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Abstract: Machines in factories are typically operated 24 h a day to support production, which
may result in malfunctions. Such mechanical malfunctions may disrupt factory output, resulting
in financial losses or human casualties. Therefore, we investigate a deep learning model that can
detect abnormalities in machines based on the operating noise. Various data preprocessing methods,
including the discrete wavelet transform, the Hilbert transform, and short-time Fourier transform,
were applied to extract characteristics from machine-operating noises. To create a model that can be
used in factories, the environment of real factories was simulated by introducing noise and quality
degradation to the sound dataset for Malfunctioning Industrial Machine Investigation and Inspection
(MIMII). Thus, we proposed a lightweight model that runs reliably even in noisy and low-quality
sound data environments, such as a real factory. We propose a Convolutional Neural Network–Long
Short-Term Memory (CNN–LSTM) model using Short-Time Fourier Transforms (STFTs), and the
proposed model can be very effective in terms of application because it is a lightweight model that
requires only about 6.6% of the number of parameters used in the underlying CNN, and has only a
performance difference within 0.5%.
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1. Introduction

Advancements in industrial technology have led to factories becoming increasingly
more automated, predictive maintenance technologies evolving considerably, and auto-
mated smart factories being developed for efficient large-scale manufacturing [1]. However,
as manufacturing equipment is typically in constant operation, there is a high probability
of mechanical malfunction that may disrupt factory output and result in financial losses or
human casualties. These severe failures are typically triggered by minor failures. Thus, the
early detection of minor failures can considerably mitigate any harm, and tools for fault
detection are being developed [2–4]. However, monitoring the machines for 24 h a day is
cumbersome and detecting the minor failures visually is difficult. Therefore, in this study,
we investigated two deep learning models for detecting failures by monitoring the sound
generated by machines during operation [5,6].

This study used the MIMII dataset [7] that contains recordings of sounds that may be
generated in a factory. The recordings comprise sounds generated by four machines: a fan,
a pump, a valve, and a sliding rail. We used discrete wavelet transforms (DWT), Hilbert
transforms, and short-time Fourier transforms (STFTs) to convert features of sound data
into images after extraction and use them as inputs to deep learning models. Furthermore,
we investigated model performance under three recording qualities (16 K, 8 K and 4 K)
and conditions with different signal-to-noise ratios (SNRs) (−6 dB, 0 dB, 6 dB). This was
performed in order to take into account the real factory environment and the existence of
ambient factory noise.

We have created a CNN-based model with a structure similar to that of existing studies,
and propose a lightweight CNN–LSTM-based model available in real-world industries. Our
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proposed model has shown that it is robust with excellent results even on low-quality and
noisy sound data. Compared to the underlying CNN model, our proposed CNN–LSTM
model showed superior performance, even with only 6.6% of the number of parameters.
The contributions of this study are as follows:

• We investigated the impact of three sound data pre-processing methods (the Hilbert
transform, DWT, and the STFT) on deep learning model performance.

• We propose a CNN–LSTM lightweight model with the STFT, and show an efficient
performance even with a very small number of parameters. Existing studies have been
conducted using models with transfer learning from pre-trained models or models
with many parameters [8–11].

• We investigated the model performance on lower data qualities and with random
noise, with the goal of gauging model performance in real-world factory settings.

This paper is organized as follows. Section 2 discusses previous research on anomaly
detection in manufacturing. Section 3 presents the feature engineering techniques for the
sound of equipment utilized in this study. Section 4 describes the architecture of the model
proposed in this study. Section 5 describes the dataset utilized in the experiment, the
environment, and the results of various experiments for each model. Section 6 discusses the
proposed model by comparing it with existing similar models. Finally, Section 7 discusses
conclusions and future work.

2. Related Works

Machine failure on the assembly floor can halt production, and repairing such ma-
chines incurs considerable cost. Therefore, numerous studies have been conducted to
obtain industry data. The MIMII dataset [7] is widely used as representative data in many
studies. For example, the MIMII dataset has been used in deep learning models, such
as in a study to detect outliers using SCRLSTM, which is an ensemble model combining
CNN and LSTM [8], and an ensemble model based on the EfficientNet model for outlier
detection. Furthermore, the dataset has been previously used in a detection model [9],
a study comparing CNN–LSTM and CNN–GRU [10], and a study of a model robust to
noise [11]. In this paper, we also propose a CNN-based model and a combination of CNN
and LSTM.

Studies using semi-supervised, unsupervised, and self-supervised learning methods
include outlier detection, using self-supervised complex networks [12], outlier detection,
using an unsupervised domain adaptation method [13], a study on a learning MIMII dataset
through the semi-supervised learning of the RawdNet model [14], and an outlier detection
study using self-supervised learning that utilizes a contrast learning framework [15]. MIMII
dataset preprocessing has been realized by removing noise from MIMII datasets, via NMF
and nnCP models [16]. Outlier detection was performed by improving the performance of
the DCNN–LSTM, using the Hilbert transform [17].

Studies have been conducted on preprocessing the data to improve the performance
of the anomaly detection model. For example, the STFT and DWT were used in a study on
industrial equipment frequency analysis [18] and a study investigated the performance of
the CatGAN model using the STFT [19]. Furthermore, the Hilbert transform was used for
studying ECG data [20] and mechanical vibration [21]. A study used DWT in performing
audio analysis [22]. Many industries and applications use technologies such as DWT, the
Hilbert transformation, and the STFT for efficient signal processing. Our model also uses
these techniques for feature extraction to classify sounds for fault diagnosis.

Many studies have been conducted on model performance, model learning methodolo-
gies, and data preprocessing. However, few studies have considered the real environment.
A factory may have considerable ambient noise, or the factory environment may not be
suitable for capturing data of decent quality. Thus, we investigated models that exhibit
robust performance, even when noise is introduced, or data quality is degraded.
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3. Feature Engineering

In this paper, feature extraction and transformation processes were performed to
use sound datasets as input into the deep learning model for fault diagnosis, as shown
in Figure 1. First, diagnostic equipment, used in the environment of an industrial field,
may have limited memory and bandwidth. Therefore, we experimented by lowering the
basic quality of 16 K to 8 K and 4 K in the sound dataset. In addition, a comparative
experiment was conducted using SNR values of −6 dB, 0 dB, and 6 dB to consider the noise
environment. Second, features were extracted from sound using the DWT, Hilbert, and the
STFT, and converted into images. Finally, the image created through the processing process
was used as an input to the deep learning model.
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3.1. Discrete Wavelet Transform (DWT)

DWT is a wavelet-based signal decomposition algorithm. A high-pass filter is used
to produce coefficients in DWT and a low-pass filter is used to obtain approximation
coefficients. We used a low-pass filter to obtain approximation coefficients, and used db4
as the wavelet. Following the application of DWT to the sound data, we generated a
32 × 32 image from it to accommodate the deep learning model. Figures 2–4 display the
images generated from five random slide rail sounds, transformed using DWT, at quality
levels 4 K, 8 K, and 16 K. Ground truth is the actual result and Predicted is the model’s
prediction. The fan, valve, pump, and slide rail data of the MIMII dataset were transformed
into images.
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3.2. Hilbert Transform

The Hilbert transform is a linear operator used in signal processing that only modifies
the phase and not the frequency. Positive frequencies are phase shifted by −π/2, and
negative frequencies are phase shifted by π/2. Thus, similar to how a sine signal is
produced when a cosine signal is shifted by −π/2, the Hilbert transform outputs a negative
frequency when given a positive one, and outputs a positive frequency when given a
negative one. A negative frequency was obtained in this study because the absolute value
of a positive frequency was utilized. The Hilbert transform expands real signals into
the complex number dimension. Therefore, the model can acquire more information to
distinguish between normal and aberrant data in the MIMII dataset, resulting in enhanced
performance. Our model was trained on 32 × 32 images obtained from the MIMII dataset,
using the Hilbert transform.

Figures 5–7 display the results of this transformation, applied to slide rail data in the
same manner as that of the DWT. Similarly, Ground_truth is the actual result and Predicted
is the model’s prediction.
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3.3. Short-Time Fourier Transform (STFT)

The STFT is used for separating data into small segments based on the Fourier trans-
form and the enduring Fourier transform. The STFT is similar to the FFT, but it simplifies
time series data, can determine frequencies that occur in intervals and expands the dimen-
sion in a manner comparable to that of the Hilbert transform. Thus, a one-dimensional
signal is converted to a two-dimensional signal, enabling the model to obtain additional
information. The STFT is mainly used by converting into spectrogram images, and we
also used MIMII datasets by converting them into spectrogram images. We reduced it to a
32 × 32 size image for use as an input to a deep learning model. The results of translat-
ing slide rail data into images, using the STFT, are displayed in Figures 8–10. Similarly,
Ground_truth is the actual result, whereas Predicted is the prediction result of the model.
Looking at the results, there is a difference between the figure of normal and anomaly.
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4. Model Architecture
4.1. CNN

The architecture of the CNN-based model is displayed in Figure 11. The model was
configured to receive images of size 32 × 32 as input. The images were passed through two
Conv2D layers. The activation function was the sigmoid function, and the loss function
was binary_crossentropy. The Adam optimizer was used to adjust the learning rate to 0.001.
Early stopping was used to stop training when the validation loss was minimal. The total
number of parameters was 4,213,633.
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4.2. CNN–LSTM

The CNN–LSTM architecture is displayed in Figure 12. Similar to the CNN-based
model, the input size was 32 × 32, the activation function was the sigmoid function, and
binary_crossentropy was the loss function. However, in this model, the input passed
through four Conv2D layers and two LSTM layers. To achieve the same requirements as
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the CNN, RMSprop was used to set the learning rate to 0.001. Early stopping was also used
to stop learning when the validation loss was minimal. The CNN–LSTM only required
277,633 parameters, considerably less than the CNN. Thus, the CNN–LSTM model should
be easier to implement in an embedded system or AIoT equipment.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 20 
 

 

through four Conv2D layers and two LSTM layers. To achieve the same requirements as 
the CNN, RMSprop was used to set the learning rate to 0.001. Early stopping was also 
used to stop learning when the validation loss was minimal. The CNN–LSTM only re-
quired 277,633 parameters, considerably less than the CNN. Thus, the CNN–LSTM 
model should be easier to implement in an embedded system or AIoT equipment. 

 
Figure 12. CNN–LSTM model architecture. 

5. Experimental Results 
5.1. MIMII Dataset 

The MIMII dataset contained recordings of normal and abnormal operation sounds 
from industrial machines. Abnormal data were the recordings of abnormal sounds 
caused by contamination, leaks, rotation imbalance, or rail damage. Data types included 
fan, valve, pump, and slide rail. See Table 1. The dataset included approximately 5000–
10,000 s of normal data and approximately 1000 s of abnormal data. For the MIMII da-
taset, four machines were recorded. Each machine had a model ID. In this study, only 
the data related to machines with a model ID of 00 was used. For the MIMII dataset, a 
circular array of eight microphones was used, and the distance of the microphone dif-
fered for each data type. 

Table 1. Number of MIMII dataset recordings used. 

Type Normal Abnormal Sum 
Fan 1011 407 1418 

Valve 991 119 1110 
Pump 1006 101 1107 

Figure 12. CNN–LSTM model architecture.

5. Experimental Results
5.1. MIMII Dataset

The MIMII dataset contained recordings of normal and abnormal operation sounds from
industrial machines. Abnormal data were the recordings of abnormal sounds caused by
contamination, leaks, rotation imbalance, or rail damage. Data types included fan, valve,
pump, and slide rail. See Table 1. The dataset included approximately 5000–10,000 s of normal
data and approximately 1000 s of abnormal data. For the MIMII dataset, four machines were
recorded. Each machine had a model ID. In this study, only the data related to machines with
a model ID of 00 was used. For the MIMII dataset, a circular array of eight microphones was
used, and the distance of the microphone differed for each data type.

Table 1. Number of MIMII dataset recordings used.

Type Normal Abnormal Sum

Fan 1011 407 1418
Valve 991 119 1110
Pump 1006 101 1107

Slide rail 1068 356 1424
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Figure 13 visualizes the sound of the fan, slider, valve, and pump, beginning at the
top left. Each of the eight microphones has a slightly distinct sound. Figure 14 displays
the recording setup. The fan is closest to microphone number 5, the valve is closest to
microphone number 1, the pump is closest to microphone number 3, and the sliding
rail is closest to microphone number 7. Therefore, the results collected using the nearest
microphone for each data point were used in this study. Furthermore, the experiment was
performed in consideration of the poor environment by lowering the quality of the MIMII
dataset. Thus, data quality was reduced from the original 16 K to 8 K and 4 K.
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5.2. Comparison between CNN and CNN–LSTM Models
5.2.1. Comparison of Accuracy

We compared the items with the highest accuracy when using the same data. Figure 15
displays the outcomes of model training on valve and slide rail data from the MIMII dataset.
The data were preprocessed using the STFT. With a high-quality sound and a SNR of 0 dB,
both CNN and CNN–LSTM models performed well, achieving an accuracy of 1.0. Overall,
the performance of the two models in this experiment was similar.
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5.2.2. Comparison of Performance by Condition

We compared the performances of the models to determine whether excellent per-
formance was maintained even when new circumstances were introduced. For the first
condition, performance was monitored when using different data preprocessing methods.
For the second condition, we evaluated whether a high performance could be maintained
even when the data quality was degraded. Finally, we evaluated whether high performance
was maintained when introducing noise to simulate a real-world setting. The valve data
were used for this comparison.

Comparison of Accuracy among Data Preprocessing Methods

The comparison of models, using the first condition, is displayed in Figure 16. The
results were obtained by preprocessing the valve data using the DWT, the Hilbert transform,
and the STFT, and training each model with the data. The CNN–LSTM model exhibited a
superior performance on DWT data, compared to the CNN model. Both models performed
well in the Hilbert transform and the STFT, and achieved the same accuracy of 1.0.
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Comparison of Accuracy by Data Quality

Figure 17 displays the results of changing the quality of the valve data to 4 K, 8 K,
and 16 K, as well as the results of preprocessing using the Hilbert transform and training
each model. From left to right, 16 K, 8 K, and 4 K data were used, and the accuracy of
both models fell as the quality changed. Overall, the accuracy of the CNN–LSTM model
continued to decline, but not significantly. Furthermore, because the same data were
utilized, the accuracy of the CNN–LSTM model was excellent.
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Next, the STFT on the same data, without using the Hilbert transform, was compared.
Figure 18 displays the results of comparing the model; for this, the STFT was performed,
using a different method to that used in the previous experiment, but using the same
quality valve data as in the previous experiment. Unlike the Hilbert transform, the CNN
model retained a high performance at 16 K, 8 K, and 4 K resolutions, with an accuracy of
1.0. The CNN–LSTM model performed poorly as the quality decreased. The two models
performed differently for each preprocessing method.

Comparison of Accuracy by Noise

Finally, we compared the cases of adding noise (SNR: 0 dB, 6 dB, −6 dB). When
the Hilbert transform and the STFT were performed in the previous experiment, the two
models exhibited distinct performances. Therefore, both methods were compared using
the valve data. The 8 K valve data were used because the performance was neither too
good nor too bad. As displayed in Figure 19, the SNR was used by 0 dB, 6 dB, and −6 dB,
in order from the upper left, and the accuracy of using the data after preprocessing with the
Hilbert transform is displayed. When the SNR was 6 dB, the performance of both models
increased slightly, and when the SNR was −6 dB, the performance decreased. We show
that the CNN model has a lower performance than the CNN–LSTM model. When using
Hilbert transformations, we show that the CNN model is vulnerable to noise.
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Figure 18. Accuracy of using data after preprocessing with the STFT after changing the data quality
to 4 K, 8 K, and 16 K: (a) result of valve data training on the CNN model; (b) result of valve data
training on the CNN–LSTM model; (c) result of slider data training on the CNN model; and (d) result
of slider data training on the CNN–LSTM model.
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ure 20, the accuracy did not decrease when the SNR was 6 dB, but the accuracy of the 

Figure 19. Accuracy of using data after preprocessing with the Hilbert transform (8 K, SNR: 0 dB,
6 dB, −6 dB): (a) results of valve data training on the CNN model; (b) results of valve data training
on the CNN–LSTM model; (c) results of slider data training on the CNN model; and (d) results of
slider data training on the CNN–LSTM model.

Next, the STFT was performed on the same data and the results were compared. As in
the last experiment, the SNR of 0 dB, 6 dB, and −6 dB were used. As illustrated in Figure 20,
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the accuracy did not decrease when the SNR was 6 dB, but the accuracy of the two models
decreased slightly when the SNR was −6 dB. Both models showed similar accuracy in
noisy situations.
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Figure 20. Accuracy of using data after preprocessing with the STFT transform (8 K, SNR: 0 dB, 6 dB,
−6 dB): (a) results of valve data training on the CNN model; (b) results of valve data training on the
CNN–LSTM model; (c) results of slider data training on the CNN model; and (d) results of slider
data training on the CNN–LSTM model.
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In all three tests, the CNN–LSTM model was similar to the CNN model in terms of
accuracy by preprocessing, accuracy by data quality, and accuracy by noise. However, when
the two models were used in a real factory, the accuracy levels were not significantly different,
which indicated that the difference could be attributed to the lightweight characteristics of the
model. Given the small number of parameters of the CNN–LSTM model compared to the
CNN model, the CNN–LSTM model is easy to use in real-world applications. This is because
it can operate even in a system with limited memory and bandwidth.

5.3. Model Evaluation

Based on the preceding comparison section, we compared CNN and CNN–LSTM
models using the Hilbert transform and the STFT method. The precision, recall, and F1
score were used to evaluate the models. Table 2 details the results of model training on
the Hilbert transform of the valve data. Table 3 presents the outcomes of model training
on valve data after applying the STFT. Looking at the results of the table, the performance
indicator results slightly decrease when the sound is low quality. It can also be seen that
the performance varies depending on the noise. As a result of comparing the two models
in this way, there was a performance difference of up to approximately 0.5%, based on F1
score, and there was a performance overall.

Table 2. Result of training on the CNN and CNN–LSTM models by performing Hilbert transform for
valve data.

Quality Model SNR Accuracy Precision Recall F1 Score

16 K
CNN

0 dB
6 dB
−6 dB

1.0
0.9943

1.0

1.0
0.9937

1.0

1.0
1.0
1.0

1.0
0.9968

1.0

CNN–LSTM
0 dB
6 dB
−6 dB

1.0
0.9950
0.9992

1.0
0.9936

1.0

1.0
0.9936
0.9936

1.0
0.9936
0.9968

8 K
CNN

0 dB
6 dB
−6 dB

0.9887
1.0

0.9491

1.0
1.0

0.9629

0.9874
1.0

0.9811

0.9936
1.0

0.9719

CNN–LSTM
0 dB
6 dB
−6 dB

0.9992
1.0

0.9272

1.0
1.0

0.9239

1.0
1.0

0.9937

1.0
1.0

0.9575

4 K
CNN

0 dB
6 dB
−6 dB

0.9887
1.0

0.9039

1.0
1.0

0.9277

0.9937
1.0

0.9685

0.9968
1.0

0.9476

CNN–LSTM
0 dB
6 dB
−6 dB

0.9936
1.0

0.8997

1.0
1.0

0.8983

0.9937
1.0
1.0

0.9968
1.0

0.9464

Table 3. Result of training on the CNN and CNN–LSTM models by performing the STFT for valve data.

Quality Model SNR Accuracy Precision Recall F1 Score

16 K
CNN

0 dB
6 dB
−6 dB

1.0
1.0
1.0

1.0
1.0
1.0

1.0
1.0
1.0

1.0
1.0
1.0

CNN–LSTM
0 dB
6 dB
−6 dB

1.0
0.9983
0.9983

1.0
0.9952
0.9952

1.0
1.0
1.0

1.0
0.9976
0.9976

8 K
CNN

0 dB
6 dB
−6 dB

1.0
1.0

0.9717

0.9937
1.0

0.9753

1.0
1.0

0.9937

0.9968
1.0

0.9844

CNN–LSTM
0 dB
6 dB
−6 dB

0.9908
0.9992
0.9632

1.0
1.0

0.9277

1.0
0.9936
0.9685

1.0
0.9968
0.9476

4 K
CNN

0 dB
6 dB
−6 dB

1.0
1.0

0.9661

0.9298
1.0

0.9751

1.0
1.0

0.9874

0.9636
1.0

0.9812

CNN–LSTM
0 dB
6 dB
−6 dB

0.9654
0.9985
0.9435

1.0
1.0

0.8983

1.0
1.0
1.0

1.0
1.0

0.9464
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Table 4 shows the results of model training on Hilbert transformations of slider data,
and Table 5 shows the results of model training on slider data after the STFT application.
Table results show that the STFT method outperforms the Hilbert method, although it is
similar to the valve data.

Table 4. Result of training on the CNN and CNN–LSTM models by performing Hilbert transform for
slider data.

Quality Model SNR Accuracy Precision Recall F1 Score

16 K
CNN

0 dB
6 dB
−6 dB

0.9912
0.9956
0.9824

0.9941
1.0
1.0

0.9941
0.9941
0.9766

0.9941
0.9970
0.9881

CNN–LSTM
0 dB
6 dB
−6 dB

0.9923
0.9945
0.9868

1.0
1.0

0.9884

0.9883
0.9941

1.0

0.9941
0.9970
0.9941

8 K
CNN

0 dB
6 dB
−6 dB

0.9868
0.9955
0.9691

0.9883
0.9941
0.9657

0.9941
1.0

0.9941

0.9912
0.9970
0.9797

CNN–LSTM
0 dB
6 dB
−6 dB

0.9780
0.9906
0.9768

0.9883
0.9883
0.9604

0.9824
1.0
1.0

0.9853
0.9941
0.9798

4 K
CNN

0 dB
6 dB
−6 dB

0.9911
0.9911
0.9647

0.9883
0.9941
0.9602

1.0
0.9941
0.9941

0.9941
0.9941
0.9768

CNN–LSTM
0 dB
6 dB
−6 dB

0.9895
0.9911
0.9576

0.9882
0.9883
0.9491

0.9882
1.0

0.9882

0.9882
0.9941
0.9682

Table 5. Result of training on the CNN and CNN–LSTM models by performing the STFT for slider data.

Quality Model SNR Accuracy Precision Recall F1 Score

16 K
CNN

0 dB
6 dB
−6 dB

1.0
1.0

0.9932

1.0
1.0

0.9911

1.0
1.0
1.0

1.0
1.0

0.9955

CNN–LSTM
0 dB
6 dB
−6 dB

1.0
1.0

0.9932

1.0
1.0

0.9911

1.0
1.0
1.0

1.0
1.0

0.9955

8 K
CNN

0 dB
6 dB
−6 dB

1.0
1.0

0.9823

1.0
1.0

0.9940

1.0
1.0

0.9823

1.0
1.0

0.9881

CNN–LSTM
0 dB
6 dB
−6 dB

1.0
1.0

0.9911

1.0
1.0

0.9941

1.0
1.0

0.9941

1.0
1.0

0.9941

4 K
CNN

0 dB
6 dB
−6 dB

1.0
1.0

0.9955

1.0
1.0
1.0

1.0
1.0

0.9941

1.0
1.0

0.9970

CNN–LSTM
0 dB
6 dB
−6 dB

1.0
1.0

0.9955

1.0
1.0
1.0

1.0
1.0

0.9941

1.0
1.0

0.9970

However, when the number of parameters of the two models were considered, the
lightweight CNN–LSTM model was preferable, because it used far fewer parameters than
the CNN model. This lightweight property is crucial in deciding whether the model can be
run on AIoT equipment or accessed via an embedded system.

6. Discussion and Comparison with Similar Works

We propose a fault-diagnostic deep learning model that is operational within a real
AIoT platform. There a necessity for a model capable of edge computing in the numerous
manufacturing sites that exist in the industry. However, previous studies have only tried
to improve diagnostic classification performance [8–11]. We have conducted a study that
significantly reduces the size of the model, with minimal performance degradation, to
be applicable in the real industry. This is because if the size of the model is large, it is
impossible to operate on edge computing equipment with a limited memory capacity.
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Table 6 shows a comparison of our model with the model proposed in previous
studies. The WMV model [9] used ensemble techniques based on the pre-learning model
EfficientNet. However, since this model has at least 96.5 million parameters, it is very large
and difficult to use in real industry. Our CNN model uses a 32 × 32 small input size and
has approximately 4.2 million parameters. The CNN model uses a very small number of
parameters, less than 4.4% compared to the WMV model. The SCRLSTM model [8] was
constructed by applying the Mel-spectrogram method to receive input as an image and
combining the LSTM model. This model has a small number of parameters, of 1,045,330.
Our proposed CNN–LSTM model uses a smaller input size and significantly reduces the
number of parameters to 277,633. In other words, it made it possible to operate on an AIoT
platform that uses very small memory.

Table 6. Comparison between proposed and existing models.

Model WMV [9] CNN (Ours) SCRLSTM [8] CNN–LSTM (Ours)

Feature
Extraction MFCC DWT, Hilbert, STFT Mel-spectrogram DWT, Hilbert, STFT

Architecture

EfficientNet-B0 (4 millions)
EfficientNet-B5
(28.5 millions)

EfficientNet-B7
(64 millions)

Conv2D (32, 32, 32)
Conv2D (32, 32, 64)

MaxPooling2D (16, 16, 64)
Dropout (16, 16, 64)

Flatten (16,384)
Dense (256)

Dropout (256)
Dense (1)

Conv2D (360, 144, 10)
MaxPooling2D

(180, 72, 10)
Conv1D (180, 72, 54)

TimeDistributed
(180, 3888)

LSTM (180, 54)
LSTM (180, 54)

LSTM (180, 108)
LSTM (180, 108)
LSTM (108, 2)

Conv2D (32, 32, 32)
Conv2D (32, 32, 64)

MaxPooling2D (16, 16, 64)
Dropout (16, 16, 64)
Conv2D (16, 16, 64)

MaxPooling2D (8, 8, 64)
Dropout (8, 8, 64)
Conv2D (8, 8, 64)

TimeDistributed (8, 512)
LSTM (8, 64)
LSTM (8, 64)
Dense (8, 64)

Dropout (8, 64)
Dense (8, 1)

Number of Parameters 96,500,000~ 4,213,633 1,045,330 277,633

7. Conclusions and Future Work

In this study, we propose a deep learning model for fault diagnosis that can be used
in the real industry. To the best of our knowledge, there were no studies considering
lightening in deep learning model-based fault diagnosis, and no experiments comparing
DWT, Hilbert, and the STFT as feature extraction methods. In addition, there have been
no studies of fault diagnosis models that behave robustly in sound quality degradation
and additional noise environments. Our proposed lightweight model showed that the
performance degradation is very small but the number of parameters is greatly reduced,
enabling practical use. In addition, it showed good performance even in low-quality sound
and noisy situations. The results of this study are thought to be meaningful when applied
to AIoT platforms with limited memory space and network bandwidth in the real industry.

In the future, we will mount the proposed lightweight fault diagnosis deep learning
model on the AIoT platform. And we will further learn various datasets to develop our
model. In the future, we plan to study domain adaptation and self-supervised learning
that can operate in other equipment and environments.
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