets are shown in Table 2.

d(x0, x1) = ∑
l

1
HlWl

∑
h,w
‖ wl �

(
ŷl

0hw − ŷl
1hw

)
‖2

2 (9)
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Table 2. LPIPS comparison between the proposed method and others.

Method/Datasets Set5 Set14 BSD100 Kvasir-Sessile

Bicubic 0.27 0.30 0.32 0.35
SRCNN 0.25 0.31 0.29 0.31
ESPCN 0.24 0.26 0.30 0.32
SRGAN 0.23 0.25 0.28 0.30

This paper 0.19 0.22 0.23 0.25

3.3. Real Image Experimental Results

Tables 1 and 2 demonstrate the superiority of the method proposed in this paper by
comparing the objective evaluation metrics of different super-resolution methods applied
to public datasets. However, these objective evaluation metrics lack subjectivity and are
different from the perception of the human eye. Therefore, we apply these methods to
enhance the resolution of images by a factor of four; the results are given in Figure 6.
Result comparisons based on the clarity of the Laplace operator [37] and the information
entropy [38] are shown in Table 3. The process of calculating the image clarity based
on the Laplace operator is shown in Equation (10), where L is the Laplace operator, and
G(i, j) denotes the result of convolution of the pixel at the coordinates (i, j) in the image
with L. The clarity f is obtained after calculation. The formula of image information
entropy is shown in Equation (11); (i, j) denotes the pixel value of the image and the spatial
feature quantity of the grayscale distribution, and N denotes the size of the image. By
calculating the information entropy, it can reflect the grayscale information of the pixel
position in the image and the comprehensive feature of the grayscale distribution in the
pixel neighborhood. 

L = 1
6

 0 −1 0
−1 4 −1
0 −1 0


f = ∑i ∑j [G(i, j)]2

(10)


Pij = f (i, j)/N2

H =
255
∑

i=0
Pi,j log(Pi,j)

(11)

Super-resolution reconstruction of the filtered image shows that Bicubic just changes
the resolution of the image; it does not improve the clarity of the image, and the information
entropy is lower. Although SRCNN and SRGAN’s Laplace-based values of clarity and
information entropy do not improve much compared to Bicubic, the processed image re-
mains blurry and lacks sufficient sharpening of edges. The Laplace clarity and information
entropy of the comparison results are improved by 2.54 and 0.44, respectively, compared
with the mean values of other methods, which proves that the reconstructed image by this
paper’s method is clearer and more informative and the intuition of human eyes is better.
The above reference-free image evaluation and direct observation demonstrate that the
method proposed in this paper is more suitable for a sub-millimeter-diameter fiberscope
with a diameter of 0.37 mm.

Table 3. Laplace clarity/information entropy comparison between the proposed method and others.

Method/Image Image1 Image2 Image3

Bicubic 2.75/4.19 2.32/3.83 7.32/3.58

SRCNN 2.68/4.17 2.46/3.84 7.36/3.95

SRGAN 2.69/4.20 3.22/3.90 7.39/3.95

This paper 3.06/4.23 3.96/3.90 13.34/4.23
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3.4. Speed of Real Image Inference

In order to comprehensively evaluate different methods, we tested the average speed
of image reconstruction using different methods on the same platform. We used images
captured by a sub-millimeter fiberscope as test data, and all methods were tested on a
computer with an NVIDIA Quadro T2000 graphics card. The Bicubic requires an average
of 1.25 s to reconstruct an image. Since the computational complexity of SRCNN is higher
than Bicubic, its speed is 3.28 s per image. ESPCN is faster than SRCNN with 2.33 s due
to its sub-pixel convolutional layer to achieve upsampling and simpler network design.
SRGAN is the slowest, taking an average of 4.86 s per image. The speed of the method
in this paper is 1.84 s per image; the speed is slower than Bicubic, but the quality of the
generated image is better than other methods. Through the above experiments, it can
be known that the method used in this work was not only better than other methods in
reconstructing the quality of the image, but also the speed is only slower than Bicubic.

4. Discussion

In this paper, we investigated the effectiveness of the blind super-resolution network
with dual-channel attention on images captured by a sub-millimeter-diameter fiberscope.
The fiberscope used in this paper has a diameter of only 0.37 mm, which limits the resolution
of the captured image to 3000 pixels. Additionally, the image is affected by reticulated
noise due to the independent transmission of information through the fiber-optic bundles.
To reduce the reticulated noise effectively, the Butterworth band-stop filter was used to
reduce noise within a specific frequency band. To make the image more in accord with the
human visual perception system, we optimized the perceptual loss function to measure
the difference between HR and SR images. Meanwhile, channel and spatial attention
mechanisms are introduced into the network, targeting to improve the ability to reconstruct
local details of SR images and enable the network to learn richer feature information.
Experimental results on public datasets indicate that the PSNR and SSIM of our method
outperform others. The LPIPS value of our approach is 0.06 lower than other methods.
To validate that the proposed method is more applicable to the images acquired by a
sub-millimeter-diameter fiberscope, the resolution of the images is increased by four times
using different methods. Compared to the average of other methods, our method shows
improvements of 0.44 in information entropy and 2.54 in Laplace function clarity.
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5. Conclusions

This work proposed an optimized blind super-resolution network to improve the
resolution of images captured by a fiberscope with a diameter of 0.37 mm. Specifically, a
Butterworth band-stop filter was used to remove the reticulated noise from the image. The
loss function in the network was then optimized to make the reconstructed image clearer
and improve the visual perception. A dual-channel attention mechanism was applied to the
network to improve image detail and model generalization. It proved that the optimized
blind super-resolution network proposed in this paper has the ability to reconstruct better
quality images by comparing the parametric and non-parametric evaluation metrics for
ESPCN, SRCNN, SRGAN, and Bicubic on endoscope and fiberscope images. In the future,
we will simplify the complexity of the model to improve the speed of image generation
and enable its use in real-time scenes while maintaining image quality. Additionally, the
generalization ability of the model will be improved to be applied to a wide range of
medical images.
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