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Abstract: In this paper, we physically modeled passivated ultrathin Cu (In1−xGax) Se2 solar cells with
different bandgap grading configurations. Firstly, we have designed the cell architecture according to
the fabricated model. The novelty in this work is the modeling of passivated u-CIGS solar cells with
different bandgap grading profile configurations in order to achieve high efficiency with a thickness
of 500 nm. A significant influence on device performance has been observed while changing absorber
doping density, electron affinity, and operating temperature (range of 10–70 ◦C) for the investigated
samples. ZnS has been used as a buffer layer to replace the conventional CdS material in order to
improve cell efficiency. The impact of the buffer doping density and electron affinity on u-CIGS cell
performance is explored. The simulation results show that a high bandgap at the front and rear sides
with an acceptor density of 2 × 1016 provide the best electrical cell parameters: Jsc of 31.53 mA/cm2,
Voc of 742.78 mV, FF of 77.50%, η of 18.15%. Our findings can be considered guidelines for new single
and/or tandem cell optimization to achieve high efficiency.

Keywords: modeling; bandgap; solar cell; ultrathin devices; TCAD simulation

1. Introduction

Thin-film (TF) PV technology has significantly developed, and among all TF PV tech-
nologies, CIGS-based solar cells have the highest cell and module efficiencies [1,2]. These
types of solar cells are still competing with silicon PV technology which dominates 95% of
the PV market due to their environmentally friendly nature, long-term durability, and low
fabrication costs [1–3]. The main advantage of TF PV is flexibility by reducing the substrate
weight and rigidity, which represents a potential to reduce manufacturing costs [3–5]. For
the ultrathin-film Cu (In1−xGax) Se2 solar cells, reducing the thickness of the absorber is
advantageous due to decreasing the amount of indium (In) and gallium (Ga), which are
critical raw materials. However, reducing absorber thickness causes insufficient photon
absorption rate and the detrimental impact of back-surface recombination, resulting in
a degradation in cell efficiency [5–7]. Many approaches have been addressed to keep or
improve the power conversion efficiency while the absorber layers are thinner [7–15]. First,
bandgap grading by changing the Ga content in the absorber is considered a traditional
way to improve Voc for a thinner absorber layer [15–26]. Many research works have de-
lighted the positive impact of bandgap grading profiles in the generation and collection
of minority carriers [26–34]. It has been found that double grading allows benefiting from
the advantages of both high grading at the front and back side of the cell [30,34]. However,
Ga grading is not a complete solution for passivation and rear recombination [1,8]. Conse-
quently, new approaches have been sought to passivate the rear surface of u-CIGS [1,10].
Initiating a passivation layer using Al2O3 material with an opening of physical contact
between the absorber and the rear contact is one of the solutions to this problem [1,8]. The
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rear passivation of ultrathin-film Cu (In1−xGax) Se2 solar cells have attracted much atten-
tion in recent years due to their outstanding photovoltaic performance [1–10]. Furthermore,
due to their tunable bandgap, they could be integrated into tandem cell configurations as
better top and/or bottom cells [8,27].

In this paper, three different devices are analyzed correlating cells’ performance on
the absorber bandgap grading profile and describing pathways to obtain an efficient cell.
Firstly, we have designed the cell architecture according to the fabricated model reported by
Jackson et al. [1]. Then, it is very necessary to investigate the effect of the graded bandgap,
electron affinity, absorber doping density, and operating temperature on cell performance.
The conventional buffer layer of CdS is nearly optimum for CIGS with a smaller bandgap
ranging from 1 to 1.35 eV but shows poor alignment for a higher Ga ratio CIGS absorber
with a higher bandgap [29–34]. The CdS possesses a low bandgap of 2.4 eV, which is not suf-
ficient to cover the maximum shorter wavelength of photons, resulting in absorption losses.
For high efficiency, it is necessary to replace the CdS buffer layer (BL), which still contains
the toxic Cd, with better suited BL to form a good heterojunction [33–36]. Introducing ZnS
as a better n-type BL due to its high-bandgap semiconducting and better lattice match with
CIGS [34–40], it has been found that using dielectric passivation layers at the front could
increase light absorption and be sufficient to establish long-term stability [34,35]. Up to
date, no improvements have been observed for solar cells based on absorber/passivation
structures [34–36]. In the last part, we analyzed the positive impact of ZnS as the buffer
layer and MgF2 as the ARC layer on optimized samples.

2. Device Architecture

Figure 1 represents the structure of an ultrathin CIGS solar cell designed in this work
using the Silvaco TCAD software package. The investigated cell was designed according to
the fabricated structure reported by Jackson et al. [1]. The cell consists of a conventional n-i-
n-p structure. The cell layers are ZnO:Al/ZnO/CdS/u-CIGS/Al2O3/Mo/glass-substrate
from bottom to top. Herein, CIGS is used as a photo-absorbing layer, whereas ZnO:Al
and CdS are used as window and buffer layers, respectively. According to reference [1],
a 500 nm-thick CIGS absorber layer is considered; ZnO:Al, ZnO, and CdS thickness are
set 300 nm, 100 nm, and 50 nm, respectively. The advantage of reducing the thickness
of the absorber layer leads to minimizing the bulk defects, thereby improving overall
recombination losses [1]. Aluminum oxide (Al2O3, 25 nm-thick) has been used for the rear
passivation. This part has been investigated accordingly in detail in our previous research
work [2,10,23]. Schottky (4.7 eV) and ohmic contact were assumed for the front and rear
electrodes, respectively [1–3]. Experimentally, during the growth of the CIGS absorber on
the metal molybdenum substrate, a thin interface layer of MoSe2 is formed, resulting in
a quasi-ohmic contact, which is the reason for using molybdenum as a back contact [3].
Table 1 illustrates device parameters for a passivated u-CIGS solar cell model [1].
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Table 1. Device parameters for a passivated u-CIGS solar cell model [1].

Device Characteristics Symbol Al:ZnO ZnO CdS ZnS [33] CIGS

Thickness (nm) d 300 100 50 50 500
Bandgap (eV) Eg 3.3 3.3 2.4 3.6 1.15
Affinity (eV) χe 4.55 4.55 4.45 4.4 4.5
Permitivity εr 9 9 10 8.32 13.6

CB density of state (cm−3) Nc 3.1 × 1018 3.1 × 1018 1.3 × 1018 2.2 × 1018 3.1 × 1018

VB density of state (cm−3) Nv 1.8 × 1019 1.8 × 1019 9.1 × 1018 1.8 × 1019 1.8 × 1019

Electron thermal velocity (cm/s) Vtn 2.4 × 107 2.4 × 107 3.1 × 107 3.1 × 107 3.9 × 107

Hole thermal velocity (cm/s) Vtp 1.3 × 107 1.3 × 107 1.6 × 107 1.6 × 107 1.4 × 107

Mobility of electrons (cm2/V.s) µn 100 100 72 250 100
Mobility of holes (cm2/V.s) µp 31 31 20 40 12.5

Donor concentration, ND (cm−3) Nd 5 × 1018 1 × 1017 5 × 1017 5 × 1017 -
Acceptor concentration, NA (cm−3) Na - - - - 3 × 1016

Defect density (cm3) Nt 1 × 1016 1 × 1016 1 × 1016 1 × 1016 1 × 1014

3. Device Validation

For device simulation, the FLDMOB, CONMOB, BGN, SRH, CONSRH, and Auger
recombination were included in the program. Fermi–Dirac distribution has been enabled.
For interface defects, the trap-assisted tunneling model was also considered [28]. Initially,
the investigated 2D passivated u-CIGS solar cell model was carefully calibrated according
to the fabricated cell [1]. Along the calibration, some physical parameters such as the defect
densities and interface trap densities were carefully adjusted. To emulate the series resistance
(Rs), the rear contact resistance (Rc = 0.181 Ω.cm2) has been used. A surface recombination
velocity (SRV) of 102 cm/s was considered on the rear side between the absorber (CIGS)
and a passivation layer (Al2O3) [1,2]. Figure 2 illustrates the simulated current–voltage,
power–voltage, quantum efficiency (QE), and integrated current density characteristics under
AM1.5 illumination. Table 2 illustrates a comparison between the simulated and measured
cell parameters. Further, the studied cell model was also compared to our recent work [2].
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density characteristics curves of the investigated model [1].

Table 2. Investigated model characteristics.

Cell Parameters This Work Ref. [1] Ref. [2]

Jsc (mA/cm2) 26.93 26.79 26.70
Voc (mV) 629.175 661.58 621.27

FF (%) 72.92 71.54 74.85
Pmax (W/m2) 247.148 - -

η (%) 12.35 12.68 12.41
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4. Results and Discussion

Initially, we studied different ways for bandgap grading profiles to enhance the
ultrathin CIGS-based solar cells’ efficiency. Bandgap grading profile configuration was
considered this recent decade to be a very promising approach to obtain high efficiency.
Apart from the absorber bandgap grading study, the electron affinity and doping density of
the majority carriers in the absorber layer were also analysed for their effect on photovoltaic
cell device performance. The investigated solar cell model has a 2D design configuration as
shown in Figure 1. The numerical simulation of the investigated cell models was evaluated
at a room temperature of 300 K.

4.1. Impact of Graded Bandgap of the Absorber Layer

The CIGS absorber plays a significant role in the photovoltaic parameters by the
absorber layer thickness and Ga-composition grading profile [6]. The bandgap energy
Eg of the absorber layer is dependent on the composition ratio x = Ga/(In + Ga). For
high efficiency, we investigate the absorber composition for single and double bandgap
grading across the absorber layer by increasing Ga toward the front and back on cell perfor-
mance [29]. Generally, generated carriers (electrons) within the space charge region (SCR)
are efficiently collected by front contact, owing to the presence of a strong electric field at the
heterointerface. However, at the forward bias operation, significantly SCR width declines,
and high Ga content at the front surface can result from a barrier for electrons. This barrier
will not have a strong effect on minority carriers due to thermal energy that would be
sufficient for most of the electrons to overcome it. Figure 3 illustrates the band diagram of
the investigated u-CIGS solar cell for two different absorber bandgap configurations under
zero-bias voltage conditions. Reducing interface recombination at the front and back has
resulted while increasing the Ga content at the absorber sides. Front and rear recombination
are mainly lessened by the presence of a buffer layer and a passivated Al2O3 layer, respec-
tively. The Al2O3 passivation with a negative fixed charge implemented exhibits better rear
surface passivation and low interfacial charge recombination [2]. Figure 4 illustrates the
electron concentration and recombination rate in the u-CIGS solar cells for three different
absorber bandgap configurations. In the absorber layer, nonradiative recombination near
the heterointerface causes a reduction in Voc. Increasing the energy bandgap towards the
front surface of the absorber layer would improve Voc, thus preventing voltage losses; see
Figures 3a and 4. Increasing the energy bandgap towards the rear surface of the absorber
layer would reduce the rear recombination at the CIGS/Mo interface enhancing Jsc; see
Figures 3b and 4. The current density of the cell with graded bandgap in upward (high
Ga content in the rear side) configuration is 29.12 mA/cm2 under AM 1.5 G with a light
intensity of 100 mW/cm2, which results in photovoltaic cell efficiency of 13.54% in the hot
electron device cell. Compared with that of the graded bandgap in a downward (high Ga
content in the front side) configuration (21.72 mA/cm2), the cell exhibited an increase in
efficiency of 13.45%. This could be acting as a source of increasing recombination, mainly
reducing Jsc and FF, thus resulting in low conversion efficiencies. The Jsc under AM 1.5 G
improved on the single structure when the bandgap is increasing toward the back-surface
side; however, the fill factor (FF) increased because the resistance factors of the cell de-
creased. It is worth presenting here in this paper that this study covers the challenges and
limits related to the absorber layer and possible pathways to enhancing cell efficiency.

In this simulation work, the double-grading of the absorber bandgap was imple-
mented by increasing Ga content toward the front and rear surface, which can act as an
efficient barrier for electrons, thus preventing the front and rear recombination, enhancing
Jsc and Voc [6]. Figure 5 illustrates the band diagram of the investigated u-CIGS solar cell
for two different absorber bandgap configurations under zero-bias voltage conditions. The
variation in photovoltaic parameters on the absorber-layer bandgap grading is tabulated in
Table 3. Figure 5 also illustrates a comparison of the J–V curves of the investigated u-CIGS
models. Large values of Jsc and Voc were obtained (~29.16 mA/cm2 and ~748.778 mV) with
the investigated bandgap grading mainly due to less rear and front carrier recombination,
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respectively. Heretofore, the results show that double grading causes only positive effects
on cell performance (Jsc and Voc). However, let us recall that the physical properties of the
absorber layer are assumed to be uniform (carrier lifetimes and mobilities, etc.). In practice,
it is reasonable that increasing Ga content in the absorber layer lowers material quality by
increasing point defects and dislocations; lowering grain size; and defect levels appearing
in the bandgap, among other effects [30,31].
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Table 3. Characteristics for the investigated u-CIGS models.

Device
Characteristics

Standard
(1.15 eV)

Graded Bandgap
(Downward)

Graded Bandgap
(Upward)

Double-Graded Bandgap
(Downward/Upward)

J0 (mA/cm2) 3.17 × 10−7 3.25 × 10−7 3.23 × 10−7 3.18 × 10−7

Jsc (mA/cm2) 26.93 21.72 29.12 29.16
Voc (mV) 629.175 952.252 639.544 748.778

FF (%) 72.92 65.04 72.71 73.98
Pmax (W/m2) 247.148 269.16 270.86 323.11

η (%) 12.35 13.45 13.54 16.15

4.2. Impact of Varying Electron Affinities of the Absorber Layer

Absorber affinity has a high level of achieving a good conversion rate according to the
literature [23]. As a result, we executed a Silvaco simulation to investigate how the affinity
of the absorber (4.3–4.65) affects the device’s performance. Figure 6 shows the variation
of the PV characteristics with respect to the electron affinity of the absorber layer. It is
observed that Jsc remains constant with electron affinity for the three samples. Voc falls
off smoothly while increasing electron affinity due to the recombination of the free charge
carriers at the heterointerface. It shows a strong effect on the sample with downward
grading (green) due to back recombination. It is seen that the PCEs of the two devices
(red and blue) are low with low electron affinity. The moderate value of absorber affinity
like 4.45–4.65 eV provides a moderately high and stable PCE for the device’s configuration
under study. This enhancement is due to the increase in the FF of the device. However,
for a device with a graded bandgap in a downward configuration (Green), it is seen that
the efficiency enhanced with a low electron affinity of more than 16.5%. The material
parameters of the absorber layer were optimized for achieving the maximum possible
efficiency from the results of numerical simulation.
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4.3. Impact of Varying Acceptor Doping Concentration of the Absorber Layer

Figure 7 shows simulated cell characteristic contours as a function of the absorber
doping density under the AM1.5G spectrum. Three different cell samples were considered



Electronics 2023, 12, 393 7 of 12

for this study: u-CIGS with a bandgap in upward, downward, and doubled grading config-
urations. The doping density in the absorber layer varied from 1014 to 1018 cm−3. Generally,
a thick absorber is not suitable as it causes high recombination for photogenerated carri-
ers [2]. Similarly, there were no benefits from a high doping level in the absorber, as poor
photon absorption entails lower η values, such as in the case of a cell with an upward
bandgap grading configuration [2]. From Figure 7, doping variation has a strong effect on
one sample with a graded bandgap in an upward configuration (blue) compared to other
investigated samples (green and red). A decrease in Jsc is observed after 1016 cm−3 due
to an increase in effective recombination in the absorber layer. Voc follows the opposite
trend with doping densities due to a decrease in the Fermi energy level of the holes and
also because of the elevation of charge separation. For the blue sample, the high doping
in the CIGS absorber is not beneficial for the generated carriers, thus reducing the Jsc but
increasing the Voc at the same time. Therefore, the PCE of the sample (blue) is determined
by a compromise between the Jsc and Voc. The optimal doping level for a 0.5 µm-thick CIGS
layer gradually shifts between 2 × 1016 cm−3 and 5 × 1016 cm−3. The optimum PEC that
can be extracted is around 13.5%. These results are in agreement with the literature [1–5],
which showed that a single u-CIGS solar cell does not require high doping concentration
for the absorber layer to achieve high efficiency.
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4.4. Temperature Dependence

The simulations have demonstrated that it is important to reevaluate the suitable CIGS
absorber layer in terms of bandgap grading configuration and doping density. Herein, we
carried out an important study about the effect of operating temperature on investigated
samples in the temperature range of 10–70 ◦C [41]. Generally, the standard operating
temperature for investigated three samples is taken at 25 ◦C. Nevertheless, during device
operation, the cell is subjected to a high operating temperature. Degradation in cell
parameters such as Jsc, Voc, FF, and η, will be observed because the operating temperature
will have a significant impact on carrier concentration, carrier lifetime, carrier mobility,
resistance, and bandgap of the materials [41]. Figure 8 shows the effect of operating
temperature on device characteristics for three different samples. A negative impact in
Voc is shown while increasing the operating temperature, due to an increase of saturated
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current density (J0), which causes a decrease in charge separation [32]. A decrease in cell
efficiency for higher temperatures (>300 K in Figure 8) may be due to temperature-activated
charge transport in the charge transport layer (particularly, buffer layer) affecting series
resistance and FF, as shown in Figure 8. FF follows the same trend as Voc due to increasing
in series resistance across the device with temperature [33].
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4.5. Impact of ZnS Buffer Layer

For ultrathin solar cell devices, the photovoltaics are strongly influenced by the buffer
layer’s properties. There are two main functions for the buffer layers: creating a PN
junction with a p-type absorber and protecting the absorber surface against the sputtering
of the top layers and reducing the presence of holes near the heterointerface. CdS is a
conventional buffer layer for CIGS with a smaller bandgap that provides poor alignment
for a high-bandgap absorber [33]. In this work, CdS is replaced by ZnS with high-bandgap
semiconducting in order to improve cell efficiency [34,42]. ZnS film deposition is still
considered more complex even though it has obtained with a wide variety of deposition
techniques compared to CdS film deposition [43,44]. For ZnS film deposition, it has been
found that the ALD technique would provide higher optical transmission in comparison to
the CBD technique, thus making it a good material for the buffer layer [43,44]. This layer is
commonly deposited either by chemical bath deposition (CBD) or atomic layer deposition
(ALD) [35,43,44]. During deposition, Zn species diffuse into the top surface layer of the
CIGS layer. When Zn goes into the CIGS lattice, it can occupy copper sites and act as a
donor [36,37]. Thus, the ZnS itself may reduce the hole concentration near the surface
even further compared to CdS, reducing recombination at the front side. However, copper
(Cu) diffuses also into the ZnS layer, forming CuS phases, which in turn can be harmful to
the cell performance, as CuS is p-type [38]. From previous studies, it has been found that
the recombination velocity between buffer/CIGS was determined to have an upper limit
of 100 cm.s−1 and 1.4 × 103 cm.s−1 theoretically and experimentally, respectively [39,40].
Figure 9a presents the doping density effect of the ZnS buffer layer on cell performance.
Generally, a thinner buffer layer with high doping concentration provides no benefits for
solar cell devices. Therefore, optimum ZnS buffer doping density selection is important for
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the high efficiency of the investigated device model. From Figure 9a, doping variation has a
strong effect on one sample with a double-graded bandgap. A decrease in Jsc observed after
1017 cm−3 is due to an increase in effective recombination in the absorber layer. Voc follows
the opposite trend with doping densities due to an increase in the Fermi energy level of
electrons and also because of the elevation of charge separation. The device efficiency is a
combination of Jsc, Voc, and FF parameters; the first increase from small doping densities,
passes by an optimum value at 5 × 1017 cm−3 (PEC of 18.15%), and then decreases when
the doping concentrations are further increased. During the cell fabrication, the properties
of the ZnS layer can be affected by the deposition technique, and the most popular is the
chemical bath deposition method [43]. In this subsection, we analyze the influence of
varying the conduction band offset (CBO) by varying the ZnS affinity. The CBO is given as

CBO = ∆Ec = χCIGS − χBuffer (1)
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The ZnS affinity is varied in the range of 4.2 eV to 4.7 eV, which gives a CBO in the range
of −0.2 to 0.3 eV. Figure 9b illustrates cell performance versus CBO. As illustrated in the
figure, Jsc changes slightly and reaches 31.55 mA/cm2 for the same CBO (−0.1 eV, Cliff). Voc
increases gradually with the buffer electron affinity (from 4.5 eV). As a result, degradation in
FF is observed due to a possible increase in the equivalent series resistance. The conversion
efficiency behavior is the same as the FF trend [42]. These findings would be useful when
designing efficient u-CIGS cells with low fabrication costs.

To minimize reflection losses, magnesium fluoride (MgF2, 120 nm) is used as an anti-
reflective coating for investigated models (2 µm cell pitch), following an optimum acceptor
doping density of 2 × 1016 cm−3, thus enhancing the efficiency [2]. ZnS has been used as
a buffer layer to replace the conventional material CdS in order to improve cell efficiency.
Figure 10 presents a comparison of the J–V curves and the quantum efficiency of the three
u-CIGS samples and between the calibrated and optimized cells, respectively. From the
EQE plot, there is a clear short wavelength advantage of using ZnS as buffer layers in the
current collection with the potential of increasing short-circuit current density compared to
the CdS layer [43]. A comparison between investigated samples is tabulated in Table 4 [1,2].
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Figure 10. Simulated J–V curves of different u-CIGS solar cell models and quantum efficiency
characteristics curves of optimized doubled-graded u-CIGS solar cell model using a 50 nm-thick for
both ZnS (Red) and CdS (Green) layers.

Table 4. Comparison of different investigated u-CIGS solar cell models.

u-CIGS Devices (25 ◦C) Jsc (mA/cm2) Voc (mv) FF (%) η (%)

Eg downward graded (ZnS buffer layer) 25.10 901.01 65.04 14.71
Eg upward graded (ZnS buffer layer) 31.18 639.52 72.45 14.44
Eg double-graded (CdS buffer layer) 31.22 742.66 77.50 17.97
Eg double-graded (ZnS buffer layer) 31.53 742.78 77.50 18.15

5. Conclusions

In summary, we have successfully simulated the passivated ultrathin Cu (In1-xGax) Se2
solar cells using the Silvaco TCAD software package. Firstly, we calibrated the device
structure with the fabricated model reported by Jackson et al. in order to match real-world
conditions. The investigation was mostly focused on the graded bandgap effect on cell
performance. In the single-structured cell, the energy band diagram of the absorber was
modified to reduce the recombination at the front and rear surfaces. The double-graded
absorber bandgap was implemented by increasing Ga content toward the front and rear
surface which can act as an efficient barrier for electrons, thus preventing Jsc and Voc voltage
losses. A significant impact on device performance has been observed while changing
absorber doping density, electron affinity, and device operating temperature (range of
10–70 ◦C) for the investigated samples. These changes helped us to define and validate
the optimum cell for further investigation. ZnS has been used as a buffer layer to replace
CdS in order to improve cell efficiency. The influence of the buffer doping density and
electron affinity on device performance is explored. Finally, we simulated a sample with
double graded bandgap, ZnS as the buffer layer, and MgF2 as the ARC layer, which led to
the obtention of 18.15% efficiency, representing a good record for ultrathin solar cells. Our
research results can be considered guidelines for new single and/or tandem cell generation.
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