
Citation: Xin, J.; Cha, M.; Shi, L.;

Jiang, X.; Long, C.; Lin, Q.; Li, H.;

Wang, F.; Wang, P. Design and

Implementation of an Efficient

Hardware Coprocessor IP Core for

Multi-axis Servo Control Based on

Universal SoC. Electronics 2023, 12,

452. https://doi.org/10.3390/

electronics12020452

Academic Editor: Marco Vacca

Received: 15 December 2022

Revised: 11 January 2023

Accepted: 13 January 2023

Published: 15 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Design and Implementation of an Efficient Hardware
Coprocessor IP Core for Multi-axis Servo Control Based on
Universal SoC
Jitong Xin 1,†, Meiyi Cha 1,†, Luojia Shi 1, Xiaoliang Jiang 2, Chunyu Long 1, Qichun Lin 2, Hairong Li 1,
Fangcong Wang 1 and Peng Wang 1,*

1 Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University,
Lanzhou 730000, China

2 ZheJiang Hikstor Technology Co., Ltd., Wuxi 214000, China
* Correspondence: wangpeng@lzu.edu.cn
† These authors contributed equally to this work.

Abstract: The multi-axis servo control system has been extensively used in industrial control. How-
ever, the applications of traditional MCU and DSP chips in high-performance multi-axis servo control
systems are becoming increasingly difficult due to their lack of computing power. Although FPGA
chips can meet the computing power requirements of high-performance multi-axis servo control
systems, their versatility is insufficient, and the chip is too costly for large-scale use. Therefore, when
designing the universal SoC, it is better to directly embed the coprocessor IP core dedicated to accel-
erating the multi-motor vector control current loop operation into the universal SoC. In this study, a
coprocessor IP core that can be flexibly embedded in a universal SoC was designed. The IP core based
on time division multiplexing (TDM) technology could accelerate the multi-motor vector control
current loop operation according to the hardware–software coordination scheme proposed in this
study. The IP was first integrated into a universal SoC to verify its performance, and then the FPGA
prototype verification for the SoC was performed under three-axis servo control systems. Secondly,
the ASIC implementation of the IP was also conducted based on the CSMC 90 nm process library.
The experimental results revealed that the IP had a small area and low power consumption and was
suitable for application in universal SoC. Therefore, the cheap and low-power single universal SoC
with the coprocessor IP can be suitable for multi-axis servo control.

Keywords: multi-axis servo control; IP core; time division multiplexing (TDM); universal SoC;
hardware–software coordination scheme; FPGA prototype verification; ASIC implementation

1. Introduction

With the rapid development of microelectronics and corresponding control technolo-
gies, there is a need to improve the characteristics of industrial AC motors [1]. Numerous
studies on AC motors have shown that permanent magnet synchronous motors (PMSMs)
are critical in the field of AC motors due to their unique advantages [2]. PMSMs are
extensively used in various fields, including new energy vehicles, exoskeleton systems,
missile steering engines, and UAVs [3–7].

At present, there is a high demand for MCU or DSP as the motor control chip. How-
ever, they are entirely dependent on software algorithms. Thus, because they have slow
calculation and response speeds, they cannot be directly used in high-speed control systems.
Multi-MCU and multi-DSP have been used where high control responses are required [8].
This will undoubtedly lead to higher power consumption and cost. FPGA is suitable
for medium and high-end motor control applications due to its unique parallelism [9,10].
In recent years, certain vector control algorithms have been applied to FPGA to realize
its acceleration [11–15]. Loop operation of vector control through FPGA has also been

Electronics 2023, 12, 452. https://doi.org/10.3390/electronics12020452 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12020452
https://doi.org/10.3390/electronics12020452
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12020452
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12020452?type=check_update&version=2

Electronics 2023, 12, 452 2 of 21

applied [16–20], greatly improving the operation speed of the current loop. Besides, the
PMSM vector control ASIC has been designed to improve the integration of the system [21].
These studies demonstrate the rapid development and progress of the PMSM control field.

With the flourishing development of industry and the gradual improvement of pro-
ductivity, the application of PMSM is not limited to a single main control system of a single
motor, but it extends to the real-time control of multiple motors simultaneously [22], such
as mechanical phased array antenna, multi-joint manipulator, multi-axis linkage CNC ma-
chine tools, and other application scenarios. In these scenarios, some motor drive systems
should control multiple motors in the system synchronously or asynchronously through a
single main control chip [23], which requires the superior performance of the motor control
system [24]. In recent years, many researchers have devoted themselves to improving the
efficiency of multi-axis servo control systems. For example, Sarayut Amornwongpeeti et al.
applied the multi-axis servo control on FPGA based on time division multiplexing [6,24],
whereas Qiang Gu et al. used the multi-axis servo control on zynq SoC based on hard-
ware and software collaboration [25,26]. These findings demonstrate the application of
FPGA parallelism to achieve efficient control of multi-axis servo control systems. However,
FPGA or zynq SoC are unsuitable for large-scale industrial applications because of on-chip
resources, their cost and system power consumption.

Therefore, in the process of universal SoC chip design, it is undoubtedly a good choice
to directly embed the coprocessor IP core that can efficiently accelerate the operation of
multiple PMSM vector control algorithms into the universal SoC. The coprocessor IP core
greatly improves the speed of calculation of multi-PMSM Vector Control through hardware
pipeline calculation and parallel computing. This facilitated multi-axis servo control at a
low-cost and low-power single universal SoC. The schematic diagram of a universal SoC
embedded with a coprocessor as the main control chip of a multi-axis servo control system
to realize multi-axis servo control is shown in Figure 1.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 23

suitable for medium and high-end motor control applications due to its unique parallel-
ism [9,10]. In recent years, certain vector control algorithms have been applied to FPGA
to realize its acceleration [11–15]. Loop operation of vector control through FPGA has also
been applied [16–20], greatly improving the operation speed of the current loop. Besides,
the PMSM vector control ASIC has been designed to improve the integration of the system
[21]. These studies demonstrate the rapid development and progress of the PMSM control
field.

With the flourishing development of industry and the gradual improvement of
productivity, the application of PMSM is not limited to a single main control system of a
single motor, but it extends to the real-time control of multiple motors simultaneously
[22], such as mechanical phased array antenna, multi-joint manipulator, multi-axis link-
age CNC machine tools, and other application scenarios. In these scenarios, some motor
drive systems should control multiple motors in the system synchronously or asynchro-
nously through a single main control chip [23], which requires the superior performance
of the motor control system [24]. In recent years, many researchers have devoted them-
selves to improving the efficiency of multi-axis servo control systems. For example,
Sarayut Amornwongpeeti et al. applied the multi-axis servo control on FPGA based on
time division multiplexing [6,24], whereas Qiang Gu et al. used the multi-axis servo con-
trol on zynq SoC based on hardware and software collaboration [25,26]. These findings
demonstrate the application of FPGA parallelism to achieve efficient control of multi-axis
servo control systems. However, FPGA or zynq SoC are unsuitable for large-scale indus-
trial applications because of on-chip resources, their cost and system power consumption.

Therefore, in the process of universal SoC chip design, it is undoubtedly a good
choice to directly embed the coprocessor IP core that can efficiently accelerate the opera-
tion of multiple PMSM vector control algorithms into the universal SoC. The coprocessor
IP core greatly improves the speed of calculation of multi-PMSM Vector Control through
hardware pipeline calculation and parallel computing. This facilitated multi-axis servo
control at a low-cost and low-power single universal SoC. The schematic diagram of a
universal SoC embedded with a coprocessor as the main control chip of a multi-axis servo
control system to realize multi-axis servo control is shown in Figure 1.

SoC

Feedback signals

Figure 1. Multi-axis servo control system with universal SoC embedded in coprocessor as main con-
trol chip.

Figure 1. Multi-axis servo control system with universal SoC embedded in coprocessor as main
control chip.

2. Background Research
2.1. Mathematical Model of Permanent Magnet Synchronous Motor

The voltage equation of the surface-mounted permanent magnet synchronous motor
in the d-q axis coordinate system is expressed by Formulas (1) and (2).

ud = Rsid + Ld
did
dt
− pωeLqiq (1)

Electronics 2023, 12, 452 3 of 21

uq = Rsiq + Lq
diq
dt

+ pωeLdid + pωeψ f (2)

where ud and uq are the voltage on d and q axes, respectively; id and iq are the current on d
and q axes, respectively; Ld and Lq are the inductance d and q axes, respectively; Rs is the
stator resistance; ψ f is the permanent magnet flux linkage; ωe is the rotor electric angular
velocity; and p is the number of motor poles.

The torque equation in the d-q axis two-phase rotating coordinate system is shown in
Equation (3):

Te =
3
2

p
[
ψ f iq + idiq(Ld − Lq)

]
(3)

where Te is the output torque.
When ignoring friction, the motion equation in the d-q axis two-phase rotating coordi-

nate system can be expressed by Equation (4):

J
dωr

dt
= −Bωr +

3
2

pψ f iq +
3
2

pidiq
(

Ld − Lq
)
− TL (4)

where TL is the load torque, B is the friction coefficient, J is the rotational inertia of the axis,
and ωr is the mechanical angular velocity.

2.2. Vector Control

Vector control is also known as field-oriented control. Its control of PMSM adopts
a rotor flux-oriented approach, and it is suitable for servo control and other small drive
control occasions. The key to vector control is coordinate transformation, so there are nu-
merous operations in the current loop of vector control. The current loop comprises Clarke
transform, Park transform, Ipark transform, PI control, and SVPWM modulation [25]. At
present, the loop control strategy of PMSM mainly includes id = 0 control method, cosϕ = 1
control method, torque current maximum ratio control method, and flux weakening control
method. For the surface-mounted permanent magnet synchronous motor, the current loop
control strategy with id = 0 is a better choice to achieve the purpose that all the currents
output by the servo system generate torque components and improve the torque output
efficiency. On this basis, the speed loop and position loop are added to realize the speed and
position servo control of the motor [26]. The control block diagram is shown in Figure 2.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 23

PID Control PI Control PI Control

PI Control

Park Clarke

Ipark SVPWM

d/dt

PMSM

di

qi

*
d 0i = qU

dU Uβ

iα
iβ

ai

bi

ci

Uα

*
qi

Figure 2. PMSM position servo control system.

2.3. Basic Architecture of Universal SoC
SoC can be divided into two types according to their purpose: one is dedicated SoC

chips, which are the development of ASIC to system-level integration, and the other is
universal SoC chips [27]. MCU, widely used in industrial control, also belongs to universal
SoC [28].

The universal SoC’s architecture is hierarchical [29]. The levels of the SoC system
include the core: such as ARM, and RISC-V; bus interconnection: AMBA3, AMBA4, etc.;
IP conforming to high-speed bus interface (high-speed IP): DMA, FLASH, SRAM, etc.;
bridging IP: conversion bridge between AHB and APB; and peripheral equipment IP
(low-speed IP) that meets the low-speed bus interface: UART, SPI, PWM, ADC, DAC,
TIMER, I2C, WDT, GPIO, etc. Figure 3 shows the basic architecture of the universal SoC.
In general, the main devices, SoC, CPU, and DMA, are connected to multiple slave devices
through the AHB bus interconnection matrix. The AHB bus interconnection matrix ena-
bles different master devices to access different slave devices simultaneously, realizing
parallel transmission of data of multiple master devices [30,31].

CPU

AHB MARTRIX

SRAMBus
Bridge0

Bus
Bridge1

APB1

I2C UART

FLASH

TIMER
x8

DAC
x2

APB0

ADC
x2 GPIO WDT

DMA x 2

PWM
x4

Figure 3. The architecture of universal SoC.

3. Implementation Process
Section 3.1 of this chapter focuses on the overall design architecture of the coproces-

sor IP and the key methods to improve the overall performance of the IP in the design
process. Section 3.2 describes the SoC integration method. Section 3.3 describes the hard-
ware–software coordination scheme of the IP.

Figure 2. PMSM position servo control system.

2.3. Basic Architecture of Universal SoC

SoC can be divided into two types according to their purpose: one is dedicated SoC
chips, which are the development of ASIC to system-level integration, and the other is
universal SoC chips [27]. MCU, widely used in industrial control, also belongs to universal
SoC [28].

Electronics 2023, 12, 452 4 of 21

The universal SoC’s architecture is hierarchical [29]. The levels of the SoC system
include the core: such as ARM, and RISC-V; bus interconnection: AMBA3, AMBA4, etc.;
IP conforming to high-speed bus interface (high-speed IP): DMA, FLASH, SRAM, etc.;
bridging IP: conversion bridge between AHB and APB; and peripheral equipment IP
(low-speed IP) that meets the low-speed bus interface: UART, SPI, PWM, ADC, DAC,
TIMER, I2C, WDT, GPIO, etc. Figure 3 shows the basic architecture of the universal SoC. In
general, the main devices, SoC, CPU, and DMA, are connected to multiple slave devices
through the AHB bus interconnection matrix. The AHB bus interconnection matrix enables
different master devices to access different slave devices simultaneously, realizing parallel
transmission of data of multiple master devices [30,31].

Electronics 2023, 12, x FOR PEER REVIEW 4 of 23

PID Control PI Control PI Control

PI Control

Park Clarke

Ipark SVPWM

d/dt

PMSM

di

qi

*
d 0i = qU

dU Uβ

iα
iβ

ai

bi

ci

Uα

*
qi

Figure 2. PMSM position servo control system.

2.3. Basic Architecture of Universal SoC
SoC can be divided into two types according to their purpose: one is dedicated SoC

chips, which are the development of ASIC to system-level integration, and the other is
universal SoC chips [27]. MCU, widely used in industrial control, also belongs to universal
SoC [28].

The universal SoC’s architecture is hierarchical [29]. The levels of the SoC system
include the core: such as ARM, and RISC-V; bus interconnection: AMBA3, AMBA4, etc.;
IP conforming to high-speed bus interface (high-speed IP): DMA, FLASH, SRAM, etc.;
bridging IP: conversion bridge between AHB and APB; and peripheral equipment IP
(low-speed IP) that meets the low-speed bus interface: UART, SPI, PWM, ADC, DAC,
TIMER, I2C, WDT, GPIO, etc. Figure 3 shows the basic architecture of the universal SoC.
In general, the main devices, SoC, CPU, and DMA, are connected to multiple slave devices
through the AHB bus interconnection matrix. The AHB bus interconnection matrix ena-
bles different master devices to access different slave devices simultaneously, realizing
parallel transmission of data of multiple master devices [30,31].

CPU

AHB MARTRIX

SRAMBus
Bridge0

Bus
Bridge1

APB1

I2C UART

FLASH

TIMER
x8

DAC
x2

APB0

ADC
x2 GPIO WDT

DMA x 2

PWM
x4

Figure 3. The architecture of universal SoC.

3. Implementation Process
Section 3.1 of this chapter focuses on the overall design architecture of the coproces-

sor IP and the key methods to improve the overall performance of the IP in the design
process. Section 3.2 describes the SoC integration method. Section 3.3 describes the hard-
ware–software coordination scheme of the IP.

Figure 3. The architecture of universal SoC.

3. Implementation Process

Section 3.1 of this chapter focuses on the overall design architecture of the coproces-
sor IP and the key methods to improve the overall performance of the IP in the design
process. Section 3.2 describes the SoC integration method. Section 3.3 describes the
hardware–software coordination scheme of the IP.

3.1. Coprocessor IP Core Design

Figure 2 shows that the speed loop and position loop of PMSM vector control add PI
operation and PID operation based on the current loop. It can be seen that the calculation
of PMSM vector control is mainly focused on the current loop. Therefore, the IP core of
the coprocessor involved in this study is only responsible for accelerating the current loop
operation, while PI and PID operations of speed and position loops are performed entirely
by the software. This not only saves the area and power consumption of the coprocessor IP
core, but also increases the flexibility of PMSM vector control. Limited by the number of
registers, this IP supports a six-axis servo control system at most.

The overall architecture of the IP is shown in Figure 4. The external interfaces of the
IP include the AHB SLAVE interface in the AMBA bus, interrupt interface, DMA request
interface, and response interface. The IP is mainly composed of an interface module and an
operation core. The former is used to control the read and write of registers and the control
of DMA and interrupt-related signals, and the latter is used to accelerate the current loop.

As shown in Figure 4, the interface module consists of an AHB slave controller, input
register heap, output register heap, DMA, and interrupt controller.

The AHB slave controller reads and writes registers according to AHB protocol. AHB
bus signals include HADDR, HWDATA, HRDATA, HSEL, etc. The read and write opera-
tions of the AHB protocol in the basic transmission mode are shown in Figure 5a,b [30].

Electronics 2023, 12, 452 5 of 21

Electronics 2023, 12, x FOR PEER REVIEW 5 of 23

3.1. Coprocessor IP Core Design
Figure 2 shows that the speed loop and position loop of PMSM vector control add PI

operation and PID operation based on the current loop. It can be seen that the calculation
of PMSM vector control is mainly focused on the current loop. Therefore, the IP core of
the coprocessor involved in this study is only responsible for accelerating the current loop
operation, while PI and PID operations of speed and position loops are performed entirely
by the software. This not only saves the area and power consumption of the coprocessor
IP core, but also increases the flexibility of PMSM vector control. Limited by the number
of registers, this IP supports a six-axis servo control system at most.

The overall architecture of the IP is shown in Figure 4. The external interfaces of the
IP include the AHB SLAVE interface in the AMBA bus, interrupt interface, DMA request
interface, and response interface. The IP is mainly composed of an interface module and
an operation core. The former is used to control the read and write of registers and the
control of DMA and interrupt-related signals, and the latter is used to accelerate the cur-
rent loop.

HREADY
Input

Register file

Output
Register file

Decoder

Control
Logic

 DMA AND INTERRUPT
CONTRL

AHB SLAVE CONTRL

Multiplexer

Distributor
DATA

CTRL
ADDR

ADDR

DMA_REQ_0

DMA_REQ_5

DMA_ACK_0

DMA_ACK_5

ę

ę

CTRL

HWDATA
HSEL

HWRITE
HREADY

HADDR

INT

CTRL

HRDATA

Operation
Core

FINISH_N

Input Register

Output Register

Interface

Figure 4. Overall architecture of coprocessor IP.

As shown in Figure 4, the interface module consists of an AHB slave controller, input
register heap, output register heap, DMA, and interrupt controller.

The AHB slave controller reads and writes registers according to AHB protocol. AHB
bus signals include HADDR, HWDATA, HRDATA, HSEL, etc. The read and write oper-
ations of the AHB protocol in the basic transmission mode are shown in Figure 5a,b [30].

HCLK
HADDR[31:0]

HWRITE
HRDATA[31:0]

HREADY

A B

Data (A)

Address phase Data phase

(a)Read

HCLK
HADDR[31:0]

HWRITE
HRDATA[31:0]

HREADY

Address phase Data phase

A B

Data (A)

(b)Write
Figure 5. The read and write operations of the AHB protocol in the basic transmission mode.

The Input Register file registers the data output by the operation core, and the Output
Register file registers the data configured by the host through the bus. As there are nu-
merous input, output, and calculation parameters of multi-motor vector control current
loop operation, the number of registers in the IP is also large. The registers of the IP are

Figure 4. Overall architecture of coprocessor IP.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 23

3.1. Coprocessor IP Core Design
Figure 2 shows that the speed loop and position loop of PMSM vector control add PI

operation and PID operation based on the current loop. It can be seen that the calculation
of PMSM vector control is mainly focused on the current loop. Therefore, the IP core of
the coprocessor involved in this study is only responsible for accelerating the current loop
operation, while PI and PID operations of speed and position loops are performed entirely
by the software. This not only saves the area and power consumption of the coprocessor
IP core, but also increases the flexibility of PMSM vector control. Limited by the number
of registers, this IP supports a six-axis servo control system at most.

The overall architecture of the IP is shown in Figure 4. The external interfaces of the
IP include the AHB SLAVE interface in the AMBA bus, interrupt interface, DMA request
interface, and response interface. The IP is mainly composed of an interface module and
an operation core. The former is used to control the read and write of registers and the
control of DMA and interrupt-related signals, and the latter is used to accelerate the cur-
rent loop.

HREADY
Input

Register file

Output
Register file

Decoder

Control
Logic

 DMA AND INTERRUPT
CONTRL

AHB SLAVE CONTRL

Multiplexer

Distributor
DATA

CTRL
ADDR

ADDR

DMA_REQ_0

DMA_REQ_5

DMA_ACK_0

DMA_ACK_5

ę

ę

CTRL

HWDATA
HSEL

HWRITE
HREADY

HADDR

INT

CTRL

HRDATA

Operation
Core

FINISH_N

Input Register

Output Register

Interface

Figure 4. Overall architecture of coprocessor IP.

As shown in Figure 4, the interface module consists of an AHB slave controller, input
register heap, output register heap, DMA, and interrupt controller.

The AHB slave controller reads and writes registers according to AHB protocol. AHB
bus signals include HADDR, HWDATA, HRDATA, HSEL, etc. The read and write oper-
ations of the AHB protocol in the basic transmission mode are shown in Figure 5a,b [30].

HCLK
HADDR[31:0]

HWRITE
HRDATA[31:0]

HREADY

A B

Data (A)

Address phase Data phase

(a)Read

HCLK
HADDR[31:0]

HWRITE
HRDATA[31:0]

HREADY

Address phase Data phase

A B

Data (A)

(b)Write
Figure 5. The read and write operations of the AHB protocol in the basic transmission mode.

The Input Register file registers the data output by the operation core, and the Output
Register file registers the data configured by the host through the bus. As there are nu-
merous input, output, and calculation parameters of multi-motor vector control current
loop operation, the number of registers in the IP is also large. The registers of the IP are

Figure 5. The read and write operations of the AHB protocol in the basic transmission mode.

The Input Register file registers the data output by the operation core, and the Output
Register file registers the data configured by the host through the bus. As there are
numerous input, output, and calculation parameters of multi-motor vector control current
loop operation, the number of registers in the IP is also large. The registers of the IP
are divided into five categories. The first category is the input variable register, which
configures the input phase current value, the electric angle value, and the reference current
value of the IP. These values constantly change during the PMSM current loop control
process. Therefore, they need to be configured before each current loop calculation begins.
The second category is the input control register, which is used to configure the motor
number value (used to determine which motor in the multi-axis servo system is used in this
calculation), calculate the mode value (whether to turn on the SVPWM overmodulation
function), and calculate the start signal value (the signal is a pulse signal, and the IP starts
an operation when it is high-level). These registers need to be configured before each
current loop calculation begins; the third category is parameter registers, which include the
PI control parameters and SVPWM carrier cycle parameters of all motors in the multi-axis
servo system. They need to be configured during the device initialization phase; the fourth
category is interruption and DMA control registers, which can not only turn on the DMA
function or interruption function of the IP, but also clear the interrupt. They need to be
configured in the device initialization phase. The fifth category is output class registers,
which include all the calculation result values output by the operation core and the output
motor number value corresponding to the calculation result value (used to determine which
motor in the multi-axis servo system the calculation result is).

DMA and interrupt controller controls the DMA request signal, DMA response signal,
and the IP interrupts signal. The DMA request signal and DMA response signal are related
to DMA handling the calculation result data. Because the interrupt processing time is too
long, the interrupt function is generally only turned on during the debugging process.

Electronics 2023, 12, 452 6 of 21

As shown in Figure 6, the operation core module consists of a Clarke unit, CORDIC
unit, Park unit, Ipark unit, d-axis PI control unit, q-axis PI control unit, SVPWM unit, and
data control unit. Due to the trigonometric function in the vector control, the CORDIC
unit is embedded in the IP to generate the CORDIC algorithm. Compared to the look-up
table method, the CORDIC unit saves the area of the circuit and improves the calculation
accuracy of the trigonometric function. The data control unit transmits the intermediate
calculation result data of the operation process according to the operation sequence of the
IP. Therefore, a full pipeline design architecture is adopted in the overall hardware design
of the operation core module to realize the high-speed operation of the multi-motor vector
control current loop.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 23

divided into five categories. The first category is the input variable register, which config-
ures the input phase current value, the electric angle value, and the reference current value
of the IP. These values constantly change during the PMSM current loop control process.
Therefore, they need to be configured before each current loop calculation begins. The
second category is the input control register, which is used to configure the motor number
value (used to determine which motor in the multi-axis servo system is used in this calcu-
lation), calculate the mode value (whether to turn on the SVPWM overmodulation func-
tion), and calculate the start signal value (the signal is a pulse signal, and the IP starts an
operation when it is high-level). These registers need to be configured before each current
loop calculation begins; the third category is parameter registers, which include the PI
control parameters and SVPWM carrier cycle parameters of all motors in the multi-axis
servo system. They need to be configured during the device initialization phase; the fourth
category is interruption and DMA control registers, which can not only turn on the DMA
function or interruption function of the IP, but also clear the interrupt. They need to be
configured in the device initialization phase. The fifth category is output class registers,
which include all the calculation result values output by the operation core and the output
motor number value corresponding to the calculation result value (used to determine
which motor in the multi-axis servo system the calculation result is).

DMA and interrupt controller controls the DMA request signal, DMA response sig-
nal, and the IP interrupts signal. The DMA request signal and DMA response signal are
related to DMA handling the calculation result data. Because the interrupt processing time
is too long, the interrupt function is generally only turned on during the debugging pro-
cess.

As shown in Figure 6, the operation core module consists of a Clarke unit, CORDIC
unit, Park unit, Ipark unit, d-axis PI control unit, q-axis PI control unit, SVPWM unit, and
data control unit. Due to the trigonometric function in the vector control, the CORDIC
unit is embedded in the IP to generate the CORDIC algorithm. Compared to the look-up
table method, the CORDIC unit saves the area of the circuit and improves the calculation
accuracy of the trigonometric function. The data control unit transmits the intermediate
calculation result data of the operation process according to the operation sequence of the
IP. Therefore, a full pipeline design architecture is adopted in the overall hardware design
of the operation core module to realize the high-speed operation of the multi-motor vector
control current loop.

Id*

z

Clarke

CORDIC

Data control

Park PI-d axix

PI-q axix

Ipark SVPWMCLK

CLK

CLK

CLK CLK

CLK

CLK CLKIa
Ib

Start

Ialpha

Ibeta

θ
 Start

Id
Finish

Iq

Ialpha

Ibeta

Finish

Start
Id

Iq
Start

Mot_num_in

Start

Id*
Motor_num

Iq*
Motor_num

Id*_PI
Iq*_PI

PI_Motor_num

SVPWM_Motor_num

Start

Cosθ
Sinθ

Cosθ_ipark
Sinθ_ipark

Vd

Vq

Start

Sinθ_ipark
Cosθ_ipark

Finish

Vα

Vβ

Vd

Vq

FinishFinish

Vα

Vβ

Start

CO
Sθ

Sinθ

Data_valid_0

PI q_axix
Parameter
Register

CCR1_0

Finish_en_0

PI d_axix
Parameter
Register

Ia

SVPWM
Parameter
Register

Ib
Start

θ

Mot_num_i

Mot_num

CCR2_0
CCR3_0

Svpwm_ccr1_0
Svpwm_ccr2_0
Svpwm_ccr3_0

CCR1_5
CCR2_5
CCR3_5

Svpwm_ccr1_5

Svpwm_ccr2_5

Svpwm_ccr3_5

...... ...

...

Data_valid_5

...

Finish_en_5

Mot_num_out Mot_num_o
Id*
Iq*Iq*

Id*

Figure 6. Overall diagram of operation core module.

Many factors must be considered when designing an IP core, such as accuracy, speed,
simplicity, and flexibility. Four key methods were proposed in this paper for designing the
operation core module, which simplifies the overall calculation, optimizes the hardware
area, improves the speed response, and improves the DC bus voltage utilization in the
vector control process.

3.1.1. Method 1: Data Normalization Processing Method

An IP data unified 16-bit fixed-point mode was adopted to facilitate the coprocessor
IP for data processing. When using the fixed-point mode, it is necessary to reduce the
magnitude of input data changes, so the integer data needs to be converted into decimals
with higher accuracy by data normalization. In practical applications, the normalized
system can adapt to various applications. Therefore, in this paper, the universality of the
coprocessor IP core was improved by normalization.

For the input current value, the digital quantity output after ADC sampling was
already normalized data, so no additional normalization processing was needed. However,
the voltage in the vector control operation process needed normalization. Before normaliza-
tion, it was necessary to select the appropriate base value. Selecting a suitable base value
can not only achieve data normalization, but also reduce the calculation of vector control,
thus saving circuit area and power consumption. According to the formula characteristics
of SVPWM modulation calculation, this study uses Equation (5) to obtain the voltage base

Electronics 2023, 12, 452 7 of 21

value, where Ubase is the standardized value, Udc is the bus voltage value of the motor, and
the size of Udc is related to the motor itself.

ubase =
udc√

3
(5)

To simplify the calculation, the normalization of voltage value in PI control was
calculated. The PI control formula is expressed using Equation (6).

u(k) = kpe(k) + ki

k

∑
n=0

e(n) (6)

where u(k) is the control quantity, that is, the voltage. e(k) is the input error, which is the
difference between the reference and the true current. kp is the proportional error, and ki is
the integral gain. For the current, the functional relationship between the digital quantity
It(k) in output by the ADC after sampling and the true current value I(k) was expressed as
shown in Equation (7).

I(k) = KIt(k) (7)

where K is the ADC sampling amplification coefficient. The digital quantity Ir(k) of
the reference current and the real value I(k)* of the reference current is expressed using
Equation (8).

I(k)∗ = KIr(k) (8)

As shown in Equation (9), the normalized value of the voltage could be obtained
by dividing the output Un(k) in the PI expression by the reference voltage. As shown in
Equation (10), the difference between Equations (7) and (8) is the input error value of PI.

Un(k) =
u(k)
ubase

(9)

E(k) = I(k)∗ − I(k) (10)

By combining Equations (6), (9) and (10), the normalization of voltage could be
realized by PI control through simple transformation, as shown in Equation (11), where
Kp/Kubase and Ki/Kubase can be used as input parameters Kp and Ki in PI control. As Kp
and Ki are PI parameters, they are configured through configuration registers in the device
initialization phase.

Unormal(k) =
Kp

Kubase
E(k) +

Ki
Kubase

k

∑
n=0

E(n) (11)

The IP data can be normalized by mathematical transformation of the vector control
formula, which limits the data to (−1, 1). However, considering the SVPWM overmodula-
tion in vector control, all IP values should be limited to (−2, 2). As the IP data format is
uniformly selected as 16-bit fixed-point data, the Q14 format was used to represent all the
data in the IP. Therefore, 1 represents 16′h4000, the highest bit is the symbol bit, the second
high bit is the integer bit, and the remaining bits are decimals.

3.1.2. Method 2: Design Method for the Multiplication Calculation Circuit

Given that there are many multiplication calculations in the current loop operation, it is
necessary to design this part of the operation circuit to improve the operational performance.

Because the PMSM vector control algorithm has a large number of multiplication cal-
culations, all multiplication calculation outputs need to be registered inside the coprocessor
IP, which is conducive to reducing the length of the combined logic chain and improving
the dominant frequency of the coprocessor IP core.

Electronics 2023, 12, 452 8 of 21

Moreover, the Clarke and Ipark transformations involve the multiplication calculation
of irrational constants. Taking Clarke transformation as an example, the specific Clarke
transformation formulae are shown in Equations (12) and (13).

iα = ia (12)

iβ =
1√
3
× (ia + 2ib) (13)

There are two main methods for hardware design of multiplication of irrational
number constants, the first is to directly convert the irrational constant into the fixed point
number of the corresponding Q format as the multiplicand for multiplication calculation,
and the other is to use the approximate value of the irrational constant as the multiplicand
and split the approximate value into multiple 2−n addition calculations. As shown in
Equations (14) and (15), the approximate value of the irrational number constant in the
Clarke transformation is decomposed into 2−n continuous addition, and multiplied by
the multiplier. In hardware design, the multiplication of 2−n is equivalent to the right
shift of the data by n bits. This is equivalent to completing Clarke transformation only
through adder and register shift. The block diagram of the shift phase addition calculation
circuit is shown in Figure 7. Because the error of the approximate value was 0.035%, the
calculation error of the second method was equivalent to the error generated by Q14, and
the calculation error could be ignored.

1√
3
≈ 0.57715 =

1
2
+

1
16

+
1

128
+

1
256

+
1

512
+

1
1024

(14)

iβ ≈
(

1
2
+

1
16

+
1

128
+

1
256

+
1

512
+

1
1024

)
× (ib + 2ib) (15)

Electronics 2023, 12, x FOR PEER REVIEW 9 of 23

>>1 >>6

ADDER
ADDER

ADDER

>>8

ADDER

ADDER

>>2

>>4

>>9

Figure 7. Circuit structure of the second method.

To respectively synthesize the above two methods, the first method required 1843
gates, and the second required 1266 gates. The resource consumption of the second
method was 68.7% of the first resource consumption. In this IP, the irrational multiplica-
tion calculation in Ipark was also improved by the same method.

3.1.3. Method 3: Design Method of PI Control Unit
As the core of the coprocessor IP, the PI control unit realized the current loop PI con-

trol. Meanwhile, it used incremental PI control, in which the role of the proportional link
P was to speed up the system response, and the role of the integral link I was to eliminate
the error and improve the system error. The expressions of incremental PI control are
shown in Equations (16) and (17):

𝛥𝛥𝑈𝑈𝑘𝑘 = 𝐾𝐾𝑝𝑝(𝑒𝑒𝑘𝑘 − 𝑒𝑒𝑘𝑘−1) + 𝐾𝐾𝑖𝑖𝑒𝑒𝑘𝑘 (16)

𝑈𝑈𝑘𝑘 = 𝑈𝑈𝑘𝑘−1 + 𝛥𝛥𝑈𝑈𝑘𝑘 (17)

where ek is the calculated deviation value and Uk is the calculated output value of PI. As
shown in Figure 8, the PI control unit consists of a multi-channel control circuit, an input
and output data distribution circuit, and a PI calculation circuit. The multi-channel regis-
ter control circuit was used to register the PI parameter register values of different motors
in the multi-axis servo system and the results of the previous PI calculation. At the begin-
ning of each analysis, the PI control unit input the PI parameter register value of the cor-
responding motor and the calculation result data obtained by the corresponding motor in
the previous PI calculation into the PI calculation circuit through the data distribution
circuit according to the value of the input motor number register, making the PI calcula-
tion circuit start the PI calculation. When the calculation was completed, the PI data would
be stored in the corresponding channel of the multi-channel control circuit through the
data distribution circuit according to the value of the motor number.

Figure 7. Circuit structure of the second method.

To respectively synthesize the above two methods, the first method required 1843 gates,
and the second required 1266 gates. The resource consumption of the second method was
68.7% of the first resource consumption. In this IP, the irrational multiplication calculation
in Ipark was also improved by the same method.

3.1.3. Method 3: Design Method of PI Control Unit

As the core of the coprocessor IP, the PI control unit realized the current loop PI control.
Meanwhile, it used incremental PI control, in which the role of the proportional link P was
to speed up the system response, and the role of the integral link I was to eliminate the

Electronics 2023, 12, 452 9 of 21

error and improve the system error. The expressions of incremental PI control are shown in
Equations (16) and (17):

∆Uk = Kp(ek − ek−1) + Kiek (16)

Uk = Uk−1 + ∆Uk (17)

where ek is the calculated deviation value and Uk is the calculated output value of PI.
As shown in Figure 8, the PI control unit consists of a multi-channel control circuit, an
input and output data distribution circuit, and a PI calculation circuit. The multi-channel
register control circuit was used to register the PI parameter register values of different
motors in the multi-axis servo system and the results of the previous PI calculation. At the
beginning of each analysis, the PI control unit input the PI parameter register value of the
corresponding motor and the calculation result data obtained by the corresponding motor
in the previous PI calculation into the PI calculation circuit through the data distribution
circuit according to the value of the input motor number register, making the PI calculation
circuit start the PI calculation. When the calculation was completed, the PI data would be
stored in the corresponding channel of the multi-channel control circuit through the data
distribution circuit according to the value of the motor number.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 23

PI
CACULATION

Distributor_In

i*

Motor0_PI_register

Motor_num

Distributor_Out

Motor1_PI_register

Motor2_PI_register

Motor3_PI_register

Motor4_PI_register

Motor5_PI_register

Channel 1
control

Channel 2
control

Channel 4
control

Channel 3
control

Channel 5
control

Start

V_value

i

Figure 8. Structure of PI control unit.

The implementation flow of PI computing circuit is shown in Figure 9. The PI calcu-
lation circuit completed the incremental digital PI control and made the difference be-
tween the true value of the input and the expected value, that is, ek. In this paper, multiple
thresholds were set inside the PI calculation circuit to improve the response speed. In the
device initialization stage, the host shaped all thresholds in the PI calculation circuit by
configuring registers. The threshold emin was used to determine whether the true value
was close enough to the expected value. If it was close enough, PI control would not be
needed. Therefore, when |ek| < emin, the output Uk = Uk−1. At this time, PI regulation has
been stable, and there was no need for PI regulation. When the difference between the real
input value and the expected value changed greatly, the integral link Kiek in PI control
would also be too large, which would cause a serious overshoot. At this point, it could be
adjusted by the threshold δ. When |ek| > δ, the controller contained only the proportional
link Kpek. If the difference between the real and the expected value was small, that is, |ek|
≤ δ, then the controller adopted PI control, and the error was eliminated by introducing
the integral link Kiek to ensure that the system accuracy met the requirements. Therefore,
the configuration threshold δ allowed the system to respond rapidly while preventing
overshoot caused by too large system response. The PI controller also had a threshold
value, that is, the output limiting value Umax. When |Uk| > Umax, Uk = sign(ek) × Umax, which
was equivalent to the proportional regulator with a sufficiently large proportional coeffi-
cient. At this time, the PI system would eliminate the deviation of the motor speed at the
fastest speed.

Figure 8. Structure of PI control unit.

The implementation flow of PI computing circuit is shown in Figure 9. The PI calcula-
tion circuit completed the incremental digital PI control and made the difference between
the true value of the input and the expected value, that is, ek. In this paper, multiple
thresholds were set inside the PI calculation circuit to improve the response speed. In the
device initialization stage, the host shaped all thresholds in the PI calculation circuit by
configuring registers. The threshold emin was used to determine whether the true value was
close enough to the expected value. If it was close enough, PI control would not be needed.
Therefore, when |ek| < emin, the output Uk = Uk−1. At this time, PI regulation has been
stable, and there was no need for PI regulation. When the difference between the real input
value and the expected value changed greatly, the integral link Kiek in PI control would also
be too large, which would cause a serious overshoot. At this point, it could be adjusted by
the threshold δ. When |ek| > δ, the controller contained only the proportional link Kpek. If
the difference between the real and the expected value was small, that is, |ek| ≤ δ, then the
controller adopted PI control, and the error was eliminated by introducing the integral link
Kiek to ensure that the system accuracy met the requirements. Therefore, the configuration
threshold δ allowed the system to respond rapidly while preventing overshoot caused by

Electronics 2023, 12, 452 10 of 21

too large system response. The PI controller also had a threshold value, that is, the output
limiting value Umax. When |Uk| > Umax, Uk = sign(ek) × Umax, which was equivalent to the
proportional regulator with a sufficiently large proportional coefficient. At this time, the PI
system would eliminate the deviation of the motor speed at the fastest speed.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 23

 |ek|<emin

|ek|>δ

Uk=Uk-1

 ek=ek-1
Uk=sign(ek) × umax

Uk=Uk−1+kp(ek−ek−1) Uk=Uk−1+kp(ek−ek-1)+kiek

|Uk|>Umax

Uk=Uk

|Uk|>Umax

Uk=Uk

Uk=sign(ek) × umax

 ek=ik*− ik

NO

NO

NO NO

YES

YES
YES

YES

YES
YES

Figure 9. Flow chart of incremental PI control.

3.1.4. Method 4: SVPWM Overmodulation Design Method
The fundamental amplitude of the output voltage vector of the voltage source in-

verter controlled by SVPWM in the linear modulation region could be maximized as
𝑈𝑈𝑑𝑑𝑑𝑑/√3, while the overmodulation could be maximized as 2𝑈𝑈𝑑𝑑𝑑𝑑/𝜋𝜋, and the output voltage
was 10% higher than that in the linear modulation region, which was significant in im-
proving the load capacity of the motor and accelerating the dynamic response speed
[32,33]. Therefore, an overmodulation unit was specifically designed inside the SVPWM
module in the design of the IP coprocessor to realize overmodulation operation, and this
operation unit could open or close the unit by configuring the second category of registers
in the device initialization stage.

The schematic diagram of SVPWM overmodulation is shown in Figure 10. Taking
the first sector in SVPWM modulation as an example, it was assumed that the DC bus
voltage was Udc, the reference vector was Vref, the switching period was Ts, the action time
of vector V4 was T4, the action time of vector V6 was T6, and the action time of the zero
vector was T0. OA is the maximum amplitude of the reference voltage vector in the linear
modulation region, which can be as high as 𝑈𝑈𝑑𝑑𝑑𝑑/√3; OB and OE are the basic voltage vec-
tors, and they have equal amplitude: 2Udc/3. Figure 11 divided the modulation range of
SVPWM into three intervals, where OB is the maximum amplitude of the reference volt-
age vector in the over-modulation region I; and OC is the maximum magnitude of the
reference voltage vector in the overmodulation region II: 2𝑈𝑈𝑑𝑑𝑑𝑑/√3.

Figure 9. Flow chart of incremental PI control.

3.1.4. Method 4: SVPWM Overmodulation Design Method

The fundamental amplitude of the output voltage vector of the voltage source inverter
controlled by SVPWM in the linear modulation region could be maximized as Udc/

√
3,

while the overmodulation could be maximized as 2Udc/π, and the output voltage was 10%
higher than that in the linear modulation region, which was significant in improving the
load capacity of the motor and accelerating the dynamic response speed [32,33]. There-
fore, an overmodulation unit was specifically designed inside the SVPWM module in the
design of the IP coprocessor to realize overmodulation operation, and this operation unit
could open or close the unit by configuring the second category of registers in the device
initialization stage.

The schematic diagram of SVPWM overmodulation is shown in Figure 10. Taking the
first sector in SVPWM modulation as an example, it was assumed that the DC bus voltage
was Udc, the reference vector was Vref, the switching period was Ts, the action time of vector
V4 was T4, the action time of vector V6 was T6, and the action time of the zero vector was
T0. OA is the maximum amplitude of the reference voltage vector in the linear modulation
region, which can be as high as Udc/

√
3; OB and OE are the basic voltage vectors, and they

have equal amplitude: 2Udc/3. Figure 11 divided the modulation range of SVPWM into
three intervals, where OB is the maximum amplitude of the reference voltage vector in
the over-modulation region I; and OC is the maximum magnitude of the reference voltage
vector in the overmodulation region II: 2Udc/

√
3.

In the linear modulation region, the reference voltage vector amplitude range was
0 ≤ Vref ≤ Udc/

√
3. At this time, the vector action time was T4 + T6 ≤ Ts, and there was no

change in the actual vector action time.
In the overmodulation region I, the range of the reference voltage vector amplitude was

Udc/
√

3 < Vref ≤ 2Udc/3, and the trajectory of the reference voltage vector moved in the
annular region formed by OAF and OBE. At this point, the sum of the action time of adjacent

Electronics 2023, 12, 452 11 of 21

voltage vectors was greater than the switching period, that is, T4 + T6 > Ts. The action time
of the actual voltage vector reduced proportionally, as expressed in Equations (18) and (19).

T′4 =
T4

T4 + T6
Ts (18)

T′6 =
T6

T4 + T6
Ts (19)

Electronics 2023, 12, x FOR PEER REVIEW 12 of 23

D

Overmodulation
Region II

Overmodulation
Region I

E

Linear Region F G

CBAO

60o
L

refV

rθ

Figure 10. Schematic diagram of the first sector of SVPWM modulation.

In the linear modulation region, the reference voltage vector amplitude range was 0
≤ Vref ≤ /√3. At this time, the vector action time was T4 + T6 ≤ Ts, and there was no change in
the actual vector action time.

In the overmodulation region I, the range of the reference voltage vector amplitude
was 𝑈𝑈𝑑𝑑𝑑𝑑/√3 < Vref ≤ 2𝑈𝑈𝑑𝑑𝑑𝑑/3, and the trajectory of the reference voltage vector moved in the
annular region formed by OAF and OBE. At this point, the sum of the action time of ad-
jacent voltage vectors was greater than the switching period, that is, T4 + T6 > Ts. The action
time of the actual voltage vector reduced proportionally, as expressed in Equations (18)
and (19).

𝑇𝑇4′ =
𝑇𝑇4

𝑇𝑇4 + 𝑇𝑇6
𝑇𝑇𝑠𝑠 (18)

𝑇𝑇6′ =
𝑇𝑇6

𝑇𝑇4 + 𝑇𝑇6
𝑇𝑇𝑠𝑠 (19)

In the overmodulation region II, the amplitude range of the reference voltage vector
was 2𝑈𝑈𝑑𝑑𝑑𝑑/3 < Vref ≤ 2𝑈𝑈𝑑𝑑𝑑𝑑/√3. At this point, the trajectory of the reference voltage vector
rotated in the annular region composed of OBE and OCD. When the reference voltage
vector trajectory was in the CBG region, the actual voltage vector was consistent with the
basic voltage vector OB (V4). When the reference voltage vector trajectory was in the DEG
region, the actual voltage vector was consistent with the base voltage vector OE (V6). When
the trajectory of the reference voltage vector was located in the region composed of arc BE
and straight lines BG and EG, the action time of the actual voltage vector would be re-
duced proportionally, and the reduction method was the same as the calculation method
of Equations (18) and (19). When the amplitude of the reference voltage vector reached
2𝑈𝑈𝑑𝑑𝑑𝑑/√3, the trajectory of the actual output voltage vector jumped between the six vertices
of the regular hexagon, i.e., from OB to OE, with a dwell time of 1/6 period at each vertex.
At this time, the motor ran in a six-step wave state [33].

There was a straightforward approach to establish which treatment the reference
voltage vector corresponded to when its range was in the OCG of the overmodulation
region II. If the endpoint of the reference voltage vector was on the straight line BG, the
action time of two adjacent basic voltage vectors V4 and V6 was T4 = Ts and T6 = 0, respec-
tively, i.e., T4 + T6 = Ts. Therefore, the position of the reference voltage vector could be de-
termined by the relationship between the action time of two adjacent basic voltage vectors

Figure 10. Schematic diagram of the first sector of SVPWM modulation.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 23

and the switching period. When T4 + T6 > Ts and T4 < Ts, the trajectory of the reference volt-
age vector was inside the isosceles triangle OBG; and when T4 + T6 > Ts and T4 > Ts, the
trajectory of the reference voltage vector was outside the isosceles triangle OBG, i.e.,
within the region CBG; this judgment method was simple, effective and easy to imple-
ment. Similarly, the processing was similar when the range of the reference voltage vector
was in the ODG of the overmodulation region II. Therefore, this judgment method could
combine the algorithm of overmodulation region I and overmodulation region II to handle
the overmodulation of each sector of SVPWM. The flow chart of overmodulation pro-
cessing in any sector is shown in Figure 11, and the input values Tx and Ty are the action
time of two adjacent basic voltage vectors. As this IP was normalized in data processing,
1 was the switching period.

Start

Input Tx、Ty

Tx+Ty>1

Tx>TyTx>1 Ty>1

T'x=1
T'y=0

T'x=0
T'y=1

Output T'x、T'y

T'x=Tx/(Tx+Ty)
T'y=Ty/(Tx+Ty)

NO

YES

YES

NO

NONOYES YES

Overmodulation
Is ON

NO

YES

Figure 11. Flow chart of overmodulation algorithm.

Here, a multi-cycle pipelined hardware divider was embedded in the SVPWM mod-
ule to accelerate the overmodulation algorithm on the hardware; the hardware divider
completes two scaling division operations in the over-modulation algorithm by a time
division multiplexing method. However, in the case of multi-motor vector control, if a
motor in an over-modulated state satisfied the conditions Tx + Ty > 1 and Tx < 1 & Ty < 1, it
needed to consume multiple cycles to perform proportional scaling before subsequent cal-
culation. On the other hand, the motor that satisfied other conditions would directly as-
sign the results based on the algorithm input data, making the total calculation time un-
certain. Therefore, it was necessary to configure the divisor and divisor data of the hard-
ware divider based on the value of algorithm input data before performing the overmod-
ulation algorithm calculation for the total calculation time to remain constant. Table 1
shows the hardware divider input data configuration.

Figure 11. Flow chart of overmodulation algorithm.

Electronics 2023, 12, 452 12 of 21

In the overmodulation region II, the amplitude range of the reference voltage vector
was 2Udc/3 < Vref ≤ 2Udc/

√
3. At this point, the trajectory of the reference voltage vector

rotated in the annular region composed of OBE and OCD. When the reference voltage
vector trajectory was in the CBG region, the actual voltage vector was consistent with the
basic voltage vector OB (V4). When the reference voltage vector trajectory was in the DEG
region, the actual voltage vector was consistent with the base voltage vector OE (V6). When
the trajectory of the reference voltage vector was located in the region composed of arc
BE and straight lines BG and EG, the action time of the actual voltage vector would be
reduced proportionally, and the reduction method was the same as the calculation method
of Equations (18) and (19). When the amplitude of the reference voltage vector reached
2Udc/

√
3, the trajectory of the actual output voltage vector jumped between the six vertices

of the regular hexagon, i.e., from OB to OE, with a dwell time of 1/6 period at each vertex.
At this time, the motor ran in a six-step wave state [33].

There was a straightforward approach to establish which treatment the reference
voltage vector corresponded to when its range was in the OCG of the overmodulation
region II. If the endpoint of the reference voltage vector was on the straight line BG, the
action time of two adjacent basic voltage vectors V4 and V6 was T4 = Ts and T6 = 0,
respectively, i.e., T4 + T6 = Ts. Therefore, the position of the reference voltage vector could
be determined by the relationship between the action time of two adjacent basic voltage
vectors and the switching period. When T4 + T6 > Ts and T4 < Ts, the trajectory of the
reference voltage vector was inside the isosceles triangle OBG; and when T4 + T6 > Ts and
T4 > Ts, the trajectory of the reference voltage vector was outside the isosceles triangle
OBG, i.e., within the region CBG; this judgment method was simple, effective and easy to
implement. Similarly, the processing was similar when the range of the reference voltage
vector was in the ODG of the overmodulation region II. Therefore, this judgment method
could combine the algorithm of overmodulation region I and overmodulation region II to
handle the overmodulation of each sector of SVPWM. The flow chart of overmodulation
processing in any sector is shown in Figure 11, and the input values Tx and Ty are the action
time of two adjacent basic voltage vectors. As this IP was normalized in data processing,
1 was the switching period.

Here, a multi-cycle pipelined hardware divider was embedded in the SVPWM module
to accelerate the overmodulation algorithm on the hardware; the hardware divider com-
pletes two scaling division operations in the over-modulation algorithm by a time division
multiplexing method. However, in the case of multi-motor vector control, if a motor in an
over-modulated state satisfied the conditions Tx + Ty > 1 and Tx < 1 & Ty < 1, it needed to
consume multiple cycles to perform proportional scaling before subsequent calculation. On
the other hand, the motor that satisfied other conditions would directly assign the results
based on the algorithm input data, making the total calculation time uncertain. Therefore,
it was necessary to configure the divisor and divisor data of the hardware divider based
on the value of algorithm input data before performing the overmodulation algorithm
calculation for the total calculation time to remain constant. Table 1 shows the hardware
divider input data configuration.

Table 1. Overmodulation input data allocation table.

Tx + Ty > 1
Tx + Ty ≤ 1

Tx ≥ Ty & Tx ≥ 1 Ty ≥ Tx & Ty ≥ 1 Tx < 1 & Ty < 1

Dividend a1 a1 = 1 a1 = 0 a1 = Tx a1 = Tx

Divisor b1 b1 = 1 b1 = Tx b1 = Tx + Ty b1 = 1

Dividend a2 a2 = 0 a2 = 1 a2 = Ty a2 = Ty

Divisor b2 b2 = Ty b2 = 1 b2 = Tx + Ty b2 = 1

Electronics 2023, 12, 452 13 of 21

The SVPWM module was simulated by Vcs-2016 and Verdi-2017 tools to confirm the
correctness of the overmodulation function. When the module turned on the overmodula-
tion function, the input voltage gradually increased in the Testbench to make the SVPWM
module reach the overmodulation state from linear modulation. As shown in Figure 12,
the saddle wave output by SVPWM was gradually distorted into a six-step wave, and the
simulation results were consistent with the overmodulation theory introduced above. The
simulation also confirmed the correctness of the design.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 23

Table 1. Overmodulation input data allocation table.

Tx + Ty > 1

Tx + Ty ≤ 1
Tx ≥ Ty & Tx ≥ 1 Ty ≥ Tx & Ty ≥ 1 Tx < 1 & Ty < 1

Dividend a1 a1 = 1 a1 = 0 a1 = Tx a1 = Tx
Divisor b1 b1 = 1 b1 = Tx b1 = Tx + Ty b1 = 1

Dividend a2 a2 = 0 a2 = 1 a2 = Ty a2 = Ty
Divisor b2 b2 = Ty b2 = 1 b2 = Tx + Ty b2 = 1

The SVPWM module was simulated by Vcs-2016 and Verdi-2017 tools to confirm the
correctness of the overmodulation function. When the module turned on the overmodu-
lation function, the input voltage gradually increased in the Testbench to make the
SVPWM module reach the overmodulation state from linear modulation. As shown in
Figure 12, the saddle wave output by SVPWM was gradually distorted into a six-step
wave, and the simulation results were consistent with the overmodulation theory intro-
duced above. The simulation also confirmed the correctness of the design.

Figure 12. Hardware implementation simulation of overmodulation algorithm.

3.2. SoC Integration Method of IP
This research takes the universal SoC architecture introduced in Section 2.3 as an ex-

ample to introduce the coprocessor IP‘s SoC integration method. The core of SoC in this
study is a three-stage pipelined 32-bit CPU with RISC-V instruction set architecture.

The interface of the coprocessor IP included an AHB interface signal, DMA interface
signal, and interrupt interface signal, which needed to be connected with the SoC internal
IP. Since the coprocessor IP was a high-speed IP, the AHB interface of the coprocessor IP
was integrated into the AHB interconnection matrix for the coprocessor IP to serve as a
slave device of the AHB bus matrix for CPU and two DMA access. Figure 13 shows the
bus interconnection diagram of SoC. In addition to the AHB bus interface, we connected
the DMA and interrupt interfaces of the coprocessor IP to the corresponding signals of the
DMA and CPU in the universal SoC, respectively.

Figure 12. Hardware implementation simulation of overmodulation algorithm.

3.2. SoC Integration Method of IP

This research takes the universal SoC architecture introduced in Section 2.3 as an
example to introduce the coprocessor IP‘s SoC integration method. The core of SoC in this
study is a three-stage pipelined 32-bit CPU with RISC-V instruction set architecture.

The interface of the coprocessor IP included an AHB interface signal, DMA interface
signal, and interrupt interface signal, which needed to be connected with the SoC internal
IP. Since the coprocessor IP was a high-speed IP, the AHB interface of the coprocessor IP
was integrated into the AHB interconnection matrix for the coprocessor IP to serve as a
slave device of the AHB bus matrix for CPU and two DMA access. Figure 13 shows the
bus interconnection diagram of SoC. In addition to the AHB bus interface, we connected
the DMA and interrupt interfaces of the coprocessor IP to the corresponding signals of the
DMA and CPU in the universal SoC, respectively.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 23

CPU

DMA0

DMA1

Flash

SR
A

M

Bridge0

C
oprocessor

Bridge1

Code Bus

System Bus
S0

S1

S2

S3

M0 M1 M2 M3 M4

AHB
MARTRIX

Figure 13. Bus interconnection.

3.3. Hardware–Software Coordination Scheme of IP
The SoC of the integrated coprocessor attained multi-axis servo control through

hardware and software coordination. The speed loop and position loop in multi-axis servo
control were completely calculated by the CPU through software due to the small amount
of calculation, whereas the current loop with the largest amount of calculation was accel-
erated by the coprocessor IP through the hardware and software coordination scheme.
The steps that took SoC to realize multi-motor vector control current loop operations
through hardware and software coordination included: (a) the initialization phase, where
the software initialized all devices in the SoC in turn. (b) After each current loop cycle
started, the timer in the SoC would trigger the ADC to start sampling the phase current
of each motor in the multi-axis servo system, whereas the CPU would calculate the elec-
trical angle when sampling the current of the corresponding motor. (c) After the ADC
sampling, the host would configure the first and second categories of registers of the co-
processor IP to the coprocessor IP based on the order of the motors to be calculated. Then,
the coprocessor IP would start the vector control operation of each motor following the
configuration order of the second category of registers. (d) As the vector control operation
of each motor starts at different times and the hardware IP is parallel, the parallel execu-
tion of the vector operation of different motors can be realized inside the coprocessor,
greatly accelerating the speed of the closed-loop operation of the current loop. After com-
pleting the SVPWM operation, the IP allocates the calculation result to the corresponding
register according to the value of the motor number data and raises the corresponding
completion signal. (e) After calculation, the DMA and interrupt controller would increase
the DMA request signal corresponding to the motor number. After the DMA processed
the DMA request, the calculation result was transported to the register of the PWM IP
specified in the initialization phase. The DMA sent out a DMA response signal after the
move, lowering the corresponding DMA request signal for the coprocessor core. (f) All
PWM IPs simultaneously updated the duty cycle data at the beginning of the next PWM
cycle and emitted PWM waves to complete a multi-motor vector control. The time se-
quence flow diagram of the IP when the coprocessor IP begins to perform operations is
shown in Figure 14. Figure 15 shows the flow diagram of the hardware and software co-

Figure 13. Bus interconnection.

Electronics 2023, 12, 452 14 of 21

3.3. Hardware–Software Coordination Scheme of IP

The SoC of the integrated coprocessor attained multi-axis servo control through
hardware and software coordination. The speed loop and position loop in multi-axis
servo control were completely calculated by the CPU through software due to the small
amount of calculation, whereas the current loop with the largest amount of calculation was
accelerated by the coprocessor IP through the hardware and software coordination scheme.
The steps that took SoC to realize multi-motor vector control current loop operations
through hardware and software coordination included: (a) the initialization phase, where
the software initialized all devices in the SoC in turn. (b) After each current loop cycle
started, the timer in the SoC would trigger the ADC to start sampling the phase current of
each motor in the multi-axis servo system, whereas the CPU would calculate the electrical
angle when sampling the current of the corresponding motor. (c) After the ADC sampling,
the host would configure the first and second categories of registers of the coprocessor IP to
the coprocessor IP based on the order of the motors to be calculated. Then, the coprocessor
IP would start the vector control operation of each motor following the configuration order
of the second category of registers. (d) As the vector control operation of each motor starts at
different times and the hardware IP is parallel, the parallel execution of the vector operation
of different motors can be realized inside the coprocessor, greatly accelerating the speed of
the closed-loop operation of the current loop. After completing the SVPWM operation, the
IP allocates the calculation result to the corresponding register according to the value of the
motor number data and raises the corresponding completion signal. (e) After calculation,
the DMA and interrupt controller would increase the DMA request signal corresponding to
the motor number. After the DMA processed the DMA request, the calculation result was
transported to the register of the PWM IP specified in the initialization phase. The DMA
sent out a DMA response signal after the move, lowering the corresponding DMA request
signal for the coprocessor core. (f) All PWM IPs simultaneously updated the duty cycle data
at the beginning of the next PWM cycle and emitted PWM waves to complete a multi-motor
vector control. The time sequence flow diagram of the IP when the coprocessor IP begins
to perform operations is shown in Figure 14. Figure 15 shows the flow diagram of the
hardware and software co-accelerated multi-motor vector control current loop operation of
the coprocessor operation core.

Electronics 2023, 12, x FOR PEER REVIEW 16 of 23

accelerated multi-motor vector control current loop operation of the coprocessor opera-
tion core.

register
config

Clarke
CORDIC

Park
PI_d
PI_q

Ipark Svpwm DMA
handling

Time

Time

Time

MOTOR NUMBER

Operation Core InterfaceInterface

register
config

Clarke
CORDIC

Park
PI_d
PI_q

Ipark Svpwm DMA
handling

Operation Core InterfaceInterface

register
config

Clarke
CORDIC

Park
PI_d
PI_q

Ipark Svpwm DMA
handling

Operation Core InterfaceInterface

Figure 14. Coprocessor IP control timing sequence.

Coprocessor

AH
B

M
ar

tr
ix

DMA

APB

PWM

PWM

PWM

Bridge

DM
A_

RE
Q

DM
A_

RE
Q

DM
A_

RE
Q

DM
A_ACK

DM
A_ACK

DM
A_ACK

Configure Coprocessor
input register

DMA Read Calculation
Results

DMA Write Calculation
Results To PWM

PWM Output

Figure 15. Hardware–software coordination scheme based on coprocessor IP.

4. Experiment and Experimental Results Analysis
This section will conduct experiments based on the IP designed in the previous sec-

tion and the proposed hardware–software coordination scheme. The experiment includes
FPGA prototype verification and ASIC implementation. Section 4.1 will mainly introduce
the establishment and implementation of the experiment. Section 4.2 will show the re-
source consumption of the key IPs inside the SoC in the FPGA prototype verification sys-
tem. Section 4.3 will test the function and performance of the universal SoC embedded in
the coprocessor IP to realize the multi-axis servo system control. Section 4.3 also show and
compare the calculation time necessary for multi-axis servo control current loop operation
based on the FPGA prototype verification platform using pure software and hardware–
software coordination. Section 4.4 will present the performance metrics of the IP ASIC
implementation.

4.1. Establishment and Implementation of Experiments

Figure 14. Coprocessor IP control timing sequence.

Electronics 2023, 12, 452 15 of 21

Electronics 2023, 12, x FOR PEER REVIEW 16 of 23

accelerated multi-motor vector control current loop operation of the coprocessor opera-
tion core.

register
config

Clarke
CORDIC

Park
PI_d
PI_q

Ipark Svpwm DMA
handling

Time

Time

Time

MOTOR NUMBER

Operation Core InterfaceInterface

register
config

Clarke
CORDIC

Park
PI_d
PI_q

Ipark Svpwm DMA
handling

Operation Core InterfaceInterface

register
config

Clarke
CORDIC

Park
PI_d
PI_q

Ipark Svpwm DMA
handling

Operation Core InterfaceInterface

Figure 14. Coprocessor IP control timing sequence.

Coprocessor

AH
B

M
ar

tr
ix

DMA

APB

PWM

PWM

PWM

Bridge

DM
A_

RE
Q

DM
A_

RE
Q

DM
A_

RE
Q

DM
A_ACK

DM
A_ACK

DM
A_ACK

Configure Coprocessor
input register

DMA Read Calculation
Results

DMA Write Calculation
Results To PWM

PWM Output

Figure 15. Hardware–software coordination scheme based on coprocessor IP.

4. Experiment and Experimental Results Analysis
This section will conduct experiments based on the IP designed in the previous sec-

tion and the proposed hardware–software coordination scheme. The experiment includes
FPGA prototype verification and ASIC implementation. Section 4.1 will mainly introduce
the establishment and implementation of the experiment. Section 4.2 will show the re-
source consumption of the key IPs inside the SoC in the FPGA prototype verification sys-
tem. Section 4.3 will test the function and performance of the universal SoC embedded in
the coprocessor IP to realize the multi-axis servo system control. Section 4.3 also show and
compare the calculation time necessary for multi-axis servo control current loop operation
based on the FPGA prototype verification platform using pure software and hardware–
software coordination. Section 4.4 will present the performance metrics of the IP ASIC
implementation.

4.1. Establishment and Implementation of Experiments

Figure 15. Hardware–software coordination scheme based on coprocessor IP.

4. Experiment and Experimental Results Analysis

This section will conduct experiments based on the IP designed in the previous section
and the proposed hardware–software coordination scheme. The experiment includes FPGA
prototype verification and ASIC implementation. Section 4.1 will mainly introduce the
establishment and implementation of the experiment. Section 4.2 will show the resource
consumption of the key IPs inside the SoC in the FPGA prototype verification system.
Section 4.3 will test the function and performance of the universal SoC embedded in
the coprocessor IP to realize the multi-axis servo system control. Section 4.3 also show
and compare the calculation time necessary for multi-axis servo control current loop
operation based on the FPGA prototype verification platform using pure software and
hardware–software coordination. Section 4.4 will present the performance metrics of the IP
ASIC implementation.

4.1. Establishment and Implementation of Experiments

The SoC hardware circuit embedded with the coprocessor core IP was completely
described in Verilog HDL language, and the software driver code of the SoC was described
in C language.

The FPGA prototype verification platform was established based on the Vivado2019.2
tool and the Digilent NEXYS Vidio Artix-7 FPGA development board, and the compilation
and burning of the C program were realized by the Nuclei Studio IDE tool. Meanwhile, we
constructed a three-axis servo control system based on the FPGA prototype verification
platform to test the multi-axis servo control performance of the IP. The specific experimental
system is shown in Figure 16. The system comprised a FPGA prototype verification
platform, three PMSM motors with an encoder accuracy of 1000 lines and a rated speed
of 3000 rpm, three motor drive boards, a 24 V DC power supply, and an oscilloscope. The
PWM waveform output by SoC from the PAD and the phase current on the driver board
was directly observed by the oscilloscope. The q-axis current value and the motor speed
value were sent to the PC through the serial interface UART, and the PC drew the curve of
the current data and the speed data through the Origin tool. The current loop frequency of
the system was set at 20 KHZ, whereas the speed loop was set at 5 KHZ.

Electronics 2023, 12, 452 16 of 21

Electronics 2023, 12, x FOR PEER REVIEW 17 of 23

The SoC hardware circuit embedded with the coprocessor core IP was completely
described in Verilog HDL language, and the software driver code of the SoC was de-
scribed in C language.

The FPGA prototype verification platform was established based on the Vi-
vado2019.2 tool and the Digilent NEXYS Vidio Artix-7 FPGA development board, and the
compilation and burning of the C program were realized by the Nuclei Studio IDE tool.
Meanwhile, we constructed a three-axis servo control system based on the FPGA proto-
type verification platform to test the multi-axis servo control performance of the IP. The
specific experimental system is shown in Figure 16. The system comprised a FPGA proto-
type verification platform, three PMSM motors with an encoder accuracy of 1000 lines and
a rated speed of 3000 rpm, three motor drive boards, a 24 V DC power supply, and an
oscilloscope. The PWM waveform output by SoC from the PAD and the phase current on
the driver board was directly observed by the oscilloscope. The q-axis current value and
the motor speed value were sent to the PC through the serial interface UART, and the PC
drew the curve of the current data and the speed data through the Origin tool. The current
loop frequency of the system was set at 20 KHZ, whereas the speed loop was set at 5 KHZ.

FPGA prototype verification
platform

PMSM2 PMSM3

U
ART TO

PC

Hardware
driver board 1

Hardware
driver board 2

Hardware
driver board 3

 DC power supply

Oscilloscope
PMSM1

Figure 16. Diagram of the experimental platform.

The ASIC implementation was based on the CSMC 90 nm process library; Synopsys
DC tool and Cadence Innovus tool were used to realize the synthesis and physical imple-
mentation of the IP.

4.2. Resource Consumption
Table 2 shows the resource consumption of the SoC coprocessor IP and the IP related

to the servo control operation obtained by the Vivado tool for SoC synthesis. According
to the data in the table, the SoC consumed 101,530 LUTs, 50,102 triggers, 33 RAMs, and 21
DSPs. The LUT consumed by the coprocessor IP accounted for 6.97% of SoC, the FLIP-
FLOP for 13.17%, the RAMs for 0%, and the DSPs for 61.9%. Therefore, only a small
amount of resources were essential to be embedded in the coprocessor IP we designed for
the universal SoC chip to realize hardware acceleration of multi-axis servo control.

Table 2. SoC resource consumption.

Resource Cost (Resource Percentage)

LUT FLIP-FLOP RAM DSP
Coprocessor × 1 7074 (6.97%) 6600 (13.17%) 0 (0%) 13 (61.9%)

PWM × 4 7316 (7.21%) 4128 (8.24%) 0 (0%) 0 (0%)
Timer × 6 10,284 (10.13%) 5820 (11.62%) 0 (0%) 0 (0%)

Figure 16. Diagram of the experimental platform.

The ASIC implementation was based on the CSMC 90 nm process library; Synop-
sys DC tool and Cadence Innovus tool were used to realize the synthesis and physical
implementation of the IP.

4.2. Resource Consumption

Table 2 shows the resource consumption of the SoC coprocessor IP and the IP related to
the servo control operation obtained by the Vivado tool for SoC synthesis. According to the
data in the table, the SoC consumed 101,530 LUTs, 50,102 triggers, 33 RAMs, and 21 DSPs.
The LUT consumed by the coprocessor IP accounted for 6.97% of SoC, the FLIP-FLOP
for 13.17%, the RAMs for 0%, and the DSPs for 61.9%. Therefore, only a small amount
of resources were essential to be embedded in the coprocessor IP we designed for the
universal SoC chip to realize hardware acceleration of multi-axis servo control.

Table 2. SoC resource consumption.

Resource Cost (Resource Percentage)

LUT FLIP-FLOP RAM DSP

Coprocessor × 1 7074 (6.97%) 6600 (13.17%) 0 (0%) 13 (61.9%)
PWM × 4 7316 (7.21%) 4128 (8.24%) 0 (0%) 0 (0%)
Timer × 6 10,284 (10.13%) 5820 (11.62%) 0 (0%) 0 (0%)
ADC × 2 1524 (1.50%) 936 (1.87%) 0 (0%) 0 (0%)
CPU × 1 42,296 (41.66%) 13,674 (27.29%) 0 (0%) 8 (38.1%)
DMA × 2 12,530 (12.34%) 10,022 (20.00%) 0 (0%) 0 (0%)

AHB MATRIX × 1 2108 (2.08%) 269 (0.54%) 0 (0%) 0 (0%)
Bus bridge × 2 1888 (1.86%) 104 (0.21%) 0 (0%) 0 (0%)

GPIO × 6 3612 (3.56%) 4482 (8.95%) 0 (0%) 0 (0%)
Other IP 12,898 (12.70%) 4067 (8.12%) 33 (100%) 0 (0%)

SoC 101,530 (100%) 50,102 (100%) 33 (100%) 21 (100%)

4.3. Functional Verification and Performance Analysis

This section will show the function of single-axis servo control, the performance of
multi-axis servo control, and the current loop operation time comparison of the software
and hardware coordination scheme and software-only scheme.

4.3.1. Functional Experiment of Single-Axis Servo Control

Given a constant q axis reference current under a constant small load, the motor
can run quickly and stably. Figure 17 shows the three forward PWM wave waveforms
output by the PWM IP of the SoC through the GPIO. As shown, the duty cycle of the three

Electronics 2023, 12, 452 17 of 21

forward PWM waves was similar to that of the SVPWM output in different sectors in vector
control. Figure 18 shows the A and B phase current waveforms of PMSM measured by two
current probes of the oscilloscope, with a sinusoidal current and a phase difference of 120◦.
According to PMSM vector control theory, when the motor operates stably under a constant
small load, the load torque is the size of electromagnetic torque at this time. Therefore, the
output of electromagnetic torque is a constant value. That is, the three-phase current of A
and B should be a sine wave with constant amplitude and 120◦ phase difference. Therefore,
the test results agree with PMSM vector control theory.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 23

ADC × 2 1524 (1.50%) 936 (1.87%) 0 (0%) 0 (0%)
CPU × 1 42,296 (41.66%) 13,674 (27.29%) 0 (0%) 8 (38.1%)
DMA × 2 12,530 (12.34%) 10,022 (20.00%) 0 (0%) 0 (0%)

AHB MATRIX × 1 2108 (2.08%) 269 (0.54%) 0 (0%) 0 (0%)
Bus bridge × 2 1888 (1.86%) 104 (0.21%) 0 (0%) 0 (0%)

GPIO × 6 3612 (3.56%) 4482 (8.95%) 0 (0%) 0 (0%)
Other IP 12,898 (12.70%) 4067 (8.12%) 33 (100%) 0 (0%)

SoC 101,530 (100%) 50,102 (100%) 33 (100%) 21 (100%)

4.3. Functional Verification and Performance Analysis
This section will show the function of single-axis servo control, the performance of

multi-axis servo control, and the current loop operation time comparison of the software
and hardware coordination scheme and software-only scheme.

4.3.1. Functional Experiment of Single-Axis Servo Control
Given a constant q axis reference current under a constant small load, the motor can

run quickly and stably. Figure 17 shows the three forward PWM wave waveforms output
by the PWM IP of the SoC through the GPIO. As shown, the duty cycle of the three for-
ward PWM waves was similar to that of the SVPWM output in different sectors in vector
control. Figure 18 shows the A and B phase current waveforms of PMSM measured by
two current probes of the oscilloscope, with a sinusoidal current and a phase difference of
120°. According to PMSM vector control theory, when the motor operates stably under a
constant small load, the load torque is the size of electromagnetic torque at this time.
Therefore, the output of electromagnetic torque is a constant value. That is, the three-
phase current of A and B should be a sine wave with constant amplitude and 120° phase
difference. Therefore, the test results agree with PMSM vector control theory.

(a) (b) (c)

(d) (e) (f)

Figure 17. Schematic diagram of PWM waves in different sectors. (a) SVPWM first sector; (b)
SVPWM second sector; (c) SVPWM third sector; (d) SVPWM fourth sector; (e) SVPWM fifth sector;
and (f) SVPWM sixth sector.

Figure 17. Schematic diagram of PWM waves in different sectors. (a) SVPWM first sector; (b) SVPWM
second sector; (c) SVPWM third sector; (d) SVPWM fourth sector; (e) SVPWM fifth sector; and
(f) SVPWM sixth sector.

Electronics 2023, 12, x FOR PEER REVIEW 19 of 23

Figure 18. Schematic diagram of two-phase current of PMSM.

4.3.2. Multi-Axis Servo Control Performance Experiment
Figure 19 shows the expected and actual current curves of the three-axis servo system

working in the current loop. We tested the current step effect of three PMSMs. Figure 19a
shows the torque current tracking of the first-axis PMSM with a current amplitude of 1 A;
Figure 19b shows the torque current tracking of the second-axis PMSM with a current
amplitude of 1.8 A; and Figure 19c shows the torque current tracking of the third-axis
PMSM with a current amplitude of 2.6 A. The actual current response under the step re-
sponse of the current loop was fast and the overshoot was small when the PI coefficient
was appropriately adjusted.

(a) (b) (c)

Figure 19. Schematic diagram of current response. (a) Current step response with step current 1 A;
(b) current step response with step current 1.8 A; and (c) current step response with step current 2.6
A.

Figure 20 shows that when the three PMSM motors were running at different speeds,
the speed step instruction first applied to PMSM1 was 3000 rpm, and the speed step in-
struction applied to PMSM1 was 600 rpm after the speed was stable for a certain period.
When the PI coefficient adjustment of the speed loop was suitable, the actual speed re-
sponse under the step response of the speed loop was fast and the overshoot did not ap-
pear.

Figure 18. Schematic diagram of two-phase current of PMSM.

4.3.2. Multi-Axis Servo Control Performance Experiment

Figure 19 shows the expected and actual current curves of the three-axis servo system
working in the current loop. We tested the current step effect of three PMSMs. Figure 19a
shows the torque current tracking of the first-axis PMSM with a current amplitude of 1 A;
Figure 19b shows the torque current tracking of the second-axis PMSM with a current
amplitude of 1.8 A; and Figure 19c shows the torque current tracking of the third-axis
PMSM with a current amplitude of 2.6 A. The actual current response under the step
response of the current loop was fast and the overshoot was small when the PI coefficient
was appropriately adjusted.

Electronics 2023, 12, 452 18 of 21

Electronics 2023, 12, x FOR PEER REVIEW 19 of 23

Figure 18. Schematic diagram of two-phase current of PMSM.

4.3.2. Multi-Axis Servo Control Performance Experiment
Figure 19 shows the expected and actual current curves of the three-axis servo system

working in the current loop. We tested the current step effect of three PMSMs. Figure 19a
shows the torque current tracking of the first-axis PMSM with a current amplitude of 1 A;
Figure 19b shows the torque current tracking of the second-axis PMSM with a current
amplitude of 1.8 A; and Figure 19c shows the torque current tracking of the third-axis
PMSM with a current amplitude of 2.6 A. The actual current response under the step re-
sponse of the current loop was fast and the overshoot was small when the PI coefficient
was appropriately adjusted.

(a) (b) (c)

Figure 19. Schematic diagram of current response. (a) Current step response with step current 1 A;
(b) current step response with step current 1.8 A; and (c) current step response with step current 2.6
A.

Figure 20 shows that when the three PMSM motors were running at different speeds,
the speed step instruction first applied to PMSM1 was 3000 rpm, and the speed step in-
struction applied to PMSM1 was 600 rpm after the speed was stable for a certain period.
When the PI coefficient adjustment of the speed loop was suitable, the actual speed re-
sponse under the step response of the speed loop was fast and the overshoot did not ap-
pear.

Figure 19. Schematic diagram of current response. (a) Current step response with step current 1 A;
(b) current step response with step current 1.8 A; and (c) current step response with step current 2.6 A.

Figure 20 shows that when the three PMSM motors were running at different speeds,
the speed step instruction first applied to PMSM1 was 3000 rpm, and the speed step
instruction applied to PMSM1 was 600 rpm after the speed was stable for a certain period.
When the PI coefficient adjustment of the speed loop was suitable, the actual speed response
under the step response of the speed loop was fast and the overshoot did not appear.

The experimental results revealed that the universal SoC embedded with the copro-
cessor IP could independently and synchronously drive three motors, and the axes were
controlled in parallel without interference. Meanwhile, the control precision was high, and
the current and speed response was fast.

Electronics 2023, 12, x FOR PEER REVIEW 20 of 23

Figure 20. The diagram of test result with speed step commands.

The experimental results revealed that the universal SoC embedded with the copro-
cessor IP could independently and synchronously drive three motors, and the axes were
controlled in parallel without interference. Meanwhile, the control precision was high,
and the current and speed response was fast.

4.3.3. Comparison of Time Consumption with Pure Software Computing
To test the computing performance of the coprocessor IP, we compared the time

taken by the pure software scheme to realize the current loop operation with the time
taken by the coprocessor IP to realize the current loop closed-loop operation with the
hardware and software coordination scheme. At 72 MHz clock, the time taken by the uni-
versal SoC using two schemes to complete the current loop closed-loop calculation is
shown in Table 3.

Table 3. Comparison of computation time.

Number of Motors Pure Software Solution (us)
Software and Hardware Coopera-

tion Scheme (us)
1 64.72 1.80
2 132.48 1.90
3 198.15 1.99
4 262.88 2.09
5 326.80 2.19
6 330.12 2.28

Based on the data in the above table, the SoC embedded with the IP would signifi-
cantly improve the speed of the closed-loop operation of the current loop using the hard-
ware and software coordination scheme. Due to the parallelism of the coprocessor IP
hardware and the fact that the IP supports pipeline operation, the more motors required
to compute, the more the acceleration of the IP. For multi-axis servo control, the closed-
loop operation of the current loop of all motors must be completed in a current loop con-
trol cycle. The pure software scheme has a long calculation time due to serial execution,
making the computing power of the universal SoC unable to meet the multi-axis servo
control. The use of the coprocessor IP with the hardware and software coordination
scheme significantly reduced the closed-loop operation time of the current loop; besides,
the extremely short current loop operation speed markedly improved the response speed
and bandwidth of the current loop, making the single low-power universal SoC to effi-
ciently complete the multi-axis servo control.

Figure 20. The diagram of test result with speed step commands.

4.3.3. Comparison of Time Consumption with Pure Software Computing

To test the computing performance of the coprocessor IP, we compared the time taken
by the pure software scheme to realize the current loop operation with the time taken by
the coprocessor IP to realize the current loop closed-loop operation with the hardware and
software coordination scheme. At 72 MHz clock, the time taken by the universal SoC using
two schemes to complete the current loop closed-loop calculation is shown in Table 3.

Based on the data in the above table, the SoC embedded with the IP would significantly
improve the speed of the closed-loop operation of the current loop using the hardware and
software coordination scheme. Due to the parallelism of the coprocessor IP hardware and
the fact that the IP supports pipeline operation, the more motors required to compute, the
more the acceleration of the IP. For multi-axis servo control, the closed-loop operation of
the current loop of all motors must be completed in a current loop control cycle. The pure
software scheme has a long calculation time due to serial execution, making the computing
power of the universal SoC unable to meet the multi-axis servo control. The use of the
coprocessor IP with the hardware and software coordination scheme significantly reduced

Electronics 2023, 12, 452 19 of 21

the closed-loop operation time of the current loop; besides, the extremely short current
loop operation speed markedly improved the response speed and bandwidth of the current
loop, making the single low-power universal SoC to efficiently complete the multi-axis
servo control.

Table 3. Comparison of computation time.

Number of Motors Pure Software Solution (us) Software and Hardware
Cooperation Scheme (us)

1 64.72 1.80
2 132.48 1.90
3 198.15 1.99
4 262.88 2.09
5 326.80 2.19
6 330.12 2.28

4.4. ASIC Implementation Results

The ASIC implementation of the IP was evaluated to promote rapid integration of
the IP into a universal SoC. The IP was synthesized under CSMC 90 nm process library,
and it could run at a frequency of 90 MHZ. In the synthesis process, the low power design
method of clock gating is used to reduce the IP power consumption. The DC tool reported
that the power consumption of the coprocessor IP was 4.46 mw. The final layout is shown
in Figure 21. The power supply voltage of the fixed core was 1.35 V, and the core area
was 0.42 mm2. The dark-blue area in the layout was the Interface module, with an area
ratio of 7.5%. The remaining areas were operation core modules. As the SVPWM unit
of the operation core was embedded with an overmodulation algorithm circuit, the area
accounted for the largest proportion of the operation core. The wathet area was the layout
area of the SVPWM module, which accounted for 28.9% of the total IP area.

Electronics 2023, 12, x FOR PEER REVIEW 21 of 23

4.4. ASIC Implementation Results
The ASIC implementation of the IP was evaluated to promote rapid integration of

the IP into a universal SoC. The IP was synthesized under CSMC 90 nm process library,
and it could run at a frequency of 90 MHZ. In the synthesis process, the low power design
method of clock gating is used to reduce the IP power consumption. The DC tool reported
that the power consumption of the coprocessor IP was 4.46 mw. The final layout is shown
in Figure 21. The power supply voltage of the fixed core was 1.35 V, and the core area was
0.42 mm2. The dark-blue area in the layout was the Interface module, with an area ratio of
7.5%. The remaining areas were operation core modules. As the SVPWM unit of the op-
eration core was embedded with an overmodulation algorithm circuit, the area accounted
for the largest proportion of the operation core. The wathet area was the layout area of the
SVPWM module, which accounted for 28.9% of the total IP area.

PI

CORDIC

SVPWM

Data Control

Interface

Park

Ipark

Clarke

Figure 21. Layout diagram of IP.

ASIC experimental results indicated that the IP had benefits, including low area and
low power consumption, and could be embedded in a universal SoC with low area over-
head and low power consumption to aid in multi-axis servo control.

5. Conclusions
In conclusion, we introduced a coprocessor IP core based on an AMBA bus for accel-

erating the current loop operation of multi-motor vector control. As a consequence, the IP
efficiently accelerated the current loop operation based on time division multiplexing
technology and four key design methods. Additionally, we proposed a supporting SoC
integration method and hardware–software coordination scheme for the coprocessor IP.
The experimental findings highlighted the significance of this study, which include: (a)
the interface of the coprocessor IP adopted AMBA bus, which can be flexibly integrated
into the universal SoC; (b) the current and voltage values of the coprocessor IP were nor-
malized data, allowing the SoC embedded in the IP to easily adapt to multi-axis servo
systems with different motor types; (c) the coprocessor IP consumed fewer resources in
the universal SoC, and the layout area, as well as power consumption of the IP, were

Figure 21. Layout diagram of IP.

Electronics 2023, 12, 452 20 of 21

ASIC experimental results indicated that the IP had benefits, including low area
and low power consumption, and could be embedded in a universal SoC with low area
overhead and low power consumption to aid in multi-axis servo control.

5. Conclusions

In conclusion, we introduced a coprocessor IP core based on an AMBA bus for accel-
erating the current loop operation of multi-motor vector control. As a consequence, the
IP efficiently accelerated the current loop operation based on time division multiplexing
technology and four key design methods. Additionally, we proposed a supporting SoC
integration method and hardware–software coordination scheme for the coprocessor IP.
The experimental findings highlighted the significance of this study, which include: (a) the
interface of the coprocessor IP adopted AMBA bus, which can be flexibly integrated into
the universal SoC; (b) the current and voltage values of the coprocessor IP were normalized
data, allowing the SoC embedded in the IP to easily adapt to multi-axis servo systems with
different motor types; (c) the coprocessor IP consumed fewer resources in the universal
SoC, and the layout area, as well as power consumption of the IP, were lower; and (d) the
operation of the coprocessor IP was quickly executed, and the hardware and software
coordination scheme supporting the IP significantly reduced the execution time of the
vector control current loop, making the low-cost and low-power universal SoC embedded
in the coprocessor IP have a fast current and speed response when achieving multi-axis
servo control.

Author Contributions: Conceptualization, J.X.; Methodology, J.X. and M.C.; Software, J.X., X.J.
and Q.L.; Validation, L.S., H.L., F.W. and P.W.; Formal analysis, J.X. and M.C.; Investigation, J.X.,
M.C. and C.L.; Resources, X.J. and Q.L.; Data curation, J.X. and M.C.; Writing—original draft, P.W.;
Writing—review & editing, J.X.; Visualization, M.C.; Supervision, P.W.; Project administration, H.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by Industry University Research Innovation Fund of the Ministry
of Education of China “FPGA based edge detection algorithm to correct trapezoidal distortion”
(June 2021–May 2022, hosted by 2020HYA04004).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mishra, I.; Tripathi, R.N.; Hanamoto, T. Synchronization and Sampling Time Analysis of Feedback Loop for FPGA-Based PMSM

Drive System. Electronics 2020, 9, 1906. [CrossRef]
2. Mishra, I.; Tripathi, R.; Singh, V.; Hanamoto, T. Step-by-Step Development and Implementation of FS-MPC for a FPGA-Based

PMSM Drive System. Electronics 2021, 10, 395. [CrossRef]
3. Chou, H.H.; Kung, Y.S.; Quynh, N.V.; Cheng, S. Optimized FPGA design, verification and implementation of a neuro-fuzzy

controller for PMSM drives. Math. Comput. Simul. 2013, 90, 28–44. [CrossRef]
4. Banjanovic-Mehmedovic, L.; Mujkic, A.; Babic, N.; Secic, J. Hexapod Robot Navigation Using FPGA Based Controller. In

International Conference “New Technologies, Development and Applications”; Springer: Cham, Switzerland, 2019; pp. 42–51. [CrossRef]
5. Park, J.-H.; Lim, H.-S.; Lee, G.-H.; Lee, H.-H. A Study on the Optimal Control of Voltage Utilization for Improving the Efficiency

of PMSM. Electronics 2022, 11, 2095. [CrossRef]
6. Amornwongpeeti, S.; Ekpanyapong, M.; Chayopitak, N.; Monteiro, J.; Martins, J.; Afonso, J.L. A single chip FPGA-based

cross-coupling multi-motor drive system. IEICE Electron. Express 2015, 12, 20150383. [CrossRef]
7. Ooi, C.P.; Hew, W.P.; Rahim, N.A.; Kuan, L.C. FPGA-based field-oriented control for induction motor speed drive. IEICE Electron.

Express 2009, 6, 290–296. [CrossRef]
8. Boukaka, S.; Teiar, H.; Chaoui, H.; Sicard, P. FPGA implementation of an adaptive fuzzy logic controller for PMSM. In Proceedings

of the 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014), Manchester, UK, 8–10 April
2014; pp. 1–6.

9. Ricci, S.; Meacci, V. Simple Torque Control Method for Hybrid Stepper Motors Implemented in FPGA. Electronics 2018, 7, 242.
[CrossRef]

10. Ma, Z.; Zhang, X. FPGA Implementation of Sensorless Sliding Mode Observer With a Novel Rotation Direction Detection for
PMSM Drives. IEEE Access 2018, 6, 55528–55536. [CrossRef]

http://doi.org/10.3390/electronics9111906
http://doi.org/10.3390/electronics10040395
http://doi.org/10.1016/j.matcom.2012.07.012
http://doi.org/10.1007/978-3-030-18072-0_5
http://doi.org/10.3390/electronics11132095
http://doi.org/10.1587/elex.12.20150383
http://doi.org/10.1587/elex.6.290
http://doi.org/10.3390/electronics7100242
http://doi.org/10.1109/ACCESS.2018.2871730

Electronics 2023, 12, 452 21 of 21

11. Sirisha, B.; Kumar, P.S. A simplified and generalised SVPWM method including over modulation zone for seven level diode
clamped inverter-FPGA implementation. Int. J. Power Electron. 2019, 10, 350–366. [CrossRef]

12. Shu, Z.; Tang, J.; Guo, Y.; Lian, J. An Efficient SVPWM Algorithm With Low Computational Overhead for Three-Phase Inverters.
IEEE Trans. Power Electron. 2007, 22, 1797–1805. [CrossRef]

13. Hu, H.; Yao, W.; Lu, Z. Design and Implementation of Three-Level Space Vector PWM IP Core for FPGAs. IEEE Trans. Power
Electron. 2007, 22, 2234–2244. [CrossRef]

14. Di Benedetto, L.; Donisi, A.; Licciardo, G.D.; Liguori, R.; Piccirilli, E.; Lanzotti, E.; Rubino, A. Implementation of Hardware
Architecture for SVPWM With Arbitrary Parameters. IEEE Access 2022, 10, 32381–32393. [CrossRef]

15. Tsai, M.-F.; Tseng, C.-S.; Cheng, P.-J. Implementation of an FPGA-Based Current Control and SVPWM ASIC with Asymmetric
Five-Segment Switching Scheme for AC Motor Drives. Energies 2021, 14, 1462. [CrossRef]

16. Yilmaz, A.R.; Erkmen, B. FPGA-Based Space Vector PWM and Closed Loop Controllers Design for the Z Source Inverter. IEEE
Access 2019, 7, 130865–130873. [CrossRef]

17. Xie, Q.; Qiu, J. Current-Loop Bandwidth Extension for PMSM Servo System Based on SiC Inverter and FPGA. In Proceedings of
the 2021 IEEE 4th Student Conference on Electric Machines and Systems (SCEMS), Huzhou, China, 1–3 December 2021; pp. 1–4.
[CrossRef]

18. Marufuzzaman, M.; Reaz, M.; Rahman, M.S.; Ali, M. FPGA implementation of an intelligent current dq PI controller for FOC
PMSM drive. In Proceedings of the 2010 International Conference on Computer Applications and Industrial Electronics, Taichung,
Taiwan, 15–17 June 2011.

19. Rogers, P.; Kavasseri, R.; Smith, S.C. An FPGA-in-the-loop approach for HDL motor controller verification. In Proceedings of the
2017 International Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 4–6 December 2017.

20. Tufekci, B.; Onal, B.; Dere, H.; Ugurdag, H.F. Efficient FPGA Implementation of Field Oriented Control for 3-Phase Machine
Drives. In Proceedings of the 2020 IEEE East-West Design & Test Symposium (EWDTS), Varna, Bulgaria, 4–7 September 2020;
pp. 1–5. [CrossRef]

21. Liu, Y.; Li, T.; Zhou, Z.; Xu, P. Design and implementation of an ASIC-based four-axis position servo system. In Proceedings of
the 2008 International Conference on Electrical Machines and Systems, Wuhan, China, 17–20 October 2008.

22. Pengfei, L.; Yuping, H.; Yanbo, W.; Qing, Z.; Zelin, Y. Design of Multi-axis Motion Control and Drive System Based on
Internet. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China,
11–14 August 2019; pp. 1–6.

23. Jin, F.; Wei, Q.; Hua, B.; Lu, D.; Bing, C. Using one FPGA to control two high-switching-frequency PMSM drive systems through a
novel time-division multiplexing method. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition
(APEC), San Antonio, TX, USA, 4–8 March 2018.

24. Lai, C.-K.; Chien, W.-N.; Tsao, Y.-T. An FPGA-Based Multiple-Axis Velocity Controller and Stepping Motors Drives Design.
MATEC Web Conf. 2016, 71, 05002. [CrossRef]

25. Gu, Q.; Li, Y.; Niu, P.; Sun, J. Optimized Design of SoC-based Control System for Multi-axis Drive. Elektron. Ir Elektrotechnika 2014,
20, 15–22. [CrossRef]

26. Sun, Y.; Ming, Y.; Chen, Y.; He, W.; Xu, D. An SoC-based platform for integrated multi-axis motion control and motor
drive. In Proceedings of the 2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia), Niigata, Japan,
20–24 May 2018.

27. Wu, W.; Su, D.; Yuan, B.; Li, Y. Intelligent Security Monitoring System Based on RISC-V SoC. Electronics 2021, 10, 1366. [CrossRef]
28. Romero, J.; Cuevas, N.; Roa, E. Energy Efficient Peripheral System Buses for Low-Area Low-Power SoCApplications IEEET-

ransactions on Circuits Systems, I.I. Express Briefs 2020, 67, 866–870.
29. Mei, K.; Zhang, B.; Ge, C. A hierarchical and parallel SoC architecture for vision procesor. IEICE Electron. Express 2009, 6,

1380–1386. [CrossRef]
30. Zheng, X.; Hu, X.; Zhang, J.; Yang, J.; Cai, S.; Xiong, X. An Efficient and Low-Power Design of the SM3 Hash Algorithm for IoT.

Electronics 2019, 8, 1033. [CrossRef]
31. Sahu, N.; Kumar, A.; Kandari, R. Design and Verification of APB IP Core using Different Verification Methodologies. In

Proceedings of the 2022 International Conference on Breakthrough in Heuristics And Reciprocation of Advanced Technologies
(BHARAT), Visakhapatnam, India, 7–8 April 2022; pp. 150–154.

32. Aravind, M.; Bhattacharya, T. FPGA based Synchronized Sinusoidal Pulse Width Modulation with smooth transition into
overmodulation and six step modes of operation for three phase AC motor drives. In Proceedings of the 2012 IEEE International
Conference on Power Electronics, Drives and Energy Systems (PEDES), Bengaluru, India, 16–19 December 2012; pp. 1–6.
[CrossRef]

33. Jing, R.; Zhang, G.; Wang, G.; Bi, G.; Ding, D.; Xu, D. An Overmodulation Strategy Based on Voltage Vector Space Division for
High-Speed Surface-Mounted PMSM Drives. IEEE Trans. Power Electron. 2022, 37, 15370–15381. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1504/IJPELEC.2019.102505
http://doi.org/10.1109/TPEL.2007.904228
http://doi.org/10.1109/TPEL.2007.909296
http://doi.org/10.1109/ACCESS.2022.3160750
http://doi.org/10.3390/en14051462
http://doi.org/10.1109/ACCESS.2019.2940670
http://doi.org/10.1109/scems52239.2021.9646166
http://doi.org/10.1109/ewdts50664.2020.9224884
http://doi.org/10.1051/matecconf/20167105002
http://doi.org/10.5755/j01.eee.20.7.4848
http://doi.org/10.3390/electronics10111366
http://doi.org/10.1587/elex.6.1380
http://doi.org/10.3390/electronics8091033
http://doi.org/10.1109/pedes.2012.6484277
http://doi.org/10.1109/TPEL.2022.3195615

	Introduction
	Background Research
	Mathematical Model of Permanent Magnet Synchronous Motor
	Vector Control
	Basic Architecture of Universal SoC

	Implementation Process
	Coprocessor IP Core Design
	Method 1: Data Normalization Processing Method
	Method 2: Design Method for the Multiplication Calculation Circuit
	Method 3: Design Method of PI Control Unit
	Method 4: SVPWM Overmodulation Design Method

	SoC Integration Method of IP
	Hardware–Software Coordination Scheme of IP

	Experiment and Experimental Results Analysis
	Establishment and Implementation of Experiments
	Resource Consumption
	Functional Verification and Performance Analysis
	Functional Experiment of Single-Axis Servo Control
	Multi-Axis Servo Control Performance Experiment
	Comparison of Time Consumption with Pure Software Computing

	ASIC Implementation Results

	Conclusions
	References

