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Abstract: Food safety technologies are important in maintaining physical health for everyone. It is
important to digitize the scents of foods to enable an effective human–computer interface for smells.
In this work, an intelligent gas-sensing system is designed and integrated to capture the smells of food
and convert them into digital scents. Fruit samples are used for testing as they release volatile organic
components (VOCs) which can be detected by the gas sensors in the system. Decision tree, principal
component analysis (PCA), linear discriminant analysis (LDA), and one-dimensional convolutional
neural network (1D-CNN) algorithms were adopted and optimized to analyze and precisely classify
the sensor responses. Furthermore, the proposed system and data processing algorithms can be
used to precisely identify the digital scents and monitor the decomposition dynamics of different
foods. Such a promising technology is important for mutual understanding between humans and
computers to enable an interface for digital scents, which is very attractive for food identification and
safety monitoring.

Keywords: food decomposition; VOCs; sensor array; fruit odor; convolutional neural network

1. Introduction

In 2013, 14.3% of American households had pabulum insecurity [1]. It was estimated
that 55,961 people are admitted to hospital with about 1350 deaths related to food each
year in the United States [2]. In addition, food allergies caused by the confusion of food can
result in life-threatening incidents [3–5]. Food safety is closely correlated to its species and
quality, so monitoring and discrimination are essential. In pabulum quality monitoring,
colorimetric designators are often used to identify transmutations in temperature and toxic
gases to monitor food indirectly during storage [6]. Other designators have been selected
for tracking the spoilage of chicken [7], salmon [8], and shrimp [9] through releasing
volatile amines and amine derivatives. In addition, machine learning methods have been
adopted and integrated with thermal imaging to monitor the quality of fruits in storage [10].
Recently, there is an increasing interest in integrating neural network methods (i.e., CNN)
and image databases in classifying foods for controlling dietary intake [11]. In general,
these artificial neural network studies showed good selectivity and reusability, which are
promising for the identification of food odors.

In general, food designators, which are colorimetric stickers and labels to reflect
food quality and conditions (e.g., storage time, temperature, and freshness), show color
change upon exposure to food [6]. However, they are generally discarded after use, which
is not environmentally friendly. In addition, food designators give limited information
about foods and only work for a limited number of foods. Digital imaging is an option
to categorize food [7]. However, images are easily affected by light, focus, and resolution
and do not contain any detailed chemical information. Digitizing the scents of food with
an array of sensors is a simple and probably more feasible method to identify food and
guarantee the quality of food.

Electronics 2023, 12, 418. https://doi.org/10.3390/electronics12020418 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12020418
https://doi.org/10.3390/electronics12020418
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12020418
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12020418?type=check_update&version=1


Electronics 2023, 12, 418 2 of 14

As an important category of food, fruits release scents with certain unique combi-
nations and concentrations of VOCs [12–17]. The composition of VOCs, which deter-
mines the smells of fruits, depends on enzymes, substrate, temperature, and other fac-
tors [12,18]. Therefore, the detected composition of VOCs can be used to identify the type,
maturity [19–21], origin [22], and storage conditions [23] of the fruits. By comparing the
concentrations and types of the odors released from fruits, the fruits and decomposition con-
ditions can be precisely identified and monitored. The previous E-nose studies related to the
VOCs of fruits and other foods were based on traditional machine learning methods such
as principal component analysis (PCA) [24–26], linear discriminant analysis (LDA) [27–30],
and support vector machines (SVM) [30], while one-dimensional convolutional neural
networks (1D-CNN) mainly composed of 1D convolutional layers for feature extraction
and dense layers for classification [31–33] were gradually adopted in the VOCs analysis
of food with high accuracy [34,35]. However, artificial neural networks (ANN), which
mainly consists of multilayer perceptron (MLP) [36,37] as dense layers of 1D-CNN [38],
have already shown high classification accuracy in E-nose studies [39–41]. It is still doubtful
whether 1D convolutional layers themselves have a better feature extraction capability than
commonly used manual feature extraction methods.

In this work, we developed an intelligent gas-sensing system to detect and process odor
information of fruits of different types and different decomposition conditions. The system
is equipped with an array of sensors, a microprocessor enabled with different algorithms,
and a sniffing system. Metal oxide (MOX) sensors were selected for cost-effective and
widely-used purposes. Typically, a deep learning algorithm, 1D-CNN, was adopted and
optimized in the system to continuously improve its precision with more and more training
and testing of food detection. For comparison, other methods, such as exponential fitting,
PCA, LDA, and decision trees, were also adopted to test the system. In addition, this
work demonstrates convolutional layers have a better feature extraction capability than the
conventional feature extraction method represented by exponential fitting.

2. System Integration, Data Collection, and Analysis Methods
2.1. The Intelligent Gas-Sensing System

The design and assembled circuit of the intelligent gas-sensing system are illustrated in
Figure 1. The operation of the sniffing system is precisely controlled by the microcontroller,
electric valves, and pump. The blue and orange arrows indicate the flow of the gas and the
electric signal transmission, respectively. The carrier gases, such as N2, Ar, or air, are used
to carry the releasing fruit’s VOCs in the container onto the gas sensors. Its flow speed and
direction are controlled by the pump and three-way electric valve.

The conductance of the gas sensors shows a change in response to the fruit VOCs. The
response of conductance is usually represented by the voltage of the resistors connected
in a series in the gas sensor. An analog/digital (A/D) converter is adopted for sampling
and converting the voltage signal into digital information which is transferred to the
microcontroller. The microprocessor is equipped with the proposed algorithms to identify
the fruits and monitor the decomposition dynamics of the fruits by analyzing the digital
scents transferred from microcontroller.

As shown in Figure 1b, the sniffing system and circuit boards are integrated in a sealed
chamber. The device has two printed circuit boards (PCBs). The top PCB integrates four
different types of gas sensors, while the bottom one is composed of an A/D converter,
microcontroller, electronic controls of a small mechanical pump, and three-way valve. The
microcontroller is connected to the external microprocessor through a USB cable.
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Figure 1. The intelligent gas-sensing system: (a) the architecture of the intelligent gas-sensing system
is built up with a gas control module (top), signal sampling module (middle), and classification
module (bottom); (b) the hardware of the sniffing system, a chamber containing an array of gas
sensors, A/D converter, micro control unit, gas inlet, and outlet on its edge; (c) 7 types of peeled
fruits were placed in containers separately.

In this system, four metal oxide sensors, MQ3, MQ4, MQ7, and MQ9, which are
manufactured by Winsen Electronics, are adopted to mainly detect alcohol, methane,
carbon monoxide, and propane, respectively. To better detect the scents, the gas sensors
with low conductance as a baseline are placed in the front, meeting the inlet in the chamber.
The to-be-sniffed carrier gas carries the fruit scent from the container and flows through a
three-way electric valve into the chamber. The percentage change in sensor conductance,
defined as the change in conductance (∆G) divided by the initial conductance (G) and
known as relative conductance, (∆G/G), increases upon exposure to carrying gases mixed
with the typical VOCs of fruits. After a detection period, the gas mixture in the chamber is
pumped out and refreshed with air through the three-way electric valve. The conductance
gradually returns to the initial value. Figure 2a shows the relative conductance response
of the MQ7 sensor upon exposure to different fruit scents. The remarkable difference in
conductance response is caused by different fruit scents and different concentrations. As
shown in Figure 2b, the peak values of ∆G/G increase quite linearly with an increasing
number of storage days. Such a linear correlation is advantageous for the system to monitor
the changes in fruit scents. Hence, the ∆G/G curves contain all the information, such as
classifying features (discussed in Section C), to identify fruits and their decomposition
states. It should be noted that drift is a concern in the application of MOX sensors and
is difficult to completely avoid. To minimize its effect, we replace the absolute value in
resistance change with the relative conductance change, ∆G/G. This way, the response
curves begin at the same initial value, as shown in Figure 2b.
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Figure 2. The relative conductance response of the gas sensor to fruit: (a)the relative conductance
response of the MQ7 sensor to different kinds of fruit odors, which consists of baseline region,
detection region, and recovery region; (b) the relative conductance response of the MQ7 sensor to
peeled strawberry on different storage days.

2.2. Data Collection and Testing

Due to the severe allergy caused by some fruit species, such as avocado [4,5], it is
important to discriminate the fruit types. In this work, 7 types of peeled fruits were
placed in containers and then sniffed and sampled by the intelligent gas-sensing system,
as shown in Figure 1c, where avocado, melon, lemon, mango, and pear were selected
for classification testing. The response (∆G/G) of 4 sensors to these 5 fruits was used
to construct a dataset where each fruit smell contains 15 samples measured with one
individual fruit. On the other hand, studies suggest that the decay of fruits is closely related
to storage days [42–46], and we observed that there was mold on the surface of the fruits
around the fourth storage day. Hence, we assume the decomposition states of fruit can be
represented by the storage days to simplify the decay analysis of fruits in this work. During
the testing in decomposition monitoring, peeled fruits, including strawberry and orange,
were sampled on 4 days in series. This measurement constructs a different dataset which
contains 20 samples measured with same individual fruits for each storage time. During
the whole sampling process, the temperature stayed at 25 ◦C with an error within ±2 ◦C
and relative humidity staying at 40–60%, which is detected by the HTU21D(F) sensor. In
addition, 5-fold cross-validation [47] was introduced to randomly divide the whole set into
5 segments. Each segment was used as the validation dataset to evaluate the accuracy of
the algorithms in the discussion section, while the remaining 4 segments were combined
to form the training set. The accuracy is the mean value of 5 maximized accuracies which
were tested by 5 validation sets.

2.3. Analysis Methods

For a comprehensive analysis of the ∆G/G curves, we integrated feature extraction
methods with machine learning algorithms to enable intelligent gas sensing in classifying
fruits and monitoring fruit decomposition. We applied exponential fitting, a manual feature
extraction method, one-dimension (1D) convolutional layers, and a machine-learning-
based method, to obtain key information (i.e., features) of fruit scents from the primitive
response data. In exponential fitting, an exponential equation is adopted to fit the ∆G/G
curves, whereas the main features are the fitting coefficients of the equation. On the other
hand, the 1D convolutional layers integrate linear and nonlinear operations to extract the
features progressively with hierarchical kernels applied across the ∆G/G curves [48]. To
discriminate and visualize the features above, this work has studied decision tree, principal
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component analysis (PCA), one-dimensional convolutional neural network (1D-CNN),
and linear discriminant analysis (LDA) methods. The decision tree partitions the feature
space into pure single-class subspaces recursively with the coefficients of exponential
fitting [49]. Principal component analysis (PCA) is applied in further extraction of more
distinguishable features from the coefficients’ exponential fitting. 1D-CNN is adopted and
modified for the training of 1D convolutional layers and then used to differentiate the
features captured by these layers. Linear discriminant analysis (LDA) is used to intuitively
visualize and compare the effectiveness of the features acquired from the feature extraction
algorithms above.

3. Results and Discussion

In the comparison of feature extraction algorithms and machine learning methods, we
adopted and optimized three classification models: the decision tree model, PCA model,
and 1D-CNN model.

3.1. Results of Decision Tree Model

The decision tree is based on a hierarchical model with discriminant functions that
partition the feature space of a data set into pure single-class subspaces recursively. The
simplification of its structure is advantageous for fast computing and low requirements
for the hardware system. In the decision tree model (Figure 3a), features fed as input to
the decision tree are extracted by exponential fitting. In exponential fitting, an exponential
equation [50] was adopted to fit the relative conductance curve and extract the main
features, as in Equation (1):

∆Gk
Gk

= ak × exp(bkt) + ck (1)

where ∆Gk and Gk represent the change of conductance and initial conductance of the
kth curve, respectively; ak, bk, and ck are the coefficients to be solved by fitting process;
t is the time. The fitting of increasing and decreasing curves of the sensor conductance
response generated two sets of coefficients (ak, bk, ck) which represent the features upon
exposure to or recovering from fruit scents, corresponding to the detection and recovery
region in Figure 2a. Before feeding into the decision tree, StandardScaler function was used
to normalize and then scale the coefficients into the unit variance to mitigate the drift effect,
which was also adopted in the PCA model. The decision tree uses these coefficient sets
as the decision boundaries of discriminant functions to divide the feature space for each
node [49]. It should be noted that the decision tree exponential fitting may exhibit low
accuracy. However, it can select the gas sensors by evaluating and tracking the coefficients
adopted in the structure of the decision tree.

Figure 4 shows the process of a trained decision tree in classifying the training set with
five types of fruits. There were four branch nodes, which represent the feature spaces, and
five leaf nodes, which represent the types of fruits in the decision tree model. The root node
in the top branch represents the entire feature space, while the remaining nodes represent
subspaces of the original feature space [49]. The avocado data samples were first separated
from the original feature space by the first decision boundary, e.g., the “c” of (1) by fitting
the response data of the fourth sensor is equal to 1.21. According to the same manner,
other fruit data samples were hierarchically separated by other decision boundaries. In the
decision tree, we found that the fourth sensor played a vital role as its feature is adopted
twice per cycle, while the feature of the third sensor is rarely utilized. Hence, the decision
tree can also evaluate sensor effectiveness and investigate the reliability of exponential
fitting. In addition, the decision tree models achieved their best prediction accuracies,
85.91%, 94.86%, and 77.21%, in classifying the five types of fruits, 4 different strawberry
decomposition days and 4 days of orange decomposition, respectively. The results are also
listed in Table 1, indicating that the decision tree model is capable of classifying both the
types and decomposition of the fruits.
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Figure 3. The models for classification and monitoring of the fruits: (a) the decision tree model
composed of exponential fitting and decision trees; (b) the PCA model composed of exponential
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layers, batch normalization layers, max-pooling layers, and dense layers.
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Table 1. Five-fold cross-validation recognition accuracy with different models.

Models 5 Types of Fruits Strawberry Orange

Decision tree model 85.91% 94.86% 77.21%
PCA model (200 epochs) 90.51% 97.33% 81.90%

1D-CNN model referred to [34,35] (200 epochs) 96% 97.65% 100%
Optimized 1D-CNN model (200 epochs) 100% 100% 100%

3.2. Results of PCA Model

Principal component analysis (PCA) is often used in analyzing the VOCs related to
food [24–26,51–56]. It significantly reduces the dimension of the features while retaining
the most important information, which is advantageous for classification [57]. In the PCA
model (Figure 3b), coefficients provided by exponential fitting were fed into PCA with the
dense layers. The embedded feature vectors generated by PCA were mapped and analyzed
to predict the probability of each class in the dense layers, where the Softmax function [58]
was adopted, as in Equation (2):

F(xi) =
exp(xi)

∑N
j=1 exp

(
xj
) (2)

in which N is the number of classes; i = 1, 2, . . . , N; xi is the input value; F(xi) is the
probability of sample corresponding to the ith class. After setup, the PCA model was
trained using an Adam optimizer [59] for 200 epochs with a learning rate set to 0.001 and
batch size set to 3. As listed in Table 1, it achieved 90.51% accuracy in classifying five
types of fruit by using the five-fold cross-validation method. As for the classification of
the strawberry dataset and the orange dataset stored on different days, the PCA model
achieved its best accuracies, 97.33% and 81.90%, respectively. These results are reflected
by PCA plots, as shown in Figure 5. The PCA model exhibited higher accuracy because it
could extract more relevant and precise features in comparison with decision tree method,
which directly used the fitting features. This comparison also indicated feature extraction
is critical in classifying digital scents.
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types of fruits by equation (1) fitting, with principal component 1 (PC1) accounting for 42.5% and
principal component 2 (PC2) accounting for 16.1%. (b) PCA plot for features extracted from sensor
conductance responses of strawberry on different storage days by equation (1) fitting, with PC1
accounting for 60.9% and PC2 accounting for 8.7%.
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3.3. Result of 1D-CNN Model

In this work, we designed a 1D-CNN model for fruit scents (described in Figure 3c)
to extract ∆G/G features more comprehensively than those of exponential fitting. It
consists of four 1D convolutional layers, four batch normalization layers, two max-pooling
layers and three dense layers. The 1D convolutional layers extract the features of ∆G/G
curves with stride set to 1 and convolutional kernels set (i.e., channel number × size) to
64 × 10, 32 × 8, 16 × 5, and 8 × 1. The batch normalization layers normalized the outputs
of the convolutional layers to mitigate the drift effect. The resulting feature maps are then
activated by the rectified linear activation function for speeding up the training process [60].
To avoid overfitting, max-pooling was employed to downsample the feature maps by a
factor of 2. Finally, the dense layers map the flattened and embedded features into the
possibility for each class [48] with a Softmax function as (2). After setup, the 1D-CNN
model was also trained using an Adam optimizer [59] for 200 or 400 epochs with a learning
rate of 0.001 and batch size of 3.

In general, the values of log accuracy and loss over hundreds of epochs (i.e., iterations)
are good indicators of the improvement by the training set and validation set. A smaller
loss or larger accuracy value is achieved by a better model. Furthermore, over-fitting can
be avoided if the validation loss is very close to the training loss [32]. The plots of accuracy
and loss are shown in Figure 6. In this case, the Multi-Label Soft Margin Loss function was
adopted to calculate the loss, as in Equation (3):

L = − 1
C ∑N

i=1(yi × log
(

1
1 + exp(−xi)

)
+ (1 − yi)× log(

exp(−xi)

1 + exp(−xi)
)) (3)

where C is the number of classes; N is the number of the training samples; xi is the
prediction vector (i.e., the output of the model); yi is the corresponding label vector of
xi [61]. The results indicate that the losses of both the training and validation sets were
reduced sharply in the first 60 epochs and finally reached 0.62 after 350 epochs. The accuracy
increased sharply and finally reached 100%. The results indicated that the adopted model
successfully avoided overfitting. The five-fold cross-validation accuracy reached 100% in
the classification of five types of fruits. In addition, identification of strawberry and orange
decomposition at different storage days also achieved 100% accuracy with five-fold cross-
validation (see Table 1). To compare the capability of the 1D-CNN we designed, a different
1D-CNN model consisting of the structure, hyperparameter of layers, and loss function
given in [34,35] was trained and tested, while the other hyperparameters were kept the same.
As shown in Table 1, the 1D-CNN model we designed can achieve higher classification
accuracy. This is because we stacked denser layers to increase its classifying accuracy and
set some of the convolutional layers with longer kernel sizes to capture the features of
longer continuous patterns of ∆G/G. Overall, the 1D-CNN model has achieved the best
accuracy among all the models in the classification of all the datasets. In this work, the
features of sensor response are extracted from the curves of relative change in conduction
(∆G/G) vs. time. For example, the slopes of the ∆G/G curves are the main indicators of
how fast and how sensitive the sensors react with VOCs [62]. The convolutional layers in
1D-CNN model can capture the whole pattern of sensor response [63]. In comparison, the
exponential fitting method can only capture part of the patterns reflected by the slopes when
Equation (1) is used for curve fitting. This is further verified by LDA analysis in Section 3.4.
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3.4. Result of LDA Assisted with 1D Convolutional Layers and Exponential Fitting

Linear discriminant analysis (LDA) is a commonly used technique aiming at dimen-
sionality reduction, feature extraction and pattern classification in fruit analysis [24–30]. It
increases the interclass variance while decreasing the intraclass variance with maximized
class discrimination [64] and a clear indication of feature effectiveness. Figure 7a,b show
the LDA results based on the features extracted by exponential fitting and one-dimensional
convolutional layers, respectively. All fruits are identified and clearly separated in the plots.
There is a slight overlap of the melon and lemon clusters for LDA with exponential fitting,
but the result of LDA with features from 1-D convolutional layers shows significant im-
provement. This indicates that one-dimensional convolutional layers are better at capturing
comprehensive and discriminating features than exponential fitting.
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Figure 7. The LDA plot for sensor conductance responses of different types of fruits: (a) LDA plot
for features extracted by equation (1) fitting, with linear discriminant 1 (LD1) accounting for 77.2%
and linear discriminant 2 (LD2) accounting for 16.8%; (b) LDA plot for features extracted by 1D
convolutional layers, with linear discriminant 1 accounting for 65.2% and linear discriminant 2
accounting for 27.0%.
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The intelligent gas-sensing system can also be used to monitor fruit decomposition. As
shown in Figure 8, LDA was performed on the feature extracted by exponential fitting on
the sensor response to orange and strawberry which were exposed to air for different days.
The result indicated that the decomposition of both orange and strawberry can be clearly
identified. For orange decomposition, the LD1 decreases with increasing exposure days,
exhibiting certain linearity between feature and decomposition time. It should be noted
that the linearity can be more remarkable if only one dimension of the linear discriminant
is used. Nonetheless, this result indicates that our intelligent system and proposed analysis
algorithms can measure and capture the key characteristics of fruit decomposition.
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Figure 8. LDA plot for sensor conductance responses of fruits in different storage days: (a) LDA
plot for features extracted from orange by Eq.1, with linear discriminant 1 (LD1) accounting for
87.20% and linear discriminant 2 (LD2) accounting for 9.14%; (b) LDA plot for features extracted from
strawberry by equation (1), with linear discriminant 1 accounting for 90.16% and linear discriminant
2 accounting for 6.56%.

3.5. Robustness and Reproducibility

So far, the robustness and reproducibility are still significant concerns for the gas-
sensing system. With different individuals or circumstances, the features may be affected
to some extent. To verify whether the system and models we designed are affected by
other factors while capturing the features of the VOCs released by the fruits, we repeated
the measurement and built up a robustness dataset, where several individual fruits of
each category were detected in different temperatures and humidity levels. During the
sampling of five types of the fruits, the temperature stayed at 26 ◦C with an error within
±1 ◦C and relative humidity close to the fruits staying at 60–70%, where the maximum
temperature and humidity differences between individuals of the same category were
0.3 ◦C and 8%, respectively. During the decomposition tests for orange and strawberry, the
temperature stayed at 26 ◦C with an error within ±2 ◦C and relative humidity staying at
65–80%, where the maximum temperature and humidity differences between individuals
of the same category on the same days were 1.1 ◦C and 7%, respectively. For each fruit, we
obtained around 15 and 26 samples (for each decomposition day) from different individual
fruits of each category for type discrimination and decomposition monitoring, respectively.
Model prediction accuracies for the robustness data set are shown in Table 2. Compared
with the result in Table 1, the performance of the models is slightly reduced, while the
accuracy rankings among the models for different prediction purposes remain the same.
This accuracy reduction can be attributed to different individuals and the wide-range of
humidity and temperature fluctuations which affect the resistance response in the sensors
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and therefore increase the difficulty in discrimination. However, the models we designed
can still capture some of the significant features from the fruits under such effects.

Table 2. Five-fold cross-validation recognition accuracy in the robustness dataset.

Models 5 Types of Fruits Strawberry Orange

Decision tree model 55.81% 73.26% 70.63%
PCA model (200 epochs) 56.19% 77.53% 72.11%

1D-CNN model referred to [34,35] (200 epochs) 68% 84.76% 99.05%
Optimized 1D-CNN model (200 epochs) 98.67% 93.33% 100%

Among all the models, the optimized 1D-CNN still has the best performance. Figure 9a,b
show the LDA results of the robustness dataset based on the features extracted by ex-
ponential fitting and 1D convolutional layers, respectively. Two types of fruit (pear and
mango) clusters overlapped with each other in exponential fitting (Figure 9a), while 1D
convolutional layers extracted the valuable features helping LDA to clearly separate dif-
ferent fruit categories in such a robustness dataset (Figure 9b). This further verified that
the optimized 1D convolutional layers can extract key features even for the sampling data
from different individuals and in circumstances with variation more comprehensive than
those by exponential fitting. This further indicates the robustness and reproducibility of
the proposed system and algorithm.
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Figure 9. The LDA plot for sensors’ conductance responses of different types of fruits in the robustness
dataset: (a) LDA plot for features extracted by equation (1) fitting, with linear discriminant 1 (LD1)
accounting for 81.40% and linear discriminant 2 (LD2) accounting for 10.70%; (b) LDA plot for
features extracted by 1D convolutional layers, with linear discriminant 1 accounting for 49.86% and
linear discriminant 2 accounting for 30.29%.

4. Conclusions

In this work, an intelligent gas-sensing system was designed to classify fruits and
monitor their decomposition by collecting their smells. A 1D-CNN algorithm was engi-
neered and used to capture the whole pattern of all sensor conductance responses. With
LDA visualization and five-fold cross-validation, the 1D convolutional layers exhibited
better feature extraction capability and robustness than the exponential fitting. In addition,
the decomposition monitoring is demonstrated by the high accuracy of classification and
the consistency of the primitive characteristics and the characteristics captured by LDA.
In general, the 1D-CNN model achieved the highest accuracy in the classification and
monitoring of fruit, while the decision tree model performed worst but evaluated the
effectiveness of each sensor. This work provides a valuable reference to digitize scents for
precise food identification and decomposition monitoring.
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