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Abstract: Managing sidelobe levels (SLLs) in metasurface-driven beam-steering antennas poses
a significant challenge due to intrinsic factors leading to grating lobes. Our proposed method
employs an equivalent model to efficiently optimize large periodic metasurfaces. This model predicts
complete metasurface performance, accounting for mutual coupling between patches. We introduce
an evolutionary optimization algorithm based on the cross-entropy (CE) method to enhance PGM-
based beam-steering antennas and suppress sidelobes. Two strategies are employed: the first is
to optimize the patch dimensions for a sidelobe-free pattern, and the second is to maintain the
PGM dimensions while optimizing the feed array amplitudes. Both strategies effectively suppress
sidelobes, offering insights into the CE method’s applicability and effectiveness for CPU-intensive
electromagnetic optimization challenges. The proposed CE method variant retains its simplicity
while improving monitoring capabilities, addressing this limitation. Smaller generations yield better
improvements per evaluation. The uniqueness of the proposed optimization strategy lies in its
utilization of an equivalent 1D metasurface model for optimization that not only considers the mutual
coupling between identical unit cells along the y-direction within a complete metasurface but also
takes into account the distinct cells along the x-direction. Moreover, the 1D metasurface model
incorporates the influence of edge effects along the x-direction.

Keywords: metasurface; metamaterial; optimization; phase-shifting surface; beam steering; beam
scanning; phase-gradient surface; artificial surface; phase-correcting structure; cross-entropy method;
sidelobes; grating lobes

1. Introduction

Metasurfaces are expansive electromagnetic structures designed by meticulously ar-
ranging sub-wavelength inclusions. These arrangements endow these structures with
an extraordinary capability for precise manipulation of electromagnetic wave attributes,
including amplitude, frequency, phase, and polarization [1,2]. This refined control over
signal propagation characteristics holds significant promise across diverse wireless com-
munication applications.

High-gain antennas are frequently integrated with phase-gradient metasurfaces
(PGMs) to achieve precise control over antenna beam steering within a wide conical
range [3]. This combination proves particularly valuable for establishing network connec-
tivity via low/medium-earth-orbit (LEO/MEO) satellites. These configurations address
the demands of satellite communications, specifically targeting scenarios involving on-
the-pause or on-the-move operations. Their applications extend to providing essential
connectivity in remote areas or dynamic environments, such as flights, ships, and trains,
where conventional terrestrial networks encounter limitations.

The phased-gradient metasurfaces are constructed using repeating supercells, each
comprising a collection of unique unit cells. These individual unit cells are associated
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with specific phase delays, creating a comprehensive phase spectrum of 360 degrees.
The arrangement of these unit cells within a supercell ensures a consistent phase difference
between adjacent cells across the entire metasurface. Given the cyclical properties of phase
values (after every 360◦), the supercells exhibit repetitive patterns across the aperture of the
PGM [4]. These electrically large-aperture PGMs can be conceptualized as versatile devices
akin to generalized reflectors or refractors, which inadvertently generate unintended
diffraction orders, leading to the formation of periodic lobes [5–9].

The presence of spurious sidelobes and grating lobes can lead to signal leakage,
representing significant challenges in the context of beam-scanning antennas. Achieving
optimal steering performance requires an efficient metasurface with a tailored amplitude
and phase response corresponding to lower sidelobes and grating lobes. Effective control
over these undesired lobes can be achieved by skillfully managing the arrangement of
elements within the periodically repeating supercell, as well as optimizing the dimensions
of the metallic features within the PGMs. This comprehensive approach contributes to
enhanced antenna performance and improved beam-steering capabilities [10,11].

While optimization techniques have gained traction in electromagnetic (EM) engineer-
ing, evolutionary optimization methods have been sparingly employed in the optimization
of metasurfaces [12,13]. Beam-steering antenna systems based on metasurfaces often grap-
ple with the challenge of excessive sidelobes within their radiation patterns. These sidelobes
are undesirable as they lead to signal leakage and power loss. Furthermore, for applications
involving satellites on the move (SOTMs), stringent criteria regarding directivity, band-
width, and sidelobes must be met. In this work, we propose a variant of the cross-entropy
method and implement it to mitigate the sidelobe levels (SLLs) within the radiation pattern
of a metasurface-based beam-steering antenna.

The domain of global evolutionary optimization methods encompasses a diverse array
of techniques. Notably, Genetic Algorithms (GAs), Particle Swarm Optimization (PSO),
and Covariance Matrix Adaptation Evolution Strategies (CMA-ES) emerge as prominent
contenders [14]. These methodologies have gained widespread traction in addressing
intricate optimization challenges within the field of electromagnetics in recent years. It
is imperative to not only establish but also substantiate the efficacy of the cross-entropy
method in achieving performance parity with or possibly surpassing these firmly estab-
lished techniques. To validate the capabilities of the cross-entropy method, we draw the
reader’s attention to the investigations carried out in [14], where a comparative assess-
ment of the cross-entropy method against PSO and CMA-ES was conducted. The findings
elucidated that while all three methods ultimately converged toward similar solutions,
the cross-entropy method demonstrated a pronounced advantage in terms of computational
efficiency. This empirical evidence strongly supports the assertion that the cross-entropy
method is a faster option for electromagnetic optimizations.

In the traditional cross-entropy (CE) approach, each candidate is evaluated against
others within the same generation to determine its elite status, with no consideration for the
distribution of candidates in prior generations. Similar to the conventional CE method, this
variant also necessitates a memory capacity of size Nq in every iteration. However, after the
initialization of the queue, which entails Nq performance evaluations, subsequent iterations
only require a single performance evaluation for each new sample. These new samples
are then compared against the most recent Nq candidates in the queue, allowing for an
efficient and dynamic optimization process. Through the prompt update of the sampling
distribution following each candidate evaluation, the algorithm efficiently navigates the
design space. This approach obviates the need for exhaustive evaluations across the entire
population, rendering it well-suited for optimizing intricate metasurface designs. This
method employs continuous monitoring and adaptive adjustments in response to the algo-
rithm’s search progress. Furthermore, the variant with a population size of N = 1 presents
a close approximation to a continuous process, potentially offering greater analytical clarity
compared to discrete methods.
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In contrast to the previously mentioned related article [8], which is essentially a very
concise study, this manuscript provides an intricate exploration of the optimization process,
along with a justification for selecting specific probability distribution functions over other
options. The detailed clarification of the cross-entropy method variant contributes a sturdy
conceptual framework that can be applied to a variety of complex problems. Notably, there
has been no prior comprehensive analysis of this particular variant of the CE method in the
context of electromagnetic optimization, making it a pivotal component. Furthermore, it is
important to note that the optimization results presented in [8] were based on a periodic
feed distribution in contrast to our approach, where we employ a radial symmetry in
the feed amplitude distribution. This radial symmetry aligns more closely with the ideal
scenario for feed tapering, such as the Taylor or Chebyshev taper distributions. In this
research, we also conduct a comparative analysis of two distinct optimization strategies that
can be implemented either separately or in combination. The objective of this analysis is to
enhance overall performance by reducing the sidelobes and grating lobes in a metasurface-
based beam-steering antenna system.

2. The Cross-Entropy Method

The concept of the cross-entropy (CE) method originated in 1997 [15,16]. In 1999, Ru-
binstein refined and applied the CE method specifically for combinatorial optimization [17],
conducting extensive testing on challenging benchmark problems [18–21]. One outstanding
feature of the CE method is its ability to rapidly converge toward the optimal or nearly
optimal solution. The rules for updating the parameterized probability distribution func-
tions (PDFs) are straightforward to implement and have a solid theoretical basis rooted in
information theory, providing a strong theoretical justification [22]. To estimate the optimal
probability distribution that generates globally optimal solutions, the CE method follows a
two-step iterative process [23,24]:

1. Generate a set of candidate solutions from a pre-defined parameterized probabil-
ity distribution.

2. Adaptively update the parameters of this probability distribution using the informa-
tion extracted from the current elite candidate solutions. This adaptive update aims
to guide the search toward the global optimum by minimizing the cross-entropy (or
Kullback–Leibler divergence) between two sampling distributions.

The CE method is a highly versatile global stochastic learning optimization approach
capable of handling both combinatorial and continuous multi-extremal, multi-objective
optimization challenges. One of its distinguishing characteristics is that it operates on a
parameterized probability distribution rather than directly on samples within the candidate
population. The method employs an iterative process, updating the sampling distribu-
tion while minimizing the cross-entropy between the empirical distribution of the current
elite sub-population and the sampling distribution of the subsequent iteration. This iter-
ative refinement continues until the cross-entropy reaches zero, indicating that the two
distributions have become identical, thereby achieving the global best solution.

The CE optimization method follows a model-based search framework. In this ap-
proach, feasible solutions are derived from a parameterized probability distribution func-
tion (PDF), which is continually updated based on the elite candidates identified in the
previous iteration. Probability distributions are commonly referred to as “models” in the
literature [25]. An elementary schematic diagram illustrating the CE search framework is
presented in Figure 1. In essence, the cross-entropy (CE) method relies on a predefined
PDF (model). The overall process can be concisely described as an iterative sequence
encompassing the definition of a model, the sampling of data from that model, learning
from the sampled data, and subsequently updating the initial model.
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Figure 1. Model-based search framework for CE method.

3. Cross-Entropy Method Variant

The CE method adopts a population-based strategy, where it evaluates all samples
within a generation (population size N) before updating the sampling distribution. This
process is referred to as the batch processing of the population. In the traditional CE al-
gorithm, candidates are selected only after the entire generation evaluation episode is
completed. However, this approach becomes problematic when dealing with computation-
ally expensive and time/memory-consuming problems. To address this issue, the proposed
variant of the CE method performs updates immediately after each candidate is evaluated,
eliminating the need to wait for the entire generation’s evaluation to be completed.

To implement the variant of the CE method, we define the problem-based perfor-
mance metric F(x) over the solution space X, where F(x) ∈ R for all x ∈ X. The goal
is to estimate the parameters of the optimal probability distribution function (PDF) that
generates the globally optimal or near-optimal solution. Similar to the classical CE method,
this variant starts with an initial PDF and progressively constructs a sequence of sampling
distributions, focusing increasingly on a small neighborhood around the optimal solution.
Finite-dimensional PDFs are used, and the choice of these PDFs depends on the nature
of the design parameters associated with the optimization problem, that is, whether they
are continuous, discrete, or mixed parameters. Selecting a PDF that accurately models the
problem’s structure is crucial. The optimization problems solved by the CE method are
often multi-dimensional and may involve constraints. The parameters in such problems
can be either continuous, discrete, or a combination of both (mixed parameters). To ensure
proper sampling of the candidate solutions, the PDF should appropriately support the
range and type of parameters involved [26].

The first step is to sample candidates from a carefully chosen parameterized PDF.
The continuously constrained parameters are usually randomly sampled, using either
acceptance rejection or Gibbs sampling. The inversion method is often used to sample from a
discrete distribution [27]. The second step is called parameter estimation. We use the maxi-
mum likelihood estimation (MLE) method [28] to estimate the parameters of a sampling
distribution. In information theory, a natural way to estimate the parameters of the new
PDF is to update the parameters of the current PDF by minimizing the Kullback–Leibler di-
vergence (a measure of misfit between two distributions), as expressed in (1) for continuous
distributions and (2) for discrete distributions:

DKL(p||q) =
∫

X
p(x) ln

p(x)
q(x)

dx, (1)

DKL(p||q) = ∑
x∈X

p(x) ln
p(x)
q(x)

dx, (2)

or, analogously, by minimizing the cross-entropy, as expressed in (3) for continuous distribu-
tions and (4) for discrete distributions:

H(p, q) = −
∫

X
p(x) ln q(x)dx, (3)

H(p, q) = − ∑
x∈X

p(x) ln q(x), (4)
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between two PDFs, p(x) and q(x), over X : x ∈ X. When any of the equations mentioned
above, such as p(x) = q(x), equal zero, it indicates a perfect estimate of PDF parameters,
resulting in both distributions becoming identical. The maximum likelihood estimation
(MLE) and cross-entropy (or Kullback–Liebler divergence) minimization are essentially
equivalent approaches, and one can be readily derived from the other [25]. Consequently,
either of these methods can be employed for optimization using the CE method.

We now introduce the necessary user-defined parameters for the CE method variant.
The input parameters include the queue size Nq, elite sub-population size Nel , initial sam-
pling distribution parameters, and smoothing parameter α. The algorithm is initialized
with a random start [29]. In each iteration, a candidate is sampled from the initial distribu-
tion, and its fitness function is evaluated. The sampled candidate, along with its fitness
function value, is stored in the queue. This sampling and storing process is repeated Nq
times until the queue reaches its capacity. Once the queue is full, the candidates are sorted
based on their fitness values, either in ascending order if the optimizer aims to minimize
the fitness function, or in descending order if the objective is to maximize it. The first Nel
candidates are then selected as the elite candidates, where Nel is calculated as ρ× N with
0.01 ≤ ρ ≤ 0.1. Additionally, the best candidates and their corresponding fitness values are
recorded. The optimizer then checks the convergence or stopping criterion. If the criterion
is not met, the oldest candidate is dropped from the queue and the iteration continues.
Each candidate sampled in the following iterations will be compared against the last Nq
candidates, and the decision regarding the candidate being elite can be made instantly
as opposed to the traditional method, where a whole population of candidates has to be
evaluated before the algorithm can decide if the candidate is elite.

In each subsequent iteration, new candidates are sampled from an updated proba-
bility distribution function (PDF) and evaluated until the stopping criterion is satisfied.
The parameters of the current sampling PDF are updated based on the elite sub-population
to define a new sampling distribution for the next iteration. As previously mentioned, this
updating process can be achieved by minimizing the cross-entropy or utilizing the concept
of the maximum likelihood estimation (MLE) to find the best fit between the empirical
distribution of elite candidates and the new sampling distribution. To strike a balance
between exploitation and exploration and prevent premature convergence, the algorithm
incorporates a smoothing parameter α. This parameter ensures a satisfactory trade-off
between intensification (exploitation) and diversification (exploration). The α smoothing is
integrated into the updating rules as shown in the following equation:

vs
t = αvt + (1− α)vt−1, (5)

where vt is the current generation PDF parameter vector, vt−1 is the PDF parameter vector
from the previous generation, and vs

t is the smoothed parameter vector. The smoothing
parameter α lies between 0 and 1. A higher value of α (closer to 1) results in faster conver-
gence, whereas a lower value of α slows the convergence. For high-dimensional problems
(more than five), fast convergence usually results in a decreased chance of finding the
global best solution. An alternate smoothing procedure known as dynamic or β smoothing
is followed in cases where the α smoothing results in a quick sub-optimal convergence [23].

There are several ways to define the termination criterion. Some of the popular
stopping conditions are as follows:

1. When the elite sub-population consists of identical or very similar results.
2. When a specified number of maximum iterations are completed.
3. When the distance between the best-found solution and the target result becomes

negligible.

An elaborate discussion on the stopping criterion is available in [30]. Several modifica-
tions of the CE method, such as the Variance-Injection Method and Fully Adaptive CE method,
are described in [23]. Improved CE methods and their online variants can be found in [31].
The iterative steps of this CE method variant are summarized in Algorithm 1.
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Algorithm 1 Pseudo-code for CE method variant.

Inputs:
f : P→ R , objective function to be minimized
Operating Parameters:
Nq, queue size
Nel < Nq , number of elite candidates in the queue
α, smoothing parameter
θ0, initial sampling distribution
{S(θ)}, parameterized family of sampling distributions
Initialization:
θ := θ0
for k = 1 to Nq − 1 do

Draw xk as a random variable from the distribution S(θ)
Evaluate f (xk)

end for
k← k + 1
Main Loop:
while Stopping Criterion Not True do

Draw xk as a random variable from the distribution S(θ)
Evaluate f (xk)
Q := (xk−Nq+1, xk−Nq+2, . . . , xk)

# Sorting
Order the elements of Q as Q̃ := {x̃1, x̃2, . . . , x̃Nq} such that f (x̃1) ≤ f (x̃2) ≤ . . . ≤

f (x̃Nq).
# Recording the best values
(xbest, fbest) := (x̃1, f (x̃1))
# Elite population
Xel := (x̃1, x̃2, . . . , x̃Nel )
# Minimizing cross-entropy between new sampling distribution and elite population
Calculate θ̃ that maximizes the agreement between S(θ̃) and Xel .
# Parameter Update
θ ← αθ̃ + (1− α)θ
k← k + 1

end while
Outputs:
(xbest, fbest)

4. Periodic Metasurface Optimization Methodology

A periodic phase-gradient metasurface is shown in Figure 2. These metasurfaces
entail an electrically expansive planar configuration consisting of repeating supercells
arranged along both the x- and y-axes. This arrangement orchestrates a progressive phase
modulation in the electric field at the output, facilitating controlled beam tilting for the
antenna’s operation.
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Figure 2. Complete architecture of a PGM, with a supercell and a single-cell internal composition
added at the bottom for clarity.

Because of the absence of a precise analytical model for metasurfaces, their effective
optimization relies on employing a comprehensive electromagnetic simulation model.

Metasurfaces typically have electrically large apertures and a significant number of
small features. As a result, simulating them becomes computationally demanding and
impractical, particularly when considering population-based global optimization using con-
ventional approaches. To mitigate the computational complexity, a more straightforward
equivalent model (illustrated in Figure 3) has been proposed.

Figure 3. Simplified equivalent model of a metasurface, with boundary conditions specified to mimic
a full 2D metasurface.

We construct an equivalent 1D metasurface model, which corresponds to the high-
lighted section in red in Figure 2. It has the same x-axis dimension (L = 345 mm) as the
original metasurface aperture and a y-axis dimension (W = 7.5 mm) as small as the dimen-
sion of the constituent unit cell. Appropriate boundary conditions are assigned to the 1D
metasurface model in the CST-MWS time-domain solver to emulate the response of a full
metasurface (“E(t) = 0” along the y-axis and the “Open Add Space” boundary condition
along the x-axis, as depicted in Figure 3. Despite the simplification, the structure retains
a high mesh complexity (exceeding 800,000 hexahedrons), necessitating the avoidance of
batch processing.

As a solution, we adopt the modified version of the CE (cross-entropy) method to
optimize these printed metasurfaces. Our focus is on achieving sidelobe suppression and
obtaining a radiation pattern that conforms to the FCC mask (25.209) for the Ka-band.
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The algorithm for this customized CE method is implemented in MATLAB and linked
with CST-MWS using a VBA–macro code. Through the implementation of two illustrative
examples, we showcase the capability of this generalized CE approach to effectively manage
computationally demanding electromagnetic challenges. This emphasizes its potency as a
valuable tool for optimizing intricate metasurface designs.

Unlike many other electromagnetic optimizations based on analytical approaches,
which often rely on various assumptions, our optimization methods stand out by taking into
account the coupling effect between adjacent non-identical unit cells along the x-direction,
as well as the identical unit cells along the y-direction in this simplified equivalent model.
In our optimization of the 1D metasurface model, we consider all the unit cells present
in the actual finite-sized metasurface along the x-direction. This is because they only
exhibit supercell periodicity along this direction and are essentially locally non-periodic.
However, along the y-direction, metasurfaces are periodic at the unit-cell level, so we model
the mutual coupling effect using periodic boundary conditions. The actual finite-sized
metasurface effectively repeats the unit cells a sufficient number of times to mimic infinite
periodicity in this direction. Another noteworthy feature of our approach is the inclusion of
edge effects along the x-direction. This is a departure from other optimization approaches
presented in [1,9], where such edge effects were not considered.

4.1. Optimizing the Patch Dimension in a PGM to Control SLLs

By employing the outlined CE methodology, we embark on the optimization of the
metasurface design with the goal of reducing the sidelobe levels present in the radiation
pattern of metasurface-based antennas. As shown in Figure 2, each supercell of a PGM is
composed of an array of non-identical phase-transforming cells (PTCs), wherein each PTC
corresponds to a specific transmission phase and exhibits a substantial level of transmission
magnitude. These PTCs serve as the fundamental building blocks of a phased-gradient
metasurface (PGM), governing the spatial phase variation of the electric field as it traverses
through them. Within this specific PGM design, two distinct types of phase-transforming
cells (PTCs) are integrated, each possessing a length equivalent to λ0/2.

The Type-I cell comprises four square metal patches enveloped by three dielectric
layers. These patches, denoted as L1, L2, L3, and L4, are dimensioned such that L1 = L3
and L2 = L4. Conversely, the Type-II cell is characterized by three stacked dielectric
layers containing a through-hole. The need for a multi-layer unit element is driven by the
essential requirement of achieving a 360◦ phase range, a crucial aspect in the design of
a phase-gradient metasurface (PGM), as elucidated in [1,2]. The Taconic TLY-5 dielectric
material featuring a permittivity of εr = 2.2 is employed for both PTC variants. Utilizing a
unit cell with through holes extends the attainable phase range from a particular unit cell.
For a more in-depth explanation, interested readers are referred to [2], where a detailed
elucidation on the design methodology for such PGMs is provided, offering enhanced
clarity on the subject.

The overall structure is created by repeating a periodic supercell, which consists of
five Type-I cells and one Type-II cell. This supercell has dimensions of l = λ/2× 6 = 3λ.
To cover the complete phase range from 0◦ to 360◦, the dimensions of the square metal
patches and the openings within the PTCs are modified accordingly. Within the supercell,
the phase delay between adjacent cells is set at 60◦ or π/3 radians. According to array
theory, the beam tilt attained through the 1D array can be mathematically expressed using
the following equation [32]:

sin θ − sin θi =
∆φ

d
λ0

2π
, (6)

In this context, the symbol d stands for the spacing between elements within the array,
∆φ signifies the incremental phase shift contributed by each array element in radians,
λ0 denotes the wavelength in free space, θi represents the angle of incidence concerning
the surface normal, and θ indicates the desired beam tilt concerning the central radiation
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direction. Consequently, under the conditions of normal incidence, specifically when
d = λ0/2 and ∆φ = π/3, the metasurface achieves a beam tilt of 20◦, as elucidated by (6).

The optimization involves the design variables depicted in Figure 4. Within the
metasurface, specific parameters are fixed, including the aperture size (23λ0 × 23λ0), cell
size (d = λ0/2), and the permittivity of the dielectric substrate (εr = 2.2). In the context
of the 1D metasurface model, uniform plane-wave illumination is applied through a
waveguide port positioned one wavelength below the metasurface. As the supercells are
essentially replicated along the x-direction, the design dimensions of the metallic strips and
holes within the supercell also follow this repetition across the metasurface. Consequently,
the side lengths of the first (top)- and third-layer metal patches (a1, a2, a3, a4, a5), as well as
the second- and fourth (bottom)-layer metal patches (b1, b2, b3, b4, b5), for five consecutive
cells, along with the radius (r) of the hole within the supercell (as depicted in Figure 4),
collectively form an 11-parameter design vector, as defined in Equation (7):

x = (a1, a2, a3, a4, a5, b1, b2, b3, b4, b5, r). (7)

Figure 4. The metasurface supercell, showing the design parameters used in metasurface optimization.

The optimization problem for the metasurface design is formulated with a set of
inequality constraints, as represented in Equation (8).{

0.05 mm ≤ a1, a2, a3, a4, a5, b1, b2, b3, b4, b5 ≤ 7 mm
0.05 mm ≤ (r) ≤ 3.5 mm.

(8)

These constraints are derived from prior knowledge, indicating that the patch dimen-
sions within the unit cells are varied within the range of 0.05 mm to 7 mm. Similarly, for the
unit cell with a through hole, the radius is varied within the range of 0.05 mm to 0.35 mm.
It is important to note that these parameter limits have been set with careful consideration
of the maximum side length of the square unit cell, which is 7.5 mm, to prevent any overlap
issues and ensure that the optimized metasurface design remains physically feasible and
practical for fabricating a realistic and achievable design.

4.1.1. Algorithm Implementation

The optimization procedure described for the metasurface represents a classical instance
of continuous optimization within a constrained search space. Given the strong mutual
coupling among the metallic patches, there is a significant correlation among the parameters
within the distinguished sub-population. To effectively handle this correlation, we employ a
multivariate Gaussian distribution to sample the 11 optimization parameters. This approach
adeptly captures the correlation of continuous parameter values by refining the sampling
distribution for each subsequent generation. The distribution parameters, namely the mean µ
and the covariance Σ, are employed such that x ∼ N (µ, Σ). The probability density function
(PDF) of a multivariate Gaussian distribution is expressed as:

N (x|µ, Σ) =
1√

(2π)d|Σ|
exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (9)

where x is a vector of random variables of dimension d, µ is a (1× d) vector of means, Σ
is the covariance matrix of dimension (d× d), and T stands for transpose. To uphold the
boundaries of the solution space, a sigmoid transformation is implemented, which maps
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R11 to a viable rectangle, as detailed in [33]. This transformation ensures that the obtained
samples fall within the predetermined limits. The initial distribution is characterized
by a mean µ = 0 and a covariance Σ = I, with I signifying an identity matrix. These
parameters are subsequently adjusted using information from the elite sub-population
following each evaluation.

The primary objective involves the minimization of the sidelobe levels (SLLs) within
the directivity pattern of the metasurface-based antenna, operating at a frequency of 20 GHz.
Central to this endeavor is the precise definition of a fitness function, serving as a singular
performance metric for the effective assessment of potential solutions. A novel approach
has been introduced for formulating this fitness function, with a modified aim of ensuring
adherence to the prescribed FCC (25.209) mask specific to the Ka-band.

The mask function, as depicted in Equation (10), establishes the upper limit for the
desired gain (in dBi) across various elevation angles θ, ranging from −180◦ to 180◦ when
the peak radiation aligns with the broadside direction. Each θ angle corresponds to an
allowable gain level. Should the radiation beam be steered by δ degrees, the mask adjusts
to align with the peak radiation direction of the beam. Consequently, the expression for the
mask function when dealing with a tilted beam transforms into (|θ| − δ).

Mask =


24.6 dBi, 1.5◦ < |θ| ≤ 7◦

7.8 dBi, 7◦ < |θ| ≤ 9.2◦

8 dBi, 9.2◦ < |θ| ≤ 19.1◦

0 dBi, 19.1◦ < |θ| ≤ 180◦

(10)

The algorithm aims to minimize the fitness function (FF), which is formulated as:

FF =
180

∑
θ=−180

(min(0, (Mask(θ)− Directivity(θ))))2 (11)

The FF value is computed across all elevation angles θ, ranging from −180◦ to 180◦ in
increments of 1◦. Equation (11) ensures that the squared difference contributes to the FF
value only when the directivity pattern lies above the mask, whereas no contribution is
made when the pattern falls below the mask. The primary objective of the optimization
process is to minimize the FF, thereby effectively diminishing the discrepancy between the
mask and the directivity pattern whenever the pattern violates the mask’s requirements.
The user-defined parameters governing the algorithm for the proposed CE method variant
in the context of metasurface optimization are concisely summarized in Table 1.

Table 1. The CE method parameters for optimization of PGMs.

Queue Size Elite Sub-Population Size Smoothing
N Nel αS

110 11 0.2

The phased-gradient metasurface exhibits inherent local non-periodicity and con-
tains sub-wavelength metallic features. As a result, conventional techniques, such as
transmission-line modeling and unit cell optimization [34,35], are unsuitable for compre-
hensively analyzing its intricate electromagnetic characteristics. To accurately investigate
the complex electromagnetic behavior, we adopt a full-wave electromagnetic simulation-
driven optimization strategy. This approach serves to predict the far-field radiation pattern
of the beam-steering system based on the phased-gradient metasurface (PGM). To facilitate
this pursuit, we employ the cross-entropy (CE) algorithm, which is implemented in MAT-
LAB. This algorithm is seamlessly interfaced with CST MWS (Microwave Studio) through
a macro code. This linkage establishes a dual-channel connection between MATLAB and
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CST, enabling smooth communication and seamless integration between the optimization
algorithm and the detailed full-wave electromagnetic simulations.

4.1.2. Optimization Results

Each evaluation conducted within the CST MWS time-domain solver necessitated
approximately 28 min, and utilized an Intel Core i7-6700 CPU clocked at 3.4 GHz with
64 GB RAM. The entirety of the optimization procedure, which encompassed 959 function
evaluations, spanned a cumulative duration of 447 h and 48 min. To effectively account
for alterations in patch geometry during each function evaluation, an adaptive meshing
technique was implemented. The optimization cycle persisted until the maximum deviation
of patch dimensions in an elite sample from the mean of all corresponding elite patch
dimension samples within the queue became less than 0.1 mm. As illustrated in Figure 5,
the convergence curve reveals that the optimal solution was achieved at the 959th function
evaluation. Throughout the optimization progression, once the queue became populated
with Nq samples, the average fitness of the queue was graphed in parallel with the best
fitness attained up until that juncture. Here, “best fitness” denotes the most favorable
outcome discovered in the queue until that instance, whereas “average fitness” signifies the
mean of the fitness values for all candidates within the queue at each function evaluation.
As depicted in Figure 5, we can observe a gradual decrease in the average fitness function
with an increasing number of function evaluations.
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Figure 5. Convergence curve for the modified CE algorithm implemented to optimize the metallic
patch dimension of the PGM. The plot compares the evolution of the average fitness of the queue
with respect to the best fitness of the queue so far.

The average fitness gradually converges toward the vicinity of the best fitness, signi-
fying the convergence of the optimization process. Notably, the curve’s central segment
indicates that the degree of smoothing applied is quite pronounced, and there might be
potential for reducing it to accelerate convergence. Past experience with the CE method
anticipates that a higher value of α would likely hasten the convergence rate. Nonetheless,
it is important to acknowledge the inherent trade-off between computational expenditure
and precision. The algorithm was stopped once the diversity among the elite candidates
dropped below the predefined threshold.
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4.2. Optimizing Amplitude Distribution in the Feed Array of a PGM to Control SLLs

In various satellite applications, metasurfaces designed for beam steering are often
combined with high-gain feeding apertures, such as arrays of closely arranged low-gain
antennas. These arrays create a narrow, highly focused beam directed perpendicularly
(broadside) to the array plane. They achieve this with a near-uniform phase distribution
across the near-electric field. However, when integrating a beam-steering metasurface
that introduces a gradual phase progression within the near-electric field of the feeding
array, the previously perpendicular beam of the array undergoes a tilt at an off angle.
Unfortunately, this can lead to the emergence of multiple undesired significant sidelobes in
the far-field radiation pattern.

Analogies can be drawn between the theory of antenna array pattern synthesis and
the control of metasurface beam steering. In this context, the methodology for designing
metasurfaces can be likened to the discrete sampling process employed in antenna arrays.
According to antenna array theory, effective control over the sidelobe level (SLL) can be
achieved by utilizing appropriate amplitude distributions in the excitation field [36]. In the
realm of phased arrays, techniques such as Chebyshev or Taylor amplitude distributions
have been applied to regulate SLLs within the far-field pattern [37–39]. Building upon this
concept, we posit that an optimized amplitude excitation has the potential to efficiently suppress
undesired sidelobes within the far-field pattern of antennas based on metasurfaces.

To explore this concept, we use the design configuration shown in Figure 6, which
offers a side view of the setup used for this investigation.

Incident plane wave

… … … ...

Stepped 

Saw-tooth 

wavefront

Elementary diagram showing cross section

of a Phase Gradient Metasurface

Steered far-field pattern

Phase

wrapping

An array of Hertzian dipoles (all fed with equal amplitude and phase) 

backed by a ground plane placed just below the array.

ϴ

ϴ

λ/2

φ1 φ2 φ1 φMφ2φM φ1 φ2…             …     …     …     … …                             …φM

λ/2
λ/2

… … … ...

Figure 6. Elementary diagram for the side view of an array-fed beam-steering PGM, showing a
stepped saw-tooth phase profile in the near field and a steered pattern in the far field.

The illustration depicts an array feed situated at a half-wavelength distance beneath
the metasurface, giving rise to a plane-wave propagation along the z-axis. This feed
encompasses an array of infinitesimal Hertzian dipoles spaced half a wavelength apart,
all positioned in front of a ground plane. A uniform magnitude and phase are assigned to
the feed’s elements. Each spatial phase-shifting cell within the metasurface introduces a
specific phase modification, thereby establishing a consistent progressive phase disparity
between adjacent cells. Consequently, the metasurface output assumes a continuous,
linearly escalating phase profile. This phase profile, upon cycling every 360◦ increment in
the phase delay, transforms into a saw-tooth phase distribution. The unchanging phase
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difference between neighboring cells (∆φ = 2π/M) remains constant, where M denotes the
count of unique cells in the supercell (one period within a PGM is denoted as a supercell).

The distinct phase delays (φ1, φ2. . .φM) undergo periodic repetition to align with the
recurring structure of a supercell within the metasurface. This linearly augmenting phase,
equivalent to an unwrapped saw-tooth phase, induces beam tilting (θ) within the far-field
radiation pattern. The metasurface with an increasing electric field phase variation, as
shown in Figure 6, yields a steered beam but with sidelobes as well as periodic grating lobes.
Ideally, the wavefront of a steered beam should have a periodically repeated saw-tooth
profile [40]. However, owing to the inherent phase discretization integral to the metasur-
face design, a stepped saw-tooth wavefront is obtained in reality. Real-world conditions
introduce factors like mutual coupling, fringing fields, assumptions of periodicity in design,
abrupt geometric alterations, and manufacturing imperfections, all of which collectively
contribute to pattern deterioration. Consequently, deviations from the anticipated saw-
tooth phase profile occur. The outcome is an elevation in the sidelobe levels (SLLs) within
the far-field radiation pattern. The approach to metasurface design can be analogously
likened to the discrete sampling method employed in aperture-based antenna arrays.

The generalized CE algorithm is implemented to optimize the amplitude distribution
within the feed array of a PGM. The primary objective is to mitigate the presence of unde-
sirable sidelobe levels (SLLs) within the far-field radiation pattern. This study delves into
leveraging the amplitude variation within the feed array to proficiently govern the extent
of undesired lobes in a beam-steering antenna based on a PGM. While the manipulation
of the phase through the metasurface facilitates main-lobe steering and control across the
complete 0 to 2π range, the optimization of the excitation amplitudes within the feed array
provides a strategic avenue for effective SLL management.

4.2.1. Problem Formulation

Antenna array theory has established that sidelobe levels (SLLs) can be controlled
through customized amplitude distributions within the excitation field [36]. In our method-
ology, we harness this principle by supplying each element of the supercell with infinitesi-
mally small Hertzian dipoles. Notably, distinct excitation amplitudes are assigned to each
dipole element while maintaining a constant phase, as illustrated in Figure 7.

The design variables V1, V2. . .VN represent the set of feed amplitudes, which are
recurrently replicated. Our objective revolves around identifying an optimal arrangement of
excitation amplitudes capable of effectively mitigating SLLs to levels below the constraints
stipulated in the FCC mask outlined in (10). For the purpose of optimization, the simplified
1D metasurface model depicted earlier in Figure 3 is utilized. The parameter vector consists
of a periodic sequence of amplitude distributions incorporating N distinct amplitude values.

x = (V1, V2, V3, V4, . . ., VN), (12)

where (V1, V2, V3, V4, . . ., VN) ∈ [0, 1]. The fixed parameters of a Hertzian dipole array-fed
metasurface design are the aperture size (23λ0 × 23λ0), cell size (d = λ0/2), and permittivity
of the dielectric substrate (εr = 2.2), along with the patch and hole dimensions (a1, a2, a3,
a4, a5, b1, b2, b3, b4, b5, r), whose values are tabulated in the next section.
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Figure 7. Elementary diagram of the side view of an array-fed beam-steering PGM, showing a
stepped saw-tooth phase profile in the near field and a steered pattern in the far field.

4.2.2. Algorithm Implementation

The process of optimizing the distribution of feed amplitudes constitutes a continuous
optimization problem confined within a specific search space. By attributing distinct
amplitude excitations to each element within the supercell, effective control over the
sidelobe levels within the radiation pattern is achieved. The optimization parameters
(V1, V2. . .VN) are permitted to vary continuously within the interval of 0 to 1. To maintain
adherence to this range, population candidates are sampled independently and identically
(i.i.d) from a beta probability distribution function ( f (x|α, β)), as shown in Figure 8, since it
naturally supports the bound within [0, 1]. The initial distribution uses α = 1 and β = 1.
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Figure 8. Beta distribution probability density functions for different sets of values of parameters α

and β.

After each evaluation, the probability distribution parameters are updated using the
elite population, as detailed in Algorithm 1. The fitness function (FF), detailed in (11),
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is used with the objective of ensuring that the directivity pattern aligns with the FCC
mask (25.209) for the Ka-band, as defined in (10). To facilitate precise full-wave EM
simulation-driven optimization, the generalized CE algorithm is implemented in MATLAB
and seamlessly integrated with CST MWS. This iterative algorithm progressively minimizes
the fitness function, consequently diminishing undesired sidelobe levels (SLLs) within
the radiation pattern. The Chebyshev or Taylor amplitude tapering exhibits a symmetric
distribution characterized by a bell-shaped profile. To replicate a similar pattern, we
incorporate 23 distinct amplitude excitations. These excitations are duplicated in a mirrored
symmetry to encompass the entire aperture, consisting of 46 elements along the x-direction.
This arrangement is illustrated in Figure 9.

λ/2

V1     V2      … … … … … … … … … … V23    V23 … … … …  … … … … … …  …   V1

…… …

Phase Gradient Metasurface

Hertzian dipole array periodically distributed with period N=23

Figure 9. A PGM fed with an array of Hertzian dipoles with an amplitude excitation periodicity of
N = 23.

Table 2 lists the user-defined input parameters set in the algorithm to optimize the
feed amplitude distributions.

Table 2. The CE algorithm parameters for the optimization of excitation amplitude distributions with
a periodicity of N = 23 in the feed array of a PGM.

Queue Size Elite Sub-Population Size Smoothing
Nq Nel αS

150 15 0.5

4.2.3. Optimization Results

On an Intel Core i7-6700 CPU running at a clock speed of 3.4 GHz and equipped
with 64 GB of RAM, each evaluation carried out within the CST MWS time-domain solver
required approximately 21 min. This was notably faster than the previous approach,
as the mesh remained unchanged during each evaluation due to the fixed metallic patch
dimensions. The entire optimization process involving 23 design variables spanned a
cumulative duration of 447 h and 48 min, conducting a total of 566 function evaluations
before the termination criterion was met. It is worth highlighting that in both optimization
cases, the computation time was extended due to the lack of GPU acceleration, which could
have significantly expedited the optimization process. The initial 150 function evaluations
were dedicated to queue initialization. This step involved populating the queue with
candidates and their corresponding fitness values. Following this initial phase, subsequent
evaluations contributed to identifying the elite candidates and subsequently updating the
probability distribution parameters. This dynamic process directed the search toward the
global optimum. The convergence results, as depicted in Figure 10, showcase the evolution
of both the average fitness across all samples within the queue and the best fitness observed
up until that point. The graph demonstrates that the optimal solution was attained at the
508th function evaluation.
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Figure 10. Convergence results using the modified CE method for Case-II optimization of the PGM.

5. Electromagnetic Simulation Results

In the context of the first optimization strategy, the design characteristics of the PGM
before and after optimizing the dimensions of the metallic patches are presented in Table 3.

Table 3. Design parameter values for the PGM before and after optimization.

Design Parameters, mm Before Optimization After Optimization

a1, b1 2.27, 2.25 2.54, 2.09
a2, b2 3.30, 3.50 3.75, 3.47
a3, b3 3.88, 3.85 3.65, 4.12
a4, b4 4.11, 4.14 4.28, 3.97
a5, b5 4.30, 4.20 4.10, 4.44
r 3.4 3.68

Sidelobe Level, dB −13 −16.5
FF, Equation (11) 4284 561

The optimized design parameters were employed to construct a finite-sized 2D meta-
surface structure. This metasurface was subsequently subjected to simulation using the
CST MWS time-domain solver, with excitation through a waveguide port and employing
“Open-Add space” boundary conditions in both the x- and y-directions.

In Figure 11, we can observe and compare the directivity patterns obtained through
full-wave electromagnetic simulation for both the initial and optimized finite-sized 2D
metasurfaces. In the initial design, the directivity pattern of the PGM exhibited deviations
from the FCC mask at four distinct points (θ = −80◦,−20◦, 0◦, 40◦) within the observable
range of θ. After undergoing the optimization process, a substantial portion of the sidelobes
was effectively mitigated, and the directivity pattern violated the FCC mask at only two
locations: θ = −40◦ by 3.5 dB and θ = 40◦ by 0.5 dB. Furthermore, the SLL was reduced by
4 dB (from −13 dB to −17 dB) compared to the initial design.

The results obtained using this approach represent solutions that are in close proximity
to the global optimum while simultaneously preserving the structural integrity and not
disrupting the underlying physics. Moreover, this method acknowledges the delicate
balance between achieving the desired results and the time invested in the optimization
process. Consequently, the stopping criterion was not rigidly set to FF = 0, where the
fitness value reaches its absolute minimum. The definition of the stopping criterion is a
critical factor influencing the algorithm’s convergence. In this particular case, the optimizer
concludes its operation when the diversity among the sampled candidates in the queue
drops below a predefined threshold. At this juncture, the best parameters discovered are
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regarded as the global optimum. It is worth noting that this global optimum may differ
slightly from the true global best, but it remains effective in addressing the specific design
problem under consideration.
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Figure 11. Directivity pattern comparison of optimized and unoptimized PGMs.

Likewise, in the context of the second optimization strategy, Table 4 presents the
excitation amplitude parameters of the PGM both before and after the optimization process.
In CST MWS, a finite-sized 2D metasurface was subject to simulation, employing “Open-
Add space” boundary conditions in both the x- and y-directions. The metasurface was
then excited using a 2D array of Hertzian dipoles featuring the optimized excitation
amplitude distribution. Subsequently, the results were compared with those obtained from
a simulation where a 2D array of Hertzian dipoles was uniformly excited as the source.

Table 4. Excitation amplitude distribution of feed array before and after optimization.

Design Parameters, mm Before Optimization After Optimization
V1 1 0.34
V2 1 0.70
V3 1 0.65
V4 1 0.55
V5 1 0.74
V6 1 0.34
V7 1 0.70
V8 1 0.65
V9 1 0.55
V10 1 0.74
V11 1 0.34
V12 1 0.70
V13 1 0.65
V14 1 0.55
V15 1 0.74
V16 1 0.74
V17 1 0.34
V18 1 0.70
V19 1 0.65
V20 1 0.55
V21 1 0.74
V22 1 0.34
V23 1 0.46

Directivity, dBi 21.9 20.5
Sidelobe Level, dB −12.4 −19.3
FF, Equation (11) 1247 32.8
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Figure 12 illustrates a comparison of the directivity patterns of the PGM before and
after the optimization of the excitation amplitude distribution. Notably, the optimization
endeavor successfully suppressed the undesirable sidelobes, effectively keeping them
below the FCC mask, with the exception of a single sidelobe situated at −20◦. Additionally,
the directivity of the optimized PGM experienced a reduction of 1.4 dB. This reduction can
be primarily attributed to the tapering introduced within the feed array, which played a
pivotal role in achieving these improvements.
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Figure 12. Comparison of the radiation pattern of a finite-sized 2D metasurface when excited by a 2D
array of Hertzian dipoles, showing a decrease in sidelobe levels (SLLs) following the optimization of
the excitation amplitude distribution compared to a uniformly excited array.

The overall directivity decreased from 21.9 dBi to 20.5 dBi (1.4 dB reduction) due to the
tapering in the amplitude distribution achieved after optimization. The SLL was reduced
by 6.9 dB (from −12.4 dB to −19.3 dB).

6. Discussion

Managing sidelobe levels (SLLs) in metasurface-driven beam-steering antennas
presents a formidable challenge due to the involvement of various intrinsic factors that
contribute to the emergence of grating lobes. The inherent complexity of metasurface struc-
tures adds to the difficulty in achieving precise control over these sidelobes. In response
to this challenge, we propose a method that leverages an equivalent model, rendering
the optimization of electrically large periodic metasurfaces more feasible and computa-
tionally efficient. This model is designed to provide accurate predictions of the complete
metasurface performance. It incorporates an antenna array factor calculator that duly
accounts for mutual coupling between the metallic patches. By optimizing the PGM-based
beam-steering antenna and strategically mitigating excessive sidelobes, we introduced a
streamlined evolutionary optimization algorithm rooted in the CE method. This innovative
approach effectively addresses the intricacies of sidelobe suppression, contributing to the
attainment of enhanced far-field radiation pattern performance.

To achieve a beam-steered radiation pattern that complies with the FCC mask (25.209)
for Ka-band applications and effectively suppresses undesired sidelobes, we adopted two
distinct strategies. In the first approach, we optimized the dimensions of the patches,
aiming to attain a radiation pattern devoid of spurious sidelobes. This optimization effort
resulted in a notable reduction of the sidelobe levels (SLLs), thus significantly enhancing
the overall metasurface performance. The second approach maintained the dimensions of
the PGM constant while focusing on optimizing the amplitudes within the dipole array
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feed. This amplitude optimization of the feed array yielded outcomes similar to those
achieved through the first approach, particularly in terms of sidelobe management.

The outcomes from these optimization cases offer valuable insights into the effec-
tiveness and applicability of the cross-entropy method for CPU-intensive electromag-
netic optimization challenges. Additionally, they provide essential guidance for informed
decision-making when considering this optimization approach for analogous applications.
A significant drawback of conventional population-based optimization methods lies in
their heavy reliance on an extensive number of forward solver calls. This reliance renders
them impractical when dealing with computationally demanding full-wave time-domain
electromagnetic (EM) simulations, particularly in cases involving intricate EM structures
that necessitate substantial computational resources and time.

In response to this challenge, the proposed variant of the cross-entropy (CE) method
addresses this limitation by retaining the simplicity and elegance of the CE approach while
simultaneously enhancing monitoring capabilities. This improvement facilitates the obser-
vation of the algorithm’s progress. Notably, it has been observed that employing smaller
generations leads to more favorable expected improvements per function evaluation. This
adapted version of the CE method not only demonstrates its efficiency and potential in
the design and optimization of metasurfaces but also showcases its versatility across var-
ious complex EM design problems. As a result, it presents an appealing alternative to
other commonly used optimization algorithms. With its favorable convergence proper-
ties, the proposed CE method establishes itself as a competitive and efficient solution for
addressing computationally intensive EM optimization challenges.

In contrast to the previously proposed PGM optimization strategies documented in
Singh et al.’s works [1,2], which rely on a simplified supercell model and exclusively exploit
surface periodicity, the method presented here employs a more precise equivalent model
to anticipate the performance of finite-sized metasurfaces. The proposed optimization
approach relies solely on the radiation pattern of the 1D metasurface, forecasted after
conducting full-wave electromagnetic simulations, treating the problem as a black-box
optimization. This distinguishes it from the alternative methods outlined in Singh et al.’s
publications [1,2], which delve into the intricacies of the simulation model’s physics.

The outcomes projected by our proposed optimization approach closely align with
real-world performance since the equivalent model applies the periodicity assumption
exclusively along the y-direction while maintaining the x-direction boundary conditions
identical to the original metasurface. In the case of significantly large PGM apertures, Flo-
quet analysis-based optimization approaches using supercells can significantly reduce com-
putation time. However, they do not accurately predict the far-field pattern of finite-sized
PGMs, where supercell repetitions are fewer, or truncated metasurfaces. For metasurfaces
with fewer supercell repetitions, the optimization approach proposed in this work offers
more reliable predictions and accurate optimization results.
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