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Abstract: Energy prediction plays a significant role in energy-harvesting wireless sensors (EHWS),
as it helps wireless sensors regulate their duty cycles, achieve energy neutrality, and extend their
lifespan. To explore and analyze advanced technologies and methods regarding energy prediction for
EHWS, this study identifies future research directions and addresses the challenges faced based on
the current research status, assisting with future literature research. This scholarly inquiry delineates
future research prospects and addresses prevailing challenges within the context of the extant research
landscape, thereby facilitating prospective scholarly endeavors. This study employed the systematic
mapping study (SMS) approach to screen and further investigate the relevant literature. After
searching and screening for papers from the ACM, IEEE Xplore, and Web of Science (WOS) databases
from January 2007 to December 2022, 98 papers met the requirements of this study. Subsequently, the
SMS was conducted for five research questions. The results showed that the solution proposal type
category had the largest proportion among all research types, accounting for 58% of the total number,
indicating that the research focusing on this field is placed on improving the existing methods or
proposing new ones. Additionally, based on the SMS analysis, this study provides a systematic review
of the technical utilization and improvement approaches, as well as the strengths and limitations of the
selected prediction methods. Furthermore, by considering the current research landscape, this paper
identifies the existing challenges and suggests future research directions, thereby offering valuable
insights to researchers for making informed decisions regarding their chosen paths. The significance
of this study lies in its contribution to driving advancements in the field of energy-harvesting wireless
sensor networks. The importance of this study is underscored by its contribution to advancing
the domain of energy-harvesting wireless sensor networks, thereby serving as a touchstone for
forthcoming researchers in this specialized field.

Keywords: wireless sensor; energy harvesting; energy prediction; SMS

1. Introduction

In recent years, wireless sensor networks have been widely used in fields such as
biomedicine [1], environmental monitoring [2], and the military [3]. As the fundamental
building blocks of wireless sensor networks, wireless sensors are primarily responsible
for tasks such as data collection, processing, and transmission. Wireless sensors typically
use batteries as a power supply, but many systems require long uninterrupted operation,
and the limited capacity of batteries severely restricts the performance of the system. Once
the battery is depleted, the sensor ceases to function, necessitating battery replacement.
However, a substantial number of wireless sensor nodes are deployed in harsh or inaccessi-
ble environments, making battery replacement costly or even infeasible. To address this
challenge, a method has been proposed to supplement or even replace the battery: energy
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harvesting from the environment. Energy-harvesting technology enables sensor nodes
to acquire energy from the surrounding environment, such as solar, wind, thermal, and
vibrational energy, and convert it into electrical energy. This enables the sensor nodes to
operate continuously without the need for battery replacement, thereby avoiding node fail-
ure. The wireless sensor nodes powered by energy-harvesting techniques will be referred
to as energy-harvesting wireless sensors (EHWS) in this paper.

The harvested environmental energy exhibits non-linear dynamic variations over time,
leading to situations of energy waste or inadequacy in EHWS. To ensure sustainable sensor
operation, the ideal scenario is for the energy harvested by the energy-harvesting unit
to consistently match the energy consumed by the energy consumption unit, achieving
energy-neutral operation (ENO) [4]. However, in practical situations, the energy harvested
by the energy-harvesting unit may surpass or fall short of the energy consumed by the
energy-consumption unit. Therefore, accurate energy prediction is crucial for maintaining
the energy-neutral state of EHWS.

Energy-harvesting wireless sensor networks have found numerous application scenar-
ios, and researchers have extended their investigations in various directions. In [5], this
study proposes a novel opportunistic data collection mechanism by combining software-
defined mobile aggregation and EHWS (energy-harvesting wireless sensor) networks. The
research aims to utilize SDMS (software-defined mobile sensor) and WSN (wireless sensor
network) for event monitoring in smart grids, to achieve superior energy management.
Simulation experiments conducted using the EstiNet 9.0 network simulation tool indicate
that, compared to existing research, the designed approach significantly improves data
transmission efficiency and reduces data packet corruption, memory overflow, latency,
and energy consumption, thus extending the network’s lifespan. In [6], an algorithm for
cluster head (CH) repositioning is introduced based on the assumption of selfish clusters to
prolong the lifetime of wireless sensor networks. By combining mobile and solar-powered
cluster heads with energy harvesting, the objective is to reduce the overall energy con-
sumption in the network and extend its lifespan. The algorithm repositions the CHs to
their centroids in each round based on the selfish cluster assumption. Simulation results
demonstrate the algorithm’s advantages in extending network lifespan and stabilizing its
performance. In [7], an opportunistic data collection mechanism that combines energy
harvesting with wireless sensor networks is presented. By integrating software-defined
mobile aggregation, wireless sensor networks, and energy harvesting, the research aims to
monitor events in smart grids to achieve efficient energy management. Through simulation
experiments, the study’s results show significant improvements compared to existing re-
search in data transmission efficiency, data packet integrity, memory usage, latency, and
energy consumption, ultimately extending the network’s lifespan.

To gain a deep understanding of the current research status and the latest develop-
ments in the research field and provide the theoretical support required by subsequent
researchers, a literature review method needs to be adopted to conduct a thorough and
effective summary of the field. Currently, researchers have proposed some convenient
and effective literature review methods, including systematic literature review (SLR) [8],
systematic mapping study (SMS) [9], and systematic review (SR) [10]. An SMS is a method
for categorizing and summarizing the literature in a specific thematic area. It can provide a
comprehensive and objective perspective on the thematic area, help identify research trends,
research gaps, and future research directions, and provide guidance for subsequent SLR or
other research. The classification results are usually processed graphically and can provide
a visual representation of the results. Given the advantages of the SMS method, this study
opted to employ it for conducting a comprehensive review of the research domain. This
approach enables a comprehensive understanding of the current state and trends within
the field, providing valuable guidance and insights for subsequent research endeavors.

In contrast to conventional literature review methods, which may lack systematic
filtering mechanisms, relying solely on individual reading and judgment for the selection
of literature, there is the potential for these approaches to introduce bias or omit critical
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scholarly works [11–14]. The systematic literature review (SLR) method, denoted as SMS,
adheres to a structured process to ensure that the reviewed literature maintains a high
degree of relevance and aligns with the thematic requirements. Initially, the SMS method
hinges upon the formulation of key search terms, specifically designed to explore litera-
ture pertinent to a particular research domain. By employing these key search terms, the
SMS method conducts searches within selected literature databases, retrieving potential
literature resources closely related to the research domain. Building upon the retrieved
articles, the SMS method engages in a sequence of rigorous filtration and analysis proce-
dures. These processes may involve the extraction of essential bibliographic data, including
publication year, authorship, and keywords, for further research and review purposes.
The systematic workflow and key term-based retrieval in the SMS method contribute to
enhancing the accuracy and comprehensiveness of the literature review. In comparison to
methods relying on individual reading and subjective judgment, the SMS method offers
heightened credibility within the realm of academic research.

1.1. Main Contributions

The main contributions are as follows: This paper uses an SMS to study energy-
prediction methods for EHWS, identify the research evidence on this topic, and present
quantitative results. This study is carried out to answer five different research questions
on energy prediction. Through a brief analysis of the literature, the current research status
within the field is extensively discussed, along with the challenges currently faced and
future research directions. This provides researchers with important guidance and insights,
and this work provides researchers with a research overview of the practice in this field
over the past 17 years.

This review aims to categorize and organize the literature in the field of EHWS energy
prediction, to provide researchers with a comprehensive overview of this domain. This
will enable them to quickly identify research hotspots, guide their research directions, and
assist them in defining the research focal points and future development trends in the field
of energy-harvesting wireless sensor networks.

1.2. Organization

The rest of the paper is organized as follows: Section 2 describes the SMS. Section 3
presents the research results and answers the research questions. Data analysis and visual-
ization are presented in Section 4, and in Section 5, this study analyzes and describes the
current state of the research on some prediction methods. Section 6 analyzes the challenges
and prospects in this field. Finally, Section 7 provides a summary.

2. System Mapping Process

This section provides an overview of the systematic mapping process employed in the
review of energy-prediction methods for EHWS. The process, as shown in Figure 1 [15],
consists of the following five steps: (1) identifying the research questions to determine the
scope of literature search; (2) conducting preliminary searches to identify all relevant papers;
(3) filtering the identified papers based on relevance to the research area; (4) reading the
selected papers and proposing a corresponding classification scheme; and (5) categorizing
all papers according to the classification scheme and presenting the analysis results of each
category through data visualization in the form of a map. Each step generates a result, and
the outcome is a system map. Through the systematic mapping process, this study classifies
and synthesizes various energy-prediction methods, thereby establishing a comprehensive
and structured knowledge framework.
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Figure 1. The steps of a systematic mapping study.

2.1. Research Problems

Based on SMS, the overall goal of this study is to identify the types of research,
energy types, prediction methods, tools, methods, and publication types related to energy-
prediction algorithms in EHWS since 2007. The following is a detailed description of the
issues of concern:

RQ1: What types of research have been conducted on EHWS since 2007?
This study will use an SMS to determine the classification and the popular research

trends in the field of energy prediction algorithms for EHWS.
RQ2: What are the types of predicted energy?
This study will classify the selected papers based on the predicted energy types and

perform a data analysis based on the actual classification results.
RQ3: What types of prediction methods are used in EHWS energy-prediction algorithms?
In related research issues, many researchers have adopted different types of prediction

methods. The focus of this study is to determine the common approaches used by most
researchers in the related field.

RQ4: How many tool papers and method papers are proposed in the research?
Tool papers and method papers are important publication types in the scientific

research field. The goal of this study is to identify those papers based on tools and methods
that can be used in future studies.

RQ5: How were the papers published?
This study focuses on the publishers, the publication year of the papers, and the types

of publications.

2.2. Research Search and Screening

During the period from January 2007 to December 2022, a comprehensive search was
conducted in the IEEE, ACM, and WOS databases using the keyword combination “(Energy
harvesting) AND (Wireless sensor) AND (Prediction or Forecast) AND (application OR
tool OR method)”. This search yielded a total of 5862 relevant research papers. Subse-
quently, a selection process was carried out based on the inclusion and exclusion criteria
outlined in Table 1. Based on the SMS standards and the practical context of EHWS energy
prediction, this study has formulated three inclusion criteria to ensure the selection of the
literature that aligns with the focus of this research. These three criteria are as follows:
(1) The literature must provide novel theoretical approaches for EHWS energy prediction.
(2) The literature must enhance existing methods in the field of EHWS energy prediction.
(3) The literature must validate and evaluate the methods already proposed in the EHWS
energy-prediction domain.

Table 1. Inclusion and Exclusion criteria.

Inclusion Criteria Exclusion Criteria

(1) The paper provides new theoretical methods.
(2) The paper improves methods for the EHWS
energy-prediction field.
(3) The paper verifies and evaluates the methods used in the
research field.

(1) The paper is not in English.
(2) The paper is a poster or book.
(3) The search pertains to a patent.
(4) The paper only introduces the EHWS system.
(5) The prediction algorithm is not applied to EHWS.
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Simultaneously, to exclude irrelevant literature that might not be pertinent to the study,
this research has established five exclusion criteria, as follows: (1) The literature must be in
English since this study is exclusively concerned with English-language literature. (2) The
literature must not be in the form of posters or books; only conference or journal papers
are eligible. (3) The literature must not be patented. (4) The literature must encompass
an introduction to EHWS systems and must utilize energy-prediction methods. (5) The
prediction methods discussed in the literature must have been applied to EHWS. These
criteria will ensure the quality and relevance of the selected literature.

Initially, the first round of screening involved reading the titles and abstracts to
determine the relevance of each paper to the research topic. As a result, 125 papers were
identified for further consideration. These selected papers underwent a second round of
screening, involving a thorough examination of the full text, resulting in the retention of
78 papers. Furthermore, the snowball method [16] was employed to supplement the second
round of screening, leading to the discovery of an additional 20 papers. Through a series of
rigorous screening stages, a final set of 98 papers was ultimately chosen as the focal point
of this study. The specific steps of the selection process are illustrated in Figure 2.
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3. Research Classification

After screening the papers, this study classified the studies according to the abstracts
and keywords of the relevant papers. Following the classification guidelines provided by
Peterson et al. [17], this paper divided the studies into five categories to address different
research questions.

3.1. Classification of Research Types

This study classified the selected papers according to the paper classification frame-
work proposed by Wieringa et al. [18]. According to this classification framework, re-
search types (RT) can be divided into six categories: solution proposal papers, valida-
tion research papers, experience papers, evaluation research papers, opinion papers, and
philosophical papers.

Solution proposal papers represent a type of research that improves or develops
new technologies based on existing solutions. Validation research papers do not require
the design of experiments, analysis processes, or a discussion of the results regarding a
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laboratory environment or practice. Experience papers provide a detailed description of
personal experiences with relevant technologies, tools, or methods. Evaluation research
papers aim to evaluate the process and final results of research work in practice. Opinion
papers reflect the authors’ personal evaluation opinions on technologies, experiments,
tools, or methods in a research field. Finally, philosophical papers discuss new theoretical
systems or new methods of demonstrating existing things.

3.2. Classification of Energy Types

This study classified energy types according to different characteristics, placing these
into five categories: solar energy, wind energy, vibration energy, heat energy, and radio
frequency (RF). The characteristics of each energy type are plotted in Table 2.

Table 2. Different types of energy and characteristics.

Energy Types Characteristics

Solar energy Renewable, Widely distributed, Non-polluting, Harvestable.
Wind energy Accessible, Emission-free, Uncertain of change, Adaptable.

Vibration energy Diverse vibration sources, Capture of low-frequency vibration, Power
transfer, Vibration conversion

Heat energy Temperature difference drive, Heat conduction, Heat energy conversion.

Radiant energy Electromagnetic wave propagation, Wide spectrum range, No media
transmission

3.3. Classification of Prediction Methods

According to the prediction methods (PM) and characteristics used in the selected
papers, this study divided them into the following three categories, and their respective
characteristics are presented in Table 3:

Table 3. Classification of prediction methods and their characteristics.

Prediction Methods Characteristics

Machine learning (ML) Complicated calculation, Requires large amounts of data, Relatively
high accuracy, Suitable for complex systems.

Model-free (MF) Simple calculation, No model building required, Dependent on data
quality, Relatively low accuracy.

Model-based (MB) Precise modeling, Environmental suitability, Physical constraint,
Parameter estimation

Machine learning (ML): Using machine learning methods to make predictions provides
high precision but relatively high complexity.

Model-free (MF): Relying solely on energy information harvested in the past
for prediction.

Model-based (MB): Modeling the energy-harvesting situation so as not to rely only on
the energy information harvested in the past to make predictions.

3.4. Classification of Tools or Methods

If a paper proposes a new prediction method or improvement, it is classified as a
method paper. Papers that use energy-prediction technology in their experimental design
and practical applications are classified as tool papers.

3.5. Publication Classification

This study categorizes publication information following a general classification
scheme, such as publisher, year of publication, and publication type. The publishers
are categorized into four types: IEEE, ACM, Springer, ScienceDirect (SD), and Others. The
publication years span a total of 17 years, from 2007 to 2022. The publication types (PT) are
classified into international journals and international conferences.
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3.6. Classification of Energy Types

After reading the selected papers, this study filled in a table based on the research
questions. Table 4 presents the responses to the five classification questions posed in this
study for the selected 98 relevant articles, arranged in descending order and based on their
publication year. The table provides a comprehensive breakdown of the research type,
energy type, prediction method, tool or technique, and publication status for each piece
of literature, facilitating a clear depiction of the respective categories to which different
articles belong.

Table 4. Data extracted from the selected papers.

ID Ref
RQ1 RQ2 RQ3 RQ4 RQ5

RT Energy Type PM Tool or Method Year PT Publisher

1 [19] Solution Solar energy MF Tool 2022 Journal IEEE
2 [20] Validation Solar energy ML Tool 2022 Conference IEEE
3 [21] Solution Solar energy ML Method 2022 Conference IEEE
4 [22] Solution Solar energy ML Method 2022 Journal Other
5 [23] Evaluation Solar energy MB Tool 2021 Journal ACM
6 [24] Solution Solar energy MF Method 2021 Conference IEEE
7 [25] Solution Solar energy MF Method 2021 Journal Springer
8 [26] Solution Solar energy MB Method 2020 Journal Other
9 [27] Solution Solar energy MB method 2020 Journal IEEE
10 [28] Solution Solar energy MB Method 2020 Journal Other
11 [29] Evaluation Vibrations MF Tool 2020 Journal Other
12 [30] Evaluation Solar energy ML Tool 2020 Conference IEEE
13 [31] Solution Solar energy ML Method 2020 Journal Springer
14 [32] Evaluation Solar energy ML Tool 2020 Journal Springer
15 [33] Validation Solar energy MB Tool 2019 Journal SD
16 [34] Evaluation Solar energy MB Tool 2019 Journal IEEE
17 [35] Validation Solar energy MB Method 2019 Conference IEEE
18 [36] Solution RF MB Method 2019 Journal Other
19 [37] Solution Solar energy MF Method 2019 Journal IEEE
20 [38] Validation Solar energy MF Tool 2019 Journal Other
21 [39] Solution Solar energy MF Method 2019 Conference IEEE
22 [40] Validation Solar energy MF Tool 2019 Conference IEEE
23 [41] Solution Solar energy ML Tool 2019 Conference IEEE
24 [42] Solution Solar energy ML Method 2019 Conference IEEE
25 [43] Validation Solar energy ML Tool 2019 Journal Springer
26 [44] Solution Solar energy ML Method 2019 Journal Other
27 [45] Solution Solar/wind MB Method 2018 Journal Other
28 [46] Solution Solar energy MB Method 2018 Conference IEEE
29 [47] Solution Solar energy MB Method 2018 Journal IEEE
30 [48] Solution Wind energy MB Method 2018 Journal IEEE
31 [49] Validation Solar energy MF Tool 2018 Conference ACM
32 [50] Solution Solar energy MF Method 2018 Conference IEEE
33 [51] Validation Solar energy MF Tool 2018 Conference IEEE
34 [52] Solution Solar energy MF Method 2018 Conference IEEE
35 [53] Solution Solar energy MF Method 2018 Journal Other
36 [54] Solution Solar energy ML Method 2018 Journal IEEE
37 [55] Validation Solar energy ML Method 2018 Journal SD
38 [56] Validation Solar energy ML Tool 2018 Conference IEEE
39 [57] Solution Solar energy MB Method 2017 Conference IEEE
40 [58] Solution Solar/Wind MB Method 2017 Journal Other
41 [59] Validation Solar energy MB Tool 2017 Journal Other
42 [60] Solution Solar/Wind MF Method 2017 Journal Other
43 [61] Solution Solar energy MF Method 2017 Journal SD
44 [62] Solution Wind energy MB Method 2017 Journal SD
45 [63] Validation Solar energy MF Tool 2017 Conference IEEE
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Table 4. Cont.

ID Ref
RQ1 RQ2 RQ3 RQ4 RQ5

RT Energy Type PM Tool or Method Year PT Publisher

46 [64] Validation Solar energy ML Method 2017 Conference ACM
47 [65] Validation Solar energy ML Tool 2017 Conference IEEE
48 [66] Solution Solar energy MB Tool 2016 Journal Other
49 [67] Experience Solar energy MF Tool 2016 Conference IEEE
50 [68] Experience Solar energy MF Tool 2016 Journal Other
51 [69] Validation Wind energy MF Tool 2016 Conference IEEE
52 [70] Validation Solar energy MF Tool 2016 Journal IEEE
53 [71] Solution Solar/Wind MF Method 2016 Journal IEEE
54 [72] Solution Solar energy ML Method 2016 Journal IEEE
55 [73] Solution Solar energy ML Method 2016 Conference IEEE
56 [74] Solution Solar energy ML Method 2016 Conference ACM
57 [75] Solution Solar energy MF Tool 2016 Journal Springer
58 [76] Validation Solar energy ML Tool 2016 Conference IEEE
59 [77] Solution RF ML Tool 2016 Journal IEEE
60 [78] Solution Solar energy MB Method 2016 Journal Other
61 [79] Solution Solar energy MB Method 2015 Journal Other
62 [80] Validation Solar energy MF Tool 2015 Journal IEEE
63 [81] Validation Solar energy MF Tool 2015 Conference IEEE
64 [82] Evaluation Solar energy ML Tool 2015 Conference ACM
65 [83] Solution Solar energy ML Method 2015 Conference ACM
66 [84] Solution Solar energy ML Method 2015 Journal ACM
67 [85] Evaluation Solar energy MF Tool 2015 Conference IEEE
68 [86] Solution Solar/Wind MB Method 2014 Journal SD
69 [87] Validation Solar energy MB Tool 2014 Journal IEEE
70 [88] Validation Solar energy MB Tool 2014 Journal IEEE
71 [89] Experience Solar energy MF Tool 2014 Conference ACM
72 [90] Validation Solar energy MF Tool 2014 Conference ACM
73 [91] Evaluation Solar energy ML Tool 2014 Journal IEEE
74 [92] Solution Solar energy ML Method 2014 Conference ACM
75 [93] Solution Solar/Wind MB Method 2013 Conference IEEE
76 [94] Solution Solar energy MB Method 2013 Journal IEEE
77 [95] Solution Solar energy MF Method 2013 Conference ACM
78 [96] Evaluation Solar energy MB Tool 2013 Conference IEEE
79 [97] Solution Solar energy MB Method 2012 Conference ACM
80 [98] Solution Solar/Wind MF Method 2012 Conference IEEE
81 [99] Solution Solar energy MF Method 2012 Conference IEEE
82 [100] Experience Solar energy MB Tool 2012 Journal SD
83 [101] Validation Solar energy MF Tool 2011 Conference ACM
84 [102] Evaluation Solar energy MF Tool 2011 Journal SD
85 [103] Solution Solar/Wind MB Method 2010 Conference IEEE
86 [104] Evaluation Solar energy MF Tool 2010 Journal Other
87 [105] Evaluation Solar energy MF Tool 2010 Conference IEEE
88 [106] Evaluation Solar energy MF Method 2010 Conference IEEE
89 [107] Solution Solar energy MF Method 2010 Conference IEEE
90 [108] Solution Solar energy MF Method 2010 Journal SD
91 [109] Solution Solar energy MB Method 2009 Conference Springer
92 [110] Validation Solar energy MF Tool 2009 Conference IEEE
93 [111] Solution Solar energy MF Method 2009 Conference Other
94 [112] Solution Solar energy MF Method 2009 Conference IEEE
95 [113] Evaluation Solar energy MF Tool 2009 Journal IEEE
96 [114] Validation Solar energy MB Tool 2008 Conference ACM
97 [115] Solution Solar energy MF Tool 2007 Journal ACM
98 [116] Evaluation Solar energy MF Tool 2007 Conference ACM
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4. Results

This section aims to comprehensively depict the research landscape regarding EHWS
energy prediction through the results from the SMS. By conducting a thorough exploration
and analysis of these inquiries, this chapter offers a comprehensive overview of the current
state of EHWS energy-prediction research. It serves as a foundation and reference for the
subsequent discussions and conclusions in the following sections.

4.1. RQ1: What Types of Research Have Been Conducted in this Research Field over a Period of
Time and How Has It Developed?

After classifying the selected papers according to their research types, their respective
proportions were plotted in Figure 3. The solution proposal-type papers had the highest
proportion, accounting for 55% of all research types, followed by validation research, which
accounted for 26% of all papers. Evaluation research constituted 15% of all papers, and
only 4% of the papers belonged to experience papers. To date, this study has not identified
any opinion papers or philosophical papers. The distribution of research types reveals
that, in the EHWS field, researchers have primarily focused on proposing new methods or
improving existing ones, providing valuable insights and directions for future research.
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ent years. It is evident from the figure that, except for the years 2008, 2011, and 2014, the
solution proposal papers consistently dominate among all types of papers, reaching their
peak between 2016 and 2019. This indicates that proposing new methods or improving
existing ones is a major concern for more researchers in the EHWS field, and it provides
more ideas and research directions for future researchers. Validation research and eval-
uation research experienced occasional interruptions in 2017, but the research in these
areas did not stop, indicating that some researchers are still inclined toward validation and
evaluation papers. Only four experience papers were published between 2007 and 2022,
indicating that no authoritative recommendations have been proposed in this field. During
this study period, no opinion papers or philosophical papers were identified. In the future,
the EHWS energy-prediction field will require more researchers to put forward viewpoints
and suggestions.
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4.2. RQ2:What Are the Predicted Energy Types?

EHWS energy prediction can be classified into five categories: solar energy, heat
energy, wind energy, vibration energy, and radio frequency. As shown in Figure 5, 86%
of the papers predicted solar energy as the energy type. This is because solar energy has
better periodicity and predictability when compared to other types of energy, and most
researchers are more concerned with the harvesting and prediction of solar energy. The
second most common energy type is solar or wind energy, accounting for 8% of the total,
indicating that the methods selected by researchers apply to both solar and wind energy and
have better adaptability. The third most common energy type is wind energy, accounting
for 3%. The abrupt changes in wind energy can cause significant errors regarding energy
prediction. Radio frequency and vibration energy account for 2% and 1%, respectively. In
the screened literature, no researchers were found to harvest and predict heat energy.
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4.3. RQ3:What Prediction Methods Are Used?

Categorizing the prediction methods into three categories: model-free prediction,
model-based prediction, and machine learning. As shown in Figure 6, of the 98 arti-
cles screened, 44 articles covered model-free prediction, accounting for 45% of the total,
29 articles covered model-based prediction, accounting for 30% of the total, and 25 articles
covered machine learning, accounting for 25% of the total.
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Based on the selected articles, this study analyzed the research trends in the field of
EHWS. As shown in Figure 7, the number of publications gradually increased from 2011 to
2016. Among the years we selected, the publication rate in 2008 was the lowest with only
one article, while in 2016, the publication rate was the highest, reaching 13 articles. The
research hotspot in this field was between 2016 and 2019, with about 10 papers published
each year. From 2019, the number of publications decreased annually, but there was a
resurgence in 2022. Overall, this study believes that there is still high research significance
in the field of EHWS, and researchers can further explore this area.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 30 
 

 

 
Figure 6. Prediction method. 

Based on the selected articles, this study analyzed the research trends in the field of 
EHWS. As shown in Figure 7, the number of publications gradually increased from 2011 
to 2016. Among the years we selected, the publication rate in 2008 was the lowest with 
only one article, while in 2016, the publication rate was the highest, reaching 13 articles. 
The research hotspot in this field was between 2016 and 2019, with about 10 papers pub-
lished each year. From 2019, the number of publications decreased annually, but there 
was a resurgence in 2022. Overall, this study believes that there is still high research sig-
nificance in the field of EHWS, and researchers can further explore this area. 

 
Figure 7. Papers by publication year. 

4.4. RQ4: How Many Tool Papers and Method Papers Were Screened Out? 
According to the screened literature, a total of 98 research papers related to energy 

prediction for EHWS were published between 2007 and 2022. Among them, 53 (53% of 
the total) were methodological papers, and 47 (47% of the total) were tool papers. 

Figure 8 displays the number of tool and methodology-based papers published by 
different publishing units. From the chart, it can be observed that the number of tool pa-
pers and methodology-based papers published in Springer and IEEE is the same. The 
number of tool papers published in ACM is greater than the number of methodology-
based papers. For the remaining publishing units, the number of methodology-based pa-
pers is fewer than the number of tool papers. Among the selected 52 methodology-based 
papers, the main objectives of these methods were twofold: (1) to propose new methods 

Figure 7. Papers by publication year.

4.4. RQ4: How Many Tool Papers and Method Papers Were Screened Out?

According to the screened literature, a total of 98 research papers related to energy
prediction for EHWS were published between 2007 and 2022. Among them, 53 (53% of the
total) were methodological papers, and 47 (47% of the total) were tool papers.

Figure 8 displays the number of tool and methodology-based papers published by
different publishing units. From the chart, it can be observed that the number of tool papers
and methodology-based papers published in Springer and IEEE is the same. The number
of tool papers published in ACM is greater than the number of methodology-based papers.
For the remaining publishing units, the number of methodology-based papers is fewer
than the number of tool papers. Among the selected 52 methodology-based papers, the
main objectives of these methods were twofold: (1) to propose new methods to provide
more referenceable prediction methods for the current research field, and (2) to improve
the existing methods to enhance prediction accuracy or reduce complexity.
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After organizing all the tool papers, this study found that the energy-prediction
methods used by researchers as tools also varied in their objectives. For example, a long-
term energy-saving task-scheduling method was designed using reinforcement learning
and energy-prediction technology, greatly improving energy utilization efficiency and
enhancing the long-term service quality of wireless sensor nodes [40]. In addition, an
energy management scheme was implemented based on the energy values derived from
the prediction method [51]. This method can set the threshold rate of energy consumption
to ensure sufficient energy supply for wireless sensor operation, even during periods
without energy supply. These tools have provided useful technical support for researchers
to address different application scenarios and needs.

In this study, the distribution of tool or technique papers across different prediction
methods in the field of energy prediction is illustrated in Figure 9. The figure also reveals
the relative attention given to different methods in the energy-prediction domain, providing
insights for future research and innovation.
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Firstly, it can be observed that the highest number of tool papers belongs to the model-
free prediction method, reaching a total of 25 articles. Secondly, for the method papers,
both the model-free and model-based prediction methods have 19 articles each. This
indicates that the model-free and model-based prediction methods have received similar
attention in terms of technique papers. These different methods may apply to various
application scenarios and levels of problem complexity. The number of papers on machine
learning prediction methods is the lowest, with only 14 articles. This can be attributed to
the particularity of the energy-prediction field and the requirements for data and models,
which may result in the relatively limited application of machine learning methods.
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4.5. RQ5: How Are Relevant Research Papers Distributed?

According to the publication types, this study classified the selected papers into
two categories: international journals and international conferences. By classifying the
98 pieces of relevant literature into different types, this study found that 51% of the paper
types were conference proceedings and 49% were journal publications. Additionally, this
paper analyzed the publisher labels and publication types and plotted a chart, as shown in
Figure 10. It can be seen that the number of conference papers published by IEEE and ACM
is significantly higher than that of journal papers, while the number of conference papers
published by other publishers is significantly lower than that of journal papers. It is worth
noting that the authors’ preference for journal publications and conference proceedings is
similar, indicating that the number of journal platforms and conference platforms in this
field is similar, with relatively balanced academic exchange opportunities.
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Figure 11 depicts the distribution of publishers in the selected 98 papers; it can be
found that among these publishers, IEEE had the largest share, accounting for 51% of the
total. Other types of publishers accounted for 19% of the total, followed by ACM with 16%
of the papers published under this outlet. ScienceDirect and Springer accounted for 8%
and 6% of the total, respectively. It can be observed from the figure that IEEE is the most
preferred publisher in the field of energy prediction regarding EHWS.
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5. Discussion of Prediction Methods

This section aims to analyze the current research status in the field of EHWS energy
prediction. Based on the classification of non-model prediction, model-based prediction,
and machine learning prediction, a detailed analysis of the proposed prediction methods
in the selected literature was conducted. For each type of method, the technical approaches
employed, improvements made, and limitations are discussed, followed by a brief evalua-
tion and analysis.

5.1. Model-Free Prediction Methods

In energy-constrained wireless sensor networks, EHWS non-model energy-prediction
methods are widely used to avoid wasting resources due to node shutdowns caused by
insufficient resources. After analyzing the selected literature, this study found that the
development and improvement of non-model prediction algorithms are mainly centered
around three basic methods: exponentially weighted moving average (EWMA), weather-
conditioned moving average (WCMA), and Pro-Energy.

5.1.1. EWMA and Its Related Methods

Kansal et al. [115] first applied EWMA to energy-prediction methods in 2007. This
method assumes that the available energy in a given time slot of the day is similar to the
energy harvested in the same time slot in the previous few days. The energy harvested in
the same time slot in the previous few days is weighted and averaged, and an appropriate
weighting factor is assigned through a decay factor. The predicted energy value is obtained
by combining the harvested energy of the day with the weighted average. However, this
method produces serious prediction errors when weather conditions frequently change. To
improve the prediction performance, Hassan et al. [99] proposed solar energy prediction
based on the additive decomposition (SEPAD) method, which considers three factors that
affect energy generation: daily cycles, seasonal effects, and daily energy trends. SEPAD
uses three EWMA filters to calculate these three factors, respectively, and then combines
them to obtain the desired predicted energy value. They collected one week of real energy
data and compared SEPAD with three other algorithms on this data set, and the results
show that SEPAD using this method accurately considers the impact of other factors and
effectively improves prediction performance. Yang et al. [94] combined long-term seasonal
and short-term daily energy situations and proposed the weather-conditioned exponential
weighted moving average (WC-EWMA) method based on EWMA. This method considers
weather fluctuations and proposes a parameter that represents the cloudiness threshold.
When the weather fluctuation value is less than the cloudiness threshold, WC-EWMA does
not consider the impact of that day on the predicted value, thereby improving the accuracy
of the prediction.

As a classic non-model prediction method that is applied to EHWS, although EWMA
has the advantages of low complexity and low computation, it cannot predict energy very
accurately and produces significant errors when weather conditions change frequently.
Therefore, it is rarely used in systems that require high prediction accuracy. SEPAD and
WC-EWMA, which were improved based on EWMA from different perspectives, have
significantly improved prediction accuracy while only increasing by a small amount of
complexity, providing choices for researchers who need higher prediction accuracy.

5.1.2. WCMA and Its Related Methods

In 2009, Piorno et al. [112] proposed a method called WCMA. This method introduced
a parameter called the GAP based on EWMA. The GAP represents the change in weather
conditions compared to previous days. which measures the relationship between the
solar conditions of the day and those of the previous days, taking into account the past
solar values and the average solar energy available in the previous days. By scaling and
weighing the energy average of the same time slots of the previous days using the GAP, the
prediction accuracy of the method can be improved. When weather conditions frequently
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change, the average prediction error of WCMA is reduced by nearly 20% compared to
EWMA. Bergonzini et al. [108] improved WCMA and proposed a method called weather-
conditioned moving average-phase displacement regulator (WCMA-PDR). This method
stores the difference between a value related to each time slot in a day and the corresponding
predicted value in memory while assigning weights in an exponentially weighted moving
manner. Although this method introduces additional parameters and increases the memory
and computational requirements, it can eliminate or greatly reduce prediction errors.
Experimental results show that the average error of the WCMA-PDR algorithm is 9.2%,
and it has better performance than WCMA. Ren et al. [50] combined real weather forecast
information with the WCMA method and proposed an efficient and reliable prediction
algorithm called real-forecast weather moving average (RWMA). This method adjusts the
prediction results of the next time slot based on the error between the harvested energy
and the predicted energy of the previous time slots. RWMA considers the influence of
real forecast weather on solar energy acquisition and analyzes the association between
historical solar energy data and meteorological types. It numerically analyzes the effect of
real forecast weather on solar energy harvesting and applies it to the prediction algorithm.
Such analysis helps to predict solar energy acquisition more accurately. Secondly, RWMA
introduces a proportional adjustment mechanism. In addition to considering the historical
weather data horizontally, the RWMA algorithm also considers the previous data vertically
to account for the associativity between consecutive time slots. Dehwah et al. [61] proposed
a dynamic version of the weather-conditioned moving average technique called universal
dynamic-WCMA (UD-WCMA) for predicting the variation in energy harvesting in EHWS.
Compared with the previous prediction methods, the UD-WCMA algorithm introduces
a dynamic model and adaptively adjusts the weight factors according to the weather
changes. This method combines the actual energy information harvested in the past time
slots with a set of stored configuration file energy information to predict future energy and
designs an adaptive weighting factor that is dependent on weather changes. Therefore, UD-
WCMA is more flexible than the existing uncalibrated prediction methods. Experimental
validation on real solar irradiance data shows that the UD-WCMA algorithm performs well
in prediction performance and maintains a sufficiently low complexity to be implemented
on low-power wireless sensor nodes.

As another typical model-free prediction method, WCMA introduces a critical GAP
factor and considers the impact of frequent changes in weather conditions, which reduces
the prediction error but still does not satisfy researchers. Therefore, the WCMA-PDR and
RWMA methods focus on improving the prediction accuracy of WCMA by error correction.
UD-WCMA processes the average energy by using a set of stored configuration files to
achieve satisfactory prediction performance.

5.1.3. Pro-Energy and Its Related Methods

Cammarano et al. [98] proposed a novel energy-prediction method for a multi-source
energy-harvesting sensor network named Pro-Energy, which is different from traditional
methods. This method maintains a pool of “typical configuration files” that store past
energy observation data for several days. When predicting energy, it first finds the configu-
ration file that is most similar to today’s weather from the pool and combines it with the
previously harvested real energy data. This method significantly outperforms previous
methods in short- and medium-term energy prediction, improving the prediction accu-
racy by 60%. However, when Pro-Energy does not have a stored configuration file for
specific weather conditions, it exhibits serious bias. Subsequently, Cammarano et al. [71]
proposed Pro-Energy-VLT in 2016, which extends Pro-Energy by combining energy pre-
diction with time slots of variable lengths to adapt to the dynamic variability of energy.
In Pro-Energy-VLT, a weight is first assigned to each time slot according to the change
in the energy-harvesting process. Then, the size and distribution of time slots are read-
justed according to the weight and the size of time slots. Finally, the energy-harvesting
data stored in the Pro-Energy-VLT pool is updated according to the new time slot set-
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ting. By running this slot-adaptation process periodically, Pro-Energy-VLT generates new
time slot Settings based on dynamic energy changes. The experimental results show that
Pro-Energy-VLT further improves prediction accuracy while reducing memory usage and
resource consumption during energy prediction. Muhammad et al. [60] improved Pro-
Energy to create IPro-Energy, which uses weighted-file (WP) technology to predict energy
by processing the two most similar configuration files. The core modules of IPro-Energy
include analyzer, predictor, and updater. The analyzer module selects the most similar
energy-harvesting configuration to the current day based on the minimum mean absolute
error (MAE). The predictor module predicts energy harvesting in the short and medium
term based on the most similar configurations. The updater module refreezes the entries
in the energy-harvesting configuration pool at the end of each day. These improvements
allow IPro-Energy to perform better in terms of energy prediction accuracy, execution time,
and throughput. Through experimental comparison, IPro-Energy achieves satisfactory
performance in short-, medium-, and long-term prediction. Deb et al. [25] combined past
and current harvested energy information to improve Pro-Energy and proposed a new
energy-prediction algorithm, Enhanced-Pro, which uses the correlation coefficient to select
matching configuration files and selects a tuning algorithm to check the difference between
the selected file and the specific situation of the day. Finally, the prediction equation is
used to obtain the prediction result. The experimental results showed that this method can
achieve a lower prediction error than Pro-Energy.

Pro-Energy is the most complex among the three model-free prediction methods, with
higher prediction accuracy, but it also has the disadvantage of being heavily dependent on
the stored configuration files. To address this issue, researchers have optimized the existing
methods in terms of variable time slots, configuration files, and tuning algorithms, resulting
in significant improvements. Pro-Energy-VLT improves prediction accuracy and reduces
resource consumption by introducing the concept of variable time slots. IPro-Energy
processes configuration files using weighted-file technology and achieves satisfactory
performance, according to researchers. Enhanced-Pro introduces correlation coefficients in
selecting matching configuration files and uses a tuning algorithm to check the differences
between the selected file and the specific situation of the day, resulting in a lower prediction
error than Pro-Energy. These improvement methods provide useful insights for solving the
energy-prediction problem in multi-source energy-harvesting sensor networks and provide
important references for future research.

5.2. Model-Based Predicting Methods

Model-based energy-prediction methods are currently the most widely used approach
for energy prediction. This class of methods models energy information and predicts future
energy by combining past harvested energy information with other relevant information.
It takes into account various factors that affect energy more comprehensively, resulting in
more accurate predictions of future energy conditions.

5.2.1. Weather-Based Prediction Models

Sharma et al. [86] analyzed global solar irradiance and cloud cover predictions and
proposed a model. They used a polynomial model to calculate the relationship between
time and solar power during the day, transforming weather forecasts into solar or wind
energy-harvesting energy predictions and improving prediction accuracy. The prediction
accuracy of the proposed method is higher on moderate time scales, that is, hours to days.
To verify the effectiveness of this prediction method, this paper designs three different
types of energy-harvesting system experiments. In each case, the performance of the pre-
diction model based on the weather forecast and the prediction model based on the past
are compared. The experimental results show that the prediction model based on weather
prediction performs significantly better in terms of the related performance indicators of
the system. Herrería-Alonso et al. [28] calculated the solar altitude at different times of the
day and modeled the energy that can be harvested corresponding to the given time slots



Electronics 2023, 12, 4304 17 of 29

based on the solar altitude. The model does not require local energy-harvesting information
in the past few days or any specific adjustments for each different scene or location. It
only needs to perform some low-complexity operations to provide accurate predictions for
any prediction range. BASHA et al. [84] proposed a distributed solar energy-prediction
algorithm that utilizes surrounding spatial information and predicts future solar energy
based on multivariate linear regression and local climate conditions. In contrast to previous
prediction methods, the core component of this distributed solar forecasting model is the
distributed pseudo-inverse algorithm. This article is the first to propose and develop a dis-
tributed version of sensor networks. Experimental results show that their model improves
the prediction accuracy by 20% relative to previous models that use environmental data or
spatial data. Edalat et al. [75] proposed a low-cost solar energy-prediction algorithm based
on the WCMA model, applying autoregressive time series models at the start of each day
to further improve the model using the moving average of harvested energy in the past few
days. A prediction method called the autoregressive-WCMA (AR-WCMA). AR-WCMA
combines the advantages of AR time series models and WCMA to better schedule and
forecast actual weather conditions. Simulation experiments verify the energy-prediction
accuracy of the AR-WCMA method under real weather conditions. Janković et al. [57]
proposed a solar energy-prediction model based on a two-level weather forecast, which
uses information on weather forecasts every hour for the next 24 h to predict the amount of
energy that can be harvested within the same time interval. This value is used as the initial
prediction, and the final prediction for the next time slot is obtained by comparing the
difference between the energy harvested in the previous time slot and the predicted energy.
Furthermore, the model optimizes energy utilization to achieve ENO and adjusts energy
storage and usage strategies based on weather forecasts. However, the model currently
focuses primarily on short-term future predictions and requires further enhancements for
predictions beyond 24 h. To improve the model, efforts can be made to better integrate
weather forecasts and historical data, combining multiple predictions to reduce error rates.
Subsequently, Janković et al. [26] enhanced solar energy-prediction accuracy by combining
weather prediction data, fuzzy logic filtering, and clear-sky radiation modeling. The dis-
tinguishing features of this prediction model include obtaining maximum solar radiation
information using a clear-sky radiation model, predicting cloud cover and precipitation
probability using weather forecast data, adjusting predictions based on humidity and
atmospheric pressure prediction errors through a fuzzy logic filter, and correcting solar
energy predictions based on previous time period energy-prediction errors.

5.2.2. Innovative Approaches

Ahmed et al. [58] proposed a solar and wind dual-source prediction model based on a
sampling theory. The model defines three predictors using sampling operators after opera-
tions such as sampling, generating kernels, and approximating error estimation. It allows
adjustable kernel sizes that are compatible with EHWS and utilizes dynamic weighting
factors. Unlike previous models, this model does not result in a decrease in prediction
accuracy for different prediction ranges. The prediction model is suitable for various
prediction ranges and can achieve good prediction results in different prediction ranges.
However, further research and improvements are still required to enhance its prediction
accuracy and applicability. Subsequently, Ahmed et al. [45] considered that energy distri-
bution has different smoothness and changes, and different sampling operator kernels are
needed for different types of configuration files. They proposed an adaptive LINE-P model
that calculates adaptive weighted parameters based on stored-energy curves independent
of fixed length time slots and fixed weight parameters. In addition, they also proposed
a configuration-file-compression method that can reduce memory requirements by 50%
while achieving 90% accuracy. Koirala et al. [36] proposed a multi-node energy-prediction
method for the harvesting of RF energy using neighboring nodes’ energy-harvesting infor-
mation to predict future energy availability. They also developed a mathematical model
to calculate the optimal value of the prediction interval, which can effectively improve
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prediction accuracy. However, the literature does not provide an accurate estimation
method for determining the optimal prediction interval, which is crucial for developing
prediction-based energy management systems. Zhang et al. [47] considered the practical
situation and proposed an energy prediction algorithm based on the IEA platform. They
modeled physical information such as voltage, resistance, and capacitance and combined
these parameter information operations to obtain the energy that can be harvested in future
time slots. Through experimental testing, the accuracy of energy prediction can be higher
when the IEA node performs data transmission. Kosunalp [62] proposed a new wind
energy-prediction method (WEP), which differs from existing methods by only considering
the current wind energy generation situation rather than the energy generation situation of
the previous day. In comparative experiments, WEP provides more accurate prediction
results under conditions of frequent fluctuations and can provide more accurate prediction
results in a shorter time for situations with low wind speeds.

For model-based energy-prediction methods, it is important to combine other infor-
mation to improve the accuracy of the predictions. For example, Herrería-Alonso et al. [28]
combined information on solar altitude to predict a given time slot, while the authors
of [55,57,84] combined weather forecast information to make predictions. These models
can provide accurate energy predictions by considering factors such as the climate and the
weather forecasts of the surrounding environment, as well as the node’s energy-harvesting
capabilities, to better meet the needs of different scenarios.

5.3. Machine Learning

To improve the accuracy of solar energy-prediction algorithms, many researchers have
considered combining machine learning techniques with prediction methods.

5.3.1. Neural Networks

Neural networks possess the capability to handle complex non-linear relationships,
thereby providing more accurate prediction outcomes. Their adaptability and gener-
alization ability, achieved through learning the patterns and trends within data, make
them well-suited for energy-harvesting prediction in diverse environments and conditions.
They excel in effectively processing energy-harvesting systems that involve a substantial
number of data points, ultimately enhancing the accuracy and reliability of the predic-
tions. Consequently, neural networks have been widely applied to energy prediction
within EHWS.

Li et al. [30] proposed a prediction model for solar energy harvesting based on the long
short-term memory (LSTM) network. The model architecture consists of an input layer, a
hidden layer (employing the LSTM layer), and an output layer (composed of fully connected
and regression layers). The LSTM layer within the hidden layer is capable of handling
long-term dependencies in time series data by utilizing memory cells and control gates
for the selective forgetting and retention of historical data, thus facilitating solar energy-
harvesting prediction. Dhillon et al. [31] proposed a solar energy-prediction model based
on the characteristics of feedforward neural networks with low memory requirements. The
model predicts energy 24 h in advance based on temperature, pressure, relative humidity,
dew point, wind speed, zenith angle, and harvested historical values. Compared with other
methods, the proposed model uses the independent component analysis (ICA) algorithm
for feature extraction, which can better extract the relevant features in the input data.
At the same time, reference signal generation is introduced to improve the accuracy of
prediction. The experimental results show that the proposed model achieves high accuracy
in the prediction of solar irradiance and surpasses other traditional prediction methods.
Yang et al. [41] applied the LSTM network to energy-prediction problems and selected mean
squared error (MSE) as the loss function while using Adam optimization as the optimizer to
achieve an accurate estimation of the total energy for sensor nodes in a cycle. Although this
prediction method increases some of the computational complexity, it can greatly enhance
the stability of the sensor network in areas with variable weather conditions. Compared
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with previous forecasting methods, this LSTM network-based method is better able to deal
with the randomness and seasonal changes in energy forecasting. Experimental results
show that compared with traditional methods, the energy prediction method based on
the LSTM network can improve energy utilization efficiency while maintaining a low
estimation error. Al-Omary et al. [42] combined an artificial neural network (ANN) with
an energy-harvesting wireless sensor network to predict the harvestable energy in the
future. Using ANN can obtain more accurate results than traditional algorithms and
achieve higher accuracy when weather conditions change dramatically. This algorithm
effectively improves the accuracy of short-term prediction while reducing complexity. Ge
et al. [44] proposed a solar energy-prediction model based on the LSTM and empirical
mode decomposition (EMD) methods. The EMD method decomposes time-series data
into a series of relatively stable component sequences, and the LSTM network is trained
with similar solar energy profiles in the database, which can reduce prediction errors.
Li et al. [73] selected a solar energy-prediction model based on neural networks as the
method for estimating the energy that can be harvested by an estimation node in the
short-term prediction range. The neural network used supervised learning with the error
backpropagation (BP) algorithm for training, which can learn the regularity of energy
production from historical data and achieve the prediction of future energy production.

Utilizing neural networks for prediction in EHWS offers advantages in terms of adapt-
ability, generalization ability, and handling large-scale datasets. However, neural networks
also possess drawbacks such as high data requirements, complex parameter tuning, and
limited interpretability. To enhance prediction performance, the following approaches can
be considered: (1) data augmentation and ensemble techniques to improve the generaliza-
tion and prediction accuracy of neural networks by increasing the sample size, introducing
new features, or employing data-integration methods; (2) the optimization of network
architecture by exploring different structures and topologies, such as deep networks and
attention mechanisms, to enhance the performance and learning capabilities of neural
networks; (3) automated parameter tuning by utilizing algorithms for hyperparameter
optimization and automatic parameter tuning to search for optimal configurations, thereby
improving prediction performance; and (4) improvements in interpretability by integrat-
ing other models or methods with higher interpretability, such as decision trees and rule
extraction, to enhance the interpretation and understanding of the prediction results.

5.3.2. Other Techniques

In addition to neural networks, some machine-learning techniques have also been
used in solar energy prediction. These techniques include decision trees, support vector ma-
chines, random forests, and k-nearest neighbor algorithms, among others. Each technique
possesses its unique strengths and suitable scenarios.

Nengroo et al. [22] employed the kernel recursive least squares (KRLS), a prediction
model, to address distributed renewable energy-prediction problems. The KRLS model,
based on the recursive least squares method with a kernel function, exhibits remarkable
performance in regression problems and finds extensive application in smart grid scenar-
ios. This model utilizes a smaller non-static vocabulary to handle regression problems,
resulting in better predictive outcomes when compared to other machine learning models.
Sharma et al. [43] employed machine-learning ensemble methods and constructed an
energy-prediction model using the R interface. This method combines multiple machine-
learning algorithms and predicts the working cycles of nodes by predicting solar radiation.
In the ensemble prediction, they trained multiple individual prediction models and com-
bined them. The simulation results demonstrate that this approach accurately predicts
solar irradiance without being affected by seasonal variations and other meteorological pa-
rameters. Sharma et al. [55] investigated the applicability of five machine-learning models
for modeling solar-irradiance prediction by considering seasonal effects and evaluating
their performance using the statistical metric and the correlation coefficient. By using
historical solar intensity observations as a training dataset, solar radiation prediction over
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different prediction time horizons is achieved without the limitation of seasonal variations
and the availability of input parameters. These methods are then validated by evaluating
performance metrics such as prediction accuracy, correlation coefficient, and root mean
square error. Kraemer et al. [64] constructed an energy-prediction model based on k-nearest
neighbors and utilized easily accessible numerical weather forecast data for effective energy
budget planning, which is crucial for resource-constrained nodes. However, this model
relies on weather forecast data, which inherently contain uncertainty, potentially introduc-
ing errors into the predictions. Azmat et al. [77] used two machine-learning techniques,
linear regression (LR) and decision tree (DT), to model the harvested energy based on real-
time power measurements in the wireless radio spectrum and proved that the prediction
accuracy using LR was higher than DT. By using the LR model and DT model to predict RF
energy in wireless-powered communication, compared with the single model prediction
method, the accuracy and reliability of prediction are improved. Kosunalp [72] proposed
QL-SEP, a solar energy-prediction algorithm based on Q-learning, in 2016. Q-learning is
a reinforcement learning method that predicts future actions based on past observations.
Combining this method with an EWMA resulted in QL-SEP, which considers not only
observations from the past few days but also the current weather conditions, achieving
higher prediction accuracy. However, the QL-SEP algorithm also suffers from certain
drawbacks, such as larger prediction errors in low solar intensity scenarios. Finally, some
researchers have also proposed methods to improve traditional prediction algorithms.
Ma et al. [27] considered the problem of large prediction errors regarding the standard least
mean squares (LMS) prediction algorithm when weather changes fluctuate. They proposed
the correlated least mean squares prediction algorithm by combining weather change
factors with the LMS algorithm, which effectively improved the accuracy of short-term
prediction while reducing complexity. Ghuman et al. [83] proposed a model for predicting
solar irradiance called ASIM, which is based on an increasing Markov chain. The model
determines the state dependence of the basic Markov chain and proposes a mechanism to
reduce the complexity of the Markov chain, making it more practical in wireless sensor
networks. The ASIM model takes into account the state dependencies of solar radiation
patterns and determines these dependencies by a comprehensive evaluation of solar radia-
tion datasets from around the globe. The experimental results show that the ASIM model
can predict solar radiation patterns more and more accurately as the order of the Markov
chain increases.

Based on machine learning, prediction methods have certain hardware requirements
and may require the sacrifice of some energy for complex data calculations and model
updates. However, in some critical scenarios that require a long-term stable operation,
the predictive accuracy of this method can efficiently meet the needs. Judging from the
number of articles on energy prediction based on machine learning in recent years, this
study believes that this method has significant development potential in the future.

6. Current Challenges and Future Research Directions

This chapter focuses on the research directions and challenges in the field of energy
prediction for EHWS. The current challenges are discussed and elaborated in detail in
Section 6.1. In light of the current developments in the EHWS energy prediction, this
study presents two challenges and provides a brief overview of each challenge. Section 6.2
presents the future research outlook, identifying three feasible research directions and
providing a concise overview and analysis of each direction.

6.1. Current Challenges

EHWS are typically equipped with one or more energy-harvesting units to harvest
energy and use energy-storage units (batteries or capacitors) to store energy for use during
energy shortages. What makes EHWS unique is that its energy source is infinite, and
the harvested energy is dynamic and uncertain. Therefore, EHWS needs to adaptively
adjust the working state of their sensors based on the dynamic nature of the harvested
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energy to ensure that the nodes do not interrupt their operations due to insufficient energy
while meeting service requirements. Based on the literature reviewed, we believe that the
following challenges exist for energy prediction in EHWS:

Challenge 1: How to avoid energy waste and energy shortages according to ENO.
During the energy budget process, when the ENO performance is high, it is appropri-

ate to moderately increase the energy allocation for node energy consumption to improve
sensor performance and avoid energy waste. When the ENO performance is low, it is
appropriate to moderately decrease the energy allocation for node energy consumption
to store more energy in the battery and avoid energy waste. Therefore, understanding
how to integrate the ENO trend into the energy budget and dynamically capture ENO
performance becomes the core issue of energy budgeting.

Challenge 2: How to balance accuracy and complexity in practical applications.
For EHWS, using low-complexity prediction methods can reduce energy waste, which

is critical for maintaining the long-term operation of the sensor nodes. However, low-
complexity prediction methods may come with lower accuracy, which can cause sensor
nodes to use energy in an unreasonable way, leading to unnecessary energy waste. There-
fore, understanding how to balance complexity and accuracy in practical applications is a
key issue.

Challenge 3: The impact of diverse external environmental factors on energy prediction.
During the energy-prediction process, the efficiency of the energy-harvesting system is

directly influenced by external environmental factors. The uncertainty associated with these
factors introduces deviations in energy prediction, thereby affecting the accuracy of energy
prediction [117]. Moreover, the external environment itself is characterized by inherent
uncertainty, which can further increase prediction errors and compromise the accuracy of
energy management and planning. Therefore, addressing the challenge of mitigating the
impact of diverse external environmental factors on energy prediction becomes crucial for
enhancing prediction precision and reliability.

Challenge 4: The dynamic nature of energy consumption poses challenges for
energy management.

The efficient management of EHWS relies on a comprehensive understanding of
energy harvesting and consumption. The rate of energy consumption may vary across
different tasks and operational states [118]. Changes in transmission, computation, and
sensing tasks, as well as variations in the operational modes of the nodes (e.g., sleep, work,
and wake-up), all influence energy consumption. Accurately simulating and predicting
the dynamic nature of energy consumption, as well as maintaining a balance between
consumption and harvesting, presents a challenging problem.

Challenge 5: Addressing inaccuracies in predictions resulting from sudden environ-
mental variability.

Currently, energy forecasting methods in EHWS face challenges when confronted with
sudden changes in the surrounding environment. These abrupt environmental changes may
include sudden shifts in climate conditions, electromagnetic interference, the instability of
network topology, and movement or damage to sensor nodes, among other factors. These
changes can lead to momentary fluctuations in energy, which traditional energy forecasting
methods often struggle to capture and adapt to in such unpredictable circumstances [50].
Hence, improving energy forecasting methods to enhance adaptability to abrupt environ-
mental changes is a critical task. Addressing this challenge requires in-depth research into
the mechanisms by which environmental changes impact energy consumption. It also
entails the development of more flexible and adaptive prediction algorithms to ensure
that sensor networks can reliably operate and transmit data in unstable environmental
conditions.

Challenge 6: Significant decrease in accuracy of energy forecasting methods for long-
term predictions.

Long-term predictions present significant challenges within the existing forecasting
methods. Current prediction methods predominantly focus on short and medium-term
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timeframes, making long-term forecasting challenging due to various factors. Firstly,
the accuracy of long-term predictions is influenced by multiple factors, including data
reliability, model complexity, and algorithm selection, which can result in biases and errors
in prediction outcomes [95]. Secondly, long-term forecasting necessitates considering
data and trends over longer time spans and accounting for more unknown variables and
uncertainty factors, which may increase data volume and computational complexity. Some
sensor nodes may struggle to handle large-scale data and complex calculations, limiting
their applicability in long-term forecasting [107]. Furthermore, sustaining model accuracy
over extended time spans is crucial for long-term forecasting, but model performance
may degrade with time, leading to instability in long-term predictions [60]. Therefore,
developing reliable long-term forecasting methods is a significant challenge in current
forecasting research, requiring a comprehensive consideration of factors such as data,
models, and computational resources to make progress.

6.2. Future Research Directions

As a key technology, EHWS has attracted extensive attention. However, there are
still some challenges and limitations in the current research, including the lack of optimal
management schemes, complex energy-harvesting environments, and dynamic energy-
consumption patterns. Therefore, to promote the further development of energy-prediction
methods for EHWS, this review aims to comprehensively sort out and analyze the existing
research results and propose future research directions.

Research direction 1: Energy management methods based on energy prediction.
Regardless of whether it is a model-free energy-prediction method, a model-based

energy-prediction method, or a machine learning-based energy prediction method, pre-
dicting the availability of future energy is important to prolong the lifespan of wireless
sensor nodes and improve node duty cycles and throughput [119]. Currently, energy
management lacks consideration of the trend of ENO changes, which may cause varying
degrees of energy waste or energy shortages. Therefore, an important research direction is
understanding how to track the trend of ENO changes in energy-management methods to
avoid energy waste and shortages and improve ENO performance.

Research direction 2: Adaptive adjustment of duty cycle based on predicted energy.
The effective adjustment of the duty cycle of wireless sensor nodes can be achieved by

accurately predicting future energy availability and the energy level in the battery. The duty
cycle adjustment method should consider the matching ability between energy harvesting
and consumption, and the reward function should mainly consider the duty cycle as a
factor [120]. However, the current methods lack consideration of ENO performance, which
may lead to a decrease in the performance of the node. Therefore, a key issue regarding
adaptive duty cycle adjustment in EHWS is how to dynamically match energy harvesting
and consumption during the energy-harvesting process and how to integrate ENO reward
factors into the duty cycle reward function to improve ENO performance.

Research direction 3: Adaptive adjustment of charging and discharging current based
on the remaining energy budget.

Battery charging and discharging control methods affect not only the energy storage
efficiency of batteries but also their lifespan [121]. Inefficient energy storage in the battery
will result in energy waste, and the arbitrary use of battery charging and discharging
current will lead to overcharging and over-discharging. By accurately judging the energy
shortage status of the wireless sensor network based on the remaining energy budget
of the sensor node, the adaptive adjustment of charging and discharging current can be
achieved and the dynamic adjustment of the remaining energy budget and the neutral
threshold of battery energy can be made. The development of charging and discharging
strategies should consider the impact of energy harvesting on battery lifespan in dynamic
environments. Improving the learning ability of the adaptive energy management strategy
regarding battery performance in response to dynamic changes in energy harvesting is an
important issue that needs to be addressed to prolong battery lifespan.
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Research Direction 4: Energy-aware scheduling strategies based on energy prediction.
Energy-aware scheduling by intelligently managing energy resources enhances net-

work reliability, stability, and performance, thereby addressing complex environmental
conditions and node variations. Energy-prediction methods assist nodes in evaluating their
energy consumption patterns. By predicting energy consumption, nodes can allocate tasks
and resources effectively, thereby avoiding energy depletion and imbalances, leading to
improved energy management and network performance. Hence, energy prediction plays a
pivotal role in enhancing energy-aware scheduling strategies, and optimizing energy-aware
scheduling based on known energy levels represents a crucial challenge.

Research Direction 5: Addressing environmental variability in energy forecasting methods.
Dealing with environmental variability is a critical challenge in energy-harvesting

wireless sensor networks. This variability can encompass changes in weather conditions,
temperature fluctuations, alterations in light conditions, and more. To enhance system
reliability, it is essential to investigate how energy forecasting methods can adapt to these
environmental changes. Firstly, environmental sensing and monitoring are key; this in-
volves the use of various sensors to continuously monitor environmental parameters such
as temperature, illumination, and wind speed in real time. Subsequently, adaptive algo-
rithm design becomes necessary to ensure that energy-prediction models can automatically
adjust their parameters in response to environmental changes, thereby adapting to new
circumstances. Incorporating factors of change into algorithm design can also help improve
prediction accuracy, as demonstrated in [50], which applied numerical analysis of weather
forecasts’ impact on solar energy harvesting to prediction algorithms.

Research Direction 6: Ensuring the accuracy of long-term energy forecasting methods.
Accurate long-term energy forecasting is crucial for ensuring system sustainability.

This form of forecasting goes beyond the short and medium term, predicting energy supply
over extended time periods. This direction includes time series analysis, which can be
used to identify the effects of seasonality, periodicity, and trends, thereby improving future
predictions. Additionally, data mining and trend analysis techniques are highly valuable
for identifying and leveraging past energy consumption patterns to formulate more precise
forecasts. Ultimately, long-term forecasting can be used to develop sustainable energy
management strategies, including energy storage and distribution, to ensure the long-term
stability of the system. This is paramount for achieving system sustainability and stability.

7. Conclusions

This study employed the SMS method to conduct a screening analysis of energy-
prediction methods for EHWS between 2007 and 2022. The SMS method, being a widely
adopted literature review approach, was applied to the field of EHWS energy prediction.
In line with the rigorous SMS process employed in other domains, researchers ensured the
reliability and accuracy of the review.

Based on a comprehensive examination of the research landscape, this study identified
current challenges and proposed future research directions, offering valuable guidance to
scholars in the field. Within the context of existing energy-prediction optimization meth-
ods, this paper highlights the importance of striking a balance between low complexity
and high accuracy, as well as addressing the impact of external environmental factors on
energy prediction. To better guide future research, it is suggested that integrating energy
prediction with energy management is necessary. However, existing energy management
approaches primarily focus on singular objectives, such as node lifespan or duty cycle. In
future studies, greater attention should be given to optimizing multiple objectives simulta-
neously in energy-management strategies, including factors such as energy efficiency, node
lifespan, and communication quality. Furthermore, it is worth exploring the development
of adaptive and flexible energy management algorithms that account for the uncertainty of
energy prediction and the dynamic nature of the system.
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