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Abstract: In the self-driving vehicles domain, steering control is a process that transforms information
obtained from sensors into commands that steer the vehicle on the road and avoid obstacles. Although
a greater number of sensors improves perception and increases control precision, it also increases the
computational cost and the number of processes. To reduce the cost and allow data fusion and vehicle
control as a single process, this research proposes a data fusion approach by formulating a neurofuzzy
aggregation deep learning layer; this approach integrates aggregation using fuzzy measures µ as
fuzzy synaptic weights, hidden state using the Choquet fuzzy integral, and a fuzzy backpropagation
algorithm, creating a data processing from different sources. In addition, implementing a previous
approach, a self-driving neural model is proposed based on the aggregation of a steering control
model and another for obstacle detection. This was tested in an ROS simulation environment and in a
scale prototype. Experimentation showed that the proposed approach generates an average autonomy
of 95% and improves driving smoothness by 9% compared to other state-of-the-art methods.

Keywords: self-driving; deep learning; neurofuzzy data processing; fuzzy backpropagation; self-
driving simulation; scale prototype

1. Introduction

In systems, the use of multiple data sources allows an actuator to have a broad view of
the environment it is seeking to control, thus allowing it to perform this task with greater
precision and to tolerate anomalies in data from some sources [1]. This method is used
in physical and robotic systems to widen the field of perception and avoid blind spots,
while the redundancy of the data allows the controller system to detect anomalies and
filter them [2]. Mobile robots use this method to perceive their environment from different
sensors that provide spatial, inertial, and visual information [3]; this is most notable in the
Autonomous Vehicles application. The research area for vehicles control is divided into sub
areas such as: environment perception, object and vehicles recognition, behaviors, planning
and route selection, lane maintenance, signal detection, steering and speed control, among
others [4]. This research focuses on the sensor data fusion for steering control.

Various strategies have been proposed in the literature to control the self-driving vehicle
direction, just to name a few: starting with the fuzzy inference systems [5,6], which controls
the direction by means of inference rules. In simulations, the predictive models [7,8] are
recurrently used to trace a route to follow within the path, as well as its combination with
fuzzy logic [9]. The aforementioned methods share the characteristic of requiring knowl-
edge transfer from the algorithm designer, other similar strategies are path detection [10],
knowledge transfer classifiers [11], and semantic segmentation [12]. On the other hand,
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self-tuning methods are the most widely used, from strategies based on reinforcement
learning [13–16], which are generally executed in simulations since they require learning
based on trial and error or mistakes. Another type of reinforcement learning is based on
vision [17,18], although there are other methods based on pure vision [19,20]. The aforemen-
tioned strategies mainly focus on keeping the vehicle on track; however, the current trend for
steering control is mainly focused on deep learning. This deep neural domain can be divided
into control strategies through vision and detection with convolutional networks [21–23].
Other alternatives within the same paradigm are recurrent networks for a visual–temporal
relationship [24,25]. The previously mentioned works of the deep learning paradigm present
good results; however, they use a single data source such as camera vision. In the literature,
it is possible to notice that the methods that present the best results are those based on
multisensory systems, for example those that combine visual and spatial information [26–28],
the a priori data fusion methods by object detection [29], and fusion 3D [30]. Returning to
the deep learning paradigm, another approach to process multiple data sources is to create
parallel architectures that process each source separately and integrate the outputs [31–33],
as these are the ones with the highest computational cost. To reduce computational cost,
deep learning [34,35] fusion methods are used, although they depend on a second process to
perform post-fusion control.

Although the aforementioned works present good results, they have some weaknesses.
In parallel models, the computational cost increases according to the increase in sensors to
be processed, making this option viable only in simulation, since it is too much load for
a system on board the vehicle or embedded at scale. Similarly, a priori fusion methods
represent a double computational cost since they must fit the data sources as well as filter
and extract features that will be processed by the control algorithm. A controller-integrated
fusion method lowers the computational cost, particularly deep learning-based fusion
models performed using a neural layer. Ideally they are formulated from the adjustment of
synaptic weights W, the hidden states h, activation functions σ(·), and the backpropagation
algorithm ∆W(∇L). However, in Ref. [34] it depends on a PID controller coupled to the
neural network to perform the direction and speed adjustment, stopping the network
process and processing the data fusion separately from the neural model. In Ref. [35] the
multiview aggregation approach uses perspective transformation to project n feature maps
according to the corresponding 1− n camera settings. The N projected feature maps are
concatenated and a convolution is used to obtain the result. Like these examples, many
others [36–38] perform control using a methodology composed of parallel or sequential
processing blocks that interact with the neural model, creating a different dependency on
the methods, thus increasing response time, fusion quality, and computational cost.

As an alternative, this article proposes a layer with a neurofuzzy aggregation ap-
proach, expressed as a neuronal model layer. The main contributions are the following:
(a) the neurofuzzy aggregation layer allows extracting and relating features from different
structural shapes sources; (b) it has generalization capacity, so it is viable for data fusion
in any application through model training; (c) it allows for multiple dimensions inputs
unlike the known neural models; (d) it can be added to an existing model as one more layer;
and (e) the implementation is compatible with the TensorFlow framework, so it can be
parallelizable on the GPU and is not processed as an external program. This proposal was
evaluated in a self-driving vehicle steering control task; the experimentation was carried
out in a simulated environment in the Robotic Operating System (ROS), as well as in a scale
prototype in a controlled environment.

The rest of the document is organized as follows. Section 2 details the proposed
layer formulation, as well as the neural architecture for self-driving. Section 3 details
the experiments performed, as well as their validation and comparative analysis with
other current methods in the literature. Finally, in Section 4 a synthesis of results is made
concluding with a brief discussion and future work.
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2. Materials and Methods

The main contribution is the data aggregation neural layer formulation, so to under-
stand the proposal it is necessary to know the basic operation of the neural paradigm.
This performs only data aggregation; for a more complex task such as self-driving, a more
complex model composed of several layers is required. For this reason, this section details
the basic concepts, the proposal formulation, and its adaptation for self-driving.

2.1. General Neural Layer Formulation

In the ANNs paradigm, a model is understood as a set of algorithms grouped into
layers that perform a specific task. A neural layer consists of three main elements: for the
synaptic weights, given a X data set structured in tensors of size n, there will be a weight W
for each X such that ∀x ∈ X, ∃w ∈W : |X| = |W| ∧ x 6= ∅. The hidden state h obtained by a
two Euclidean magnitudesN (·, ·) product function, is defined as a linear algebraic product
operation of order n according to the dimensionality of X and W. The parameters of such a
function are N (X, W) which generate a continuous h output. Furthermore, the activation
function σ(h) is understood as a linear, non-linear, binary, or probabilistic function that
scales the h state. The output y can be discrete or continuous, depending on σ(·) domain
and the purpose of the layer application. Depending on the layer application, it is defined
as a feature extraction layer, memory, recurring, etc.; however, most of them depend on
these 3 essential components. For the layer components to correctly process the data, it
is necessary to train the parameters using the backpropagation algorithm. To adjust the
weights W it is necessary to know the empirical error generated by the propagation in the
training stage, based on the expected outputs y′ known as ground truth. The error can be
calculated by a distance measure known as loss function L(W), which can be:

L(W) =
I

∑
i=1
||σ(hi)− y′i||22 (1)

although depending on the application it can be considered an absolute, polynomial, or
radial Euclidean measure. The general method for minimize the error is to iteratively update
the parameters by adding an increment ∆W to the current value: W := W +∆W. Conversely,
if a function N (x, W) is used to approximate the output values and it is differentiable with
respect to W, it is possible to use the Gradient Descending method as a learning algorithm:

∆W = −α
∂E(W)

∂W
(2)

where 0 < α < 1 is a parameter known as the learning rate, which regulates the updating
∆W in the error gradient ∇. In this way the general algorithm for the neural layers is
described; graphically it is represented by the scheme of Figure 1.

◦

◦

◦

X1

X2

Xn

h← N (X,W ) y ← σ(h)

L(y, y′)∆W

•

Input 1

Input 2

Input n

w1

w2

wn

Output y

Figure 1. General neural layer formalization.
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From this base, it is possible to reformulate the algorithm to give a different objective
to the classification or characteristics extraction. To perform the aggregation, the neural
layer was transformed to the fuzzy domain and its basic components were reformulated to
be compatible with fuzzy aggregation measures µ, in addition to working with variable
dimensionality inputs. This is described below.

2.2. Neurofuzzy Layer Formulation

To summarize the algorithmic adaptations required to formulate the neurofuzzy layer,
the proposal components are listed below. Inputs X: whether it is a tensor of order 2 or
higher, an input of different order is allowed for each element of the first dimension, that
is, the signal x1, is structurally different from the one x2,, allowing us to operate 2D and
1D signals in the same tensor. The inputs X are structured in an asymmetric tensor xs of
maximum dimensionality xs ∈ Rd×(m×n), according to the highest order tensor.

Fuzzy weights Wµ: from a fuzzy measure µ defined as a transformation function
within the fuzzy domain µ(x) : [0, 1]η 7→ [0, 1], and interpreted as a weighting function
such that µ(∅) = 0, µ(X) = 1, the fuzzy weights Wµ are defined for each x ∈ X such that

∑
|X|
i=0 wµi = 1. At the same time, there are non-fuzzy weights Ws for each ordered entry

xs and that are adjusted by them, independent of the fuzzy aggregation. Hidden state h:
depends on the implemented operator, for the neuron generality an algebraic function of
the Euclidean magnitudes product can be used. Therefore, the Choquet fuzzy integral
defined as: ∫

f ◦ µ =
η

∑
i=1

[ f (xs(i))− f (xs(i−1))] · µ(xs(i)) (3)

where f (·) indicates the ordered data fuzzy transformation and µ(·) the aggregation using
the fuzzy measures µ. Given that x ∈ X is a tensor of order greater than 0, a reduction
is necessary using an operator such as the inner product N (·, ·). This in relation to the
introduction of non-fuzzy weights Ws for each xs. Thus, the state h is detailed as the
extension of the Choquet integral:

h =
η

∑
i=1

[N (xs(i), Ws(i))−N (xs(i−1), Ws(i−1))] · µ(X, Wµ) (4)

in such a way that the fuzzy integral µ(·, ·) depends on the linear product N (·, ·), which in
the case must be an outer product × due to the asymmetry of the input tensors. Activation
σ(h): As this neuron is not dedicated to classification, a probabilistic function such as
Softmax is not used, so a non-linear or rectifying function must be used like any hidden
layer. Training algorithm: the propagation of the error within a complete model is carried
out in the normal way except for this layer, for which it is necessary to update both the Ws
and the fuzzy Wµ weights. Regarding Momentum, its fuzzy version resides in the scaling
of the gradient ∇, this is modified by the scalar value of the fuzzy integral obtained from
the aggregation product:

mµi+1 = αmµi + η∇µ(xs, ws) (5)

where ∇ ∈ [0, 1] and the diffuse momentum mµ ∈ [−1, 1] are restricted. In this way the
adjustment ∆Wµ is given by:

∆Wµ = Wµ − α(y ·mµ)− α(1− y))∇µ(X, Wµ). (6)

On the other hand, the loss function must remain in the fuzzy domain, which is why
the MSE can generate alterations to the adjustment by being able to obtain values greater
than 1. For this reason, the Logarithm of the Hyperbolic Cosine is used:

L(W) =
n

∑
i=0

log

(
e(y
′−y) + e−(y

′−y)

2

)
(7)
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In summary, in the Algorithm 1 the propagation and backpropagation algorithm of
this proposal is presented.

Algorithm 1 Neurofuzzy ∆Wµ training

Require: e ∈ Z, α ∈ R, X1, X2, Xn ∈ R+

Ensure: y
1: Ws ← random([−1, 1])
2: Wµ ← 0
3: xs ← X1 × X2 × Xn : m× N = {n ∈ N| |N| = m}
4: while converge do
5: for i← 0 to i = n do
6: hsi ← N (ws, xsi )
7: hµi ← µ(xsi , wµ)

8: hi = ∑
η
i=1[hsi − hsi−1] · hµ

9: ye ← σ(hi)
10: end for

11: L(W)e = ∑n
i=0 log

(
e(y
′−σ(hµ))+e−(y

′−σ(hµ))

2

)

12: mµi+1 = αmµi + η∇µ(xs, ws)
13: ∆Wµ = Wµ − α(σ(h) ·mµ)− α(1− σ(h)))∇µ(X, Wµ)
14: ∆Ws = Ws − α(ye ·mj)− α(1− ye)∇L(W)e
15: e← e + 1
16: end while

return y

In the Algorithm 1 in step 3, the asymmetric tensor structuring is used. This transfor-
mation generates a single structure that respects each data source shape, grouping in an
additional m dimension. The algorithm requires two product calculations, one linear hs
and one based on fuzzy measure hµ, later they are unified by means of the fuzzy integral in
step 8 in the output structure h. It should be noted that an output y is not generated from
this algorithm since this belongs to the classification part used in the neural model to be
implemented; however, it is necessary for the adjustment of the weights Ws. Therefore the
neurofuzzy model is defined in Figure 2.

◦

◦

◦

X+
1

X+
2

X+
η

xs(i) hs ← N (xs(i), ws(i))

hµ ← µ(xs(i),Wµ)

h =
∑η
i=1[hsi − hsi−1] · hµ y ← σ(h) Model Layers

L(W )

mµi+1

∆Wµ

∆Ws

•

Input 1

Input 2

Input η

Output y

Figure 2. Neurofuzzy aggregation layer scheme.

In the above description, the hidden state function h is capable of performing the
aggregation of two signals, using only an activation function σ rectifier. However, for an
application such as self-driving, the model requires greater complexity as well as a greater
number of layers with different activations. For this reason, Figure 2 represents the layers of
the model in a dotted block, implying that after the aggregation layer there are dense layers,
convolutions, or any other item that performs different tasks with information from unified
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sources. The resources used to adapt the self-driving model with neurofuzzy aggregation
are detailed below.

2.3. Self-Driving Model

The proposed fuzzy aggregation layer purpose is to combine multiple signals to reduce
the data within a neural model. Thus, it is necessary to have a driving model to guarantee
performance and subsequently reduce it. For this, the time-distributed Chauffeur model
shown in Figure 3 is used.

Figure 3. Time-distributed Chauffeur model [39].

This model receives information in a sequence of images form in the YUV color space,
so it is structured as a 4D tensor of size t× 3× 200× 320, where t represents the frames
per instance, 3 are the color channels, and 200× 320 is the size of each image. The model
output is reduced to a scalar obtained from the output layer activation function σ, given
by a Hyperbolic Tangent function that generates outputs in the interval [−1, 1]. These
values represent degrees of turn in the direction of the vehicle. However, the td-Chauffeur
model cannot detect objects. To carry out the object detection from visual information, the
Mobilenet model was used as a base, as shown in Figure 4.

Figure 4. Mobilenet model for object detection [40].

This mobile model uses depth separable convolutions. Significantly reduces the num-
ber of parameters compared to networks with regular convolutions and same depth,
resulting in a lightweight deep neural network. The model basis is to use depth convolu-
tion and point convolution layers, so the model can be adapted to the information to be
processed. Originally it receives a 224× 224× 3 3D tensor that represents an RGB image;
however, for this application it has been adapted to process a 224× 224× 4 3D tensor that
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is interpreted as an RGBD image. As an output it obtains the bounding boxes and distance
from the center of the objects.

In a simple methodology, it is possible to perform the task by running both models in
different threads and processing both outputs in a third algorithm. The limitation of that is
the computational cost, in a computer with processing capacity it is possible to run using
most of the resources; however, in an embedded system this is limited by: (1) the GPU and
CPU processing capacity is with less capacity than a desktop computer, (2) the increased
heating and power consumption due to the overuse of resources make the implementation
unfeasible, and (3) the models synchronization is a point to consider even on a workstation.
For this reason, the integration of both models through an asymmetric tensor distribution is
proposed, generating a single multifunction model with layers of neurofuzzy aggregation
to reduce the complexity of the model. This proposal can be seen visually in Figure 5.

Figure 5. Self-driving operational model.

The graphical representation makes it appear that the model is a parallel structure of
two neural networks. At the tensor level it is interpreted as two layers of the outermost
dimension n; however, in the dimension n− 1 the tensor shape changes in such a way that
the input is defined as I = {{224× 224× 3× t}, {224× 224× 4}}. The asymmetry of the
input of each neural layer is notorious; however, the reduction in processing threads is
carried out by distributing the GPU process only. Where model shrinking is observed is in
the AWµ

layer where the bounding boxes are obtained, the temporal shrinking of the Flatten
layer and added along with the translation and rotation Ip = {{xt, yt, zt}, {xr, yr, zr}}.
Finally, the output is extended to two TanH functions to control direction and acceleration.

3. Experimental Results

To validate the proposal performance, two experiments were carried out: a simulation
in ROS with variables from a real urban environment and a scale prototype tested in a
controlled environment. In both cases, scenarios with obstacles and free paths are considered,
as well as the use of more than one sensor. To quantify performance, supervised and
unsupervised metrics were used, which specialized in measuring the quality, precision, and
autonomy of self-driving. Both experiments were evaluated by the following metrics.

3.1. Metrics

First, the supervised evaluation was carried out to find out the driving model similarity
with the actions carried out by a human driver. For this a ground truth y′ was created from
capturing steering commands during manual driving on the test path. From this reference
it was possible to measure the difference in distance terms between what is obtained and
what is expected, for this reason the Mean Square Error is used as evaluation metric, in the
same way the Cosine Distance is used:
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cos(θ) =
∑n

i=0 yi · y′i√
∑n

i=0 y2
i ·
√

∑n
i=0 y′2i

(8)

the output range spans [−1, 1], where 0 indicates zero error; therefore, 1 and −1 indicate
full left and right error. The MSE provides an error rate between both types of driving,
regardless of the variations produced by time and the speed of movement of the vehicle.
For this reason the Driving Behavior metric is used:

DB =

∥∥∥∥∥∥

√
∑n

i=1(yi − ȳ)
n

−
√

∑n
i=1(y

′
i − ȳ′)

n

∥∥∥∥∥∥
(9)

this metric evaluates the entire route by calculating the deviation between both lines; thus,
time does not take part in the evaluation and thus providing a speed-invariant distance
index. In an unsupervised way, driving is measured by Path Smoothness, i.e., this refers to
the angles amplitude that are described while the vehicle is moving:

κ =
1
n

n

∑
i=2

[
arctan

(
yi+1 − yi
xi+1 − xi

)
− arctan

(
yi−1 − yi
xi−1 − xi

)]
(10)

where xi and yi represent the position of the vehicle in a specific trajectory segment.
The metric obtains the angle between two consecutive segments of the path. A lower
smoothness value indicates a smoother path. On the other hand, to evaluate the ability to
operate independently of a driver, use is made of the autonomy metric proposed by [41]:

autonomy =

(
1− interventions · 6

elapsed time

)
· 100 (11)

as well as the Absolute Autonomy Time metric [42], which measure the interventions of a
human driver as an error in the system, which is the autonomy time the metric oriented to
absolute intervention:

AAT =

(
1− tiempo de intervención

tiempo transcurrido

)
. (12)

To complement the experimentation, some methods known from the literature for
self-driving were evaluated under the same conditions. Specifically they were the Pilotnet
model [41], Donkeycar self driving library [43], and Matlab Automated Driving Toolbox.
For these, self-driving models were taken and replicated in the ROS system using it as an
intermediary.

3.2. Experiment 1: ROS Self-Driving Simulation

This task was carried out based on the free access ROS design, CAT Vehicle Testbed,
which consists of a Ford Escape vehicle with the actual physical measurements. The package
includes sensors built into the vehicle; however, they were modified to suit this application.
Originally featuring a Velodyne LiDAR sensor with a 2000 point cloud, this was modified
to produce a 12,000 point cloud with a horizontal aperture of 90◦ and a vertical aperture
of 33.67◦. In the same way, the package has two cameras positioned on the vehicle at
angles of −45◦ and 45◦ with origin in front of the vehicle, these capture RGB images of
size 800× 800 pixels. For this application, a single camera pointing to the origin with a
size of 640× 320 pixels was required. To evaluate the vehicle autonomy it was necessary
to integrate city environments with different characteristics such as intersections, houses
and buildings, closed roads, and obstacles in the way. In order to have a variety of possible
scenarios, the Vehicle and City Simulation was integrated, which fully represents a small
city. Some fragments of the road with obstacles were taken to carry out the self-driving
evaluation. These are shown in Figure 6.
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Figure 6. ROS simulated environments.

Figure 7 shows the sketches with the shapes and measurements of the simulation
segments in which the tests were performed. To validate the effectiveness of each method,
two short scenarios and two more complex ones were used, all with objects partially
obstructing the path and one with incorrect paths. For all the scenarios there was a trajectory
to reach the goal.

Figure 7. Real-scale simulated environments maps for self-driving tests.

Figure 8 shows the conduction trajectories generated by each evaluated method. It
can be seen that in the simplest scenarios all the methods can reach the goal; however, it
should be noted that the proposal performs the smoothest movements, approaching what
is performed by a human, as shown in the ground truth. In the most complex environment
it can be observed that a method takes the wrong path, ending the evaluation for it. For the
cases in which the algorithm cannot complete the route, it was necessary to enable manual
driving to resume the path, an action necessary to calculate the Autonomy and AAT metrics.
This intervention is also carried out intentionally when the displacement moves away from
the ground truth, thus obtaining an evaluation of autonomy. Quantitatively, the results are
summarized in Table 1.
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Figure 8. Trajectories obtained during self-driving in simulated environments.

According to what is shown in Table 1 and with respect to Figure 8 trajectories, it is
observed that the proposal shows the best autonomy metrics are obtained by the proposed
method. A range security of 96% is guaranteed, while the worst performance offers only 71%,
as long as timely interventions are made, otherwise a collision would result. In simulation,
an autonomy of 96.6% is obtained, which indicates that it depends on human intervention
for only 3.4% of route, compared to the second best method, which is 8.6% more dependent.
In road smoothness, the proposal obtains a metric of 0.256, which is 0.72 lower than the
mean of the other methods. This metric indicates that the proposed approach offers a ride
that is up to 2.8 times smoother and more comfortable, without any hard rocking.

Table 1. Quantitative results of simulation experimentation.

Method MSE Cosine Distance Behavior Path Smoothness Autonomy AAT

Pilotnet 0.106 0.221, −0.076 0.030 0.682 86.4% 92.9%
Donkeycar 0.385 0.380, −0.510 0.236 1.826 71.3% 79.8%

MADT 0.077 0.112, −0.014 0.024 0.442 88.0% 94.7%
Proposed 0.021 0.011, −0.044 0.003 0.256 96.6% 97.4%

To complement the experiments, each conductions method was compared with respect
to a human conduction. The metrics showed that the proposed method obtains a mean
error of 0.021, where the lowest showed difference of 0.056 compared to the second best.
This error indicates that the method provides up to 3.6 times better than human-like driving
than another method in this comparison. This measurement is seconded by the driving
behavior metric, in which the minimum error of 0.003 is obtained, which indicates that
the speed is similar to that of a human driving, without affecting the steering commands
smoothness. Finally, the cosine distance showed an imbalance in the lateral displacement
error, which was −0.044 and 0.011, so it presented more errors in left turns. This is due to
the notable imbalance in the turns of the tracks that can be seen on the maps shown. Still,
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it showed the best balance of ≈1–3, compared to MADT which was ≈1–9. Although the
Donkeycar method had a relationship ≈1–1.3, the error was up to 10× higher.

As is known, in simulation environments the results are not affected by environmental
effects such as lighting, ground textures, obstructions, etc. For this reason, to complement
the experimentation, a small scale prototype was designed that integrates in an embedded
model light version to control the vehicle direction.

3.3. Experiment 2: Scale Prototype Steering Control

In the first instance, the base vehicle was acquired, which includes the mechanics and
motors in operation. Its dimensions and appearance shown in Figure 9 represent a 1:16
scale of a compact vehicle in length and width.

Figure 9. Scale prototype designed for self-driving physical tests.

Inspired by the Jetracer prototype, a Jetson Nano Dev Kit 4G embedded card was
used as the control module due to its versatility in terms of high-level and low-level
programming, as well as its GPU-embedded computing capability on CUDA under Ubuntu.
This card includes a 4-core @ 1.43 GHz ARMv7 processor, 4 GB of 1600 MHz RAM, 16 GB
eMMC 5.1, GPIO with L2C and PWM support for geared and servo motors, and Nvidia
Maxwell 128 CUDA core GPU. In conjunction with the Jetson Nano card, some electronic
components were used in the periphery: PCA9685 module, connected to the GPIO ports
dedicated to the L2C type connection of the Jetson Nano. This device is used to control
the motors by transforming the digital signals to PWM signals that give precision to the
servo motor angular speed and position. The device can work at 3.3 V with direct power
from the Jetson Nano; however, an external 5 V power is required to move the servo motor.
The L298N module serves to magnify the voltage at the 3.3 V input from the PCA9685 to
12 V output. It is used to power the geared motor that pushes the vehicle in a channel.The
Lm2596 dc-dc voltage regulator is used to convert 12 V input voltage to 5 V to power the
PCA9685 module and the Jetson Nano. Due to the prototype size and power limitations,
it used the ZED camera since it allows for obtaining visual information as well as spatial
information from the generation of point clouds, in a similar way to the LiDAR sensor. In
this way, two types of signals are obtained from the same sensor.

The embedded system works in a similar way to the simulation; however, the process-
ing is conducted on the card, so it was required to interpret the model in the TensorFlow
Lite version. Since the information is only obtained from the ZED camera, an acquisition
system was designed in Python using the camera drivers. This program acquires the
point clouds Id = {M · N · D} and creates the image sequences in tensors of T times at
It = {M × N × C × T}. Rotation and translation information is also acquired from the
camera controllers. This generates as input three tensors: 4D, 1D, and 2D. Figure 10 shows
the implemented system scheme.
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Figure 10. Embedded self-driving system operational diagram and remote interaction for comparison
methods evaluation.

Due to the prototype characteristics, it was evaluated in simpler road scenarios than
the simulation urban environments. The designed paths are inspired by the BlueRaven
tracks for Jetbot and some obstacles were added to validate the ability to evade and correct
the trajectory. Figure 11 details the designed roads in real-scale measurements.

Figure 11. Real-scale track maps for physical self-driving tests.

In Figure 11, it can be seen that the paths have a width of 0.30 m, while in the simulation
maps of Figure 7 these are exactly 4.8 m, so the tracks designed for this experiment are at
1:16 scale. In accordance with previously mentioned measurements of the prototype shown
in Figure 9, both the test tracks and the vehicle are on the same scale, so the experimentation
for the self-driving test it is considered viable in non-urban environment conditions at
a scale of 1:16. In order for the displacement to be consistent with the track scale, the
maximum speed was limited to 0.8 m/s, limiting the acceleration to:

Ai = 1−
[

e2
i −

(
Ai−1

Amax

)2
]

(13)

where Ai−1 is the acceleration at the previous instant emitted by the neural model, on
average at 50 Hz frequency. e2

i represents the rotation command of the current instant and
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Amax the maximum speed of 0.8 m/s, which in full scale would represent a maximum of
50 km/h. From the above, it is possible to observe the relationship between both experi-
ments and their viability when evaluating the proposal and the comparison methods in the
same way. Therefore, the results are discussed below.

Figure 12 shows the paths traveled on the test tracks. To increase experimentation, on
the first track the obstacles location was modified to validate the evasion capacity. In the
first scenario, all the methods were able to finish the course; however, when adding the
obstacles, it was observed that Donkeycar did not overcome the second obstacle. On the
more complex track both the Donkeycar and the Pilotnet model were unable to complete the
full course, the latter evading all three obstacles but went off the road. In this case, MADT
also goes beyond the path limits; however, it manages to resume autonomously. It can also
be seen that both MADT and the proposed method generate very similar trajectories in the
first scenarios. To make the comparison, a metrics summary is shown in Table 2.

Figure 12. Trajectories obtained during self-driving in physical environments.

Table 2 shows the AAT of 75% for the Pilotnet model, this indicates that 25% of the
path depends on human intervention, unlike the proposed method that depends only 5.6%
if perfect driving is needed. Similarly, MADT receives an AAT of 89.8% as it went off
track twice and needs to be corrected. In this experimentation, an autonomy of 89% was
obtained, a decrease of 7.6% with respect to the autonomy in simulation is due to the fact
that in the physical environment there are factors that alter perception such as the lighting
changes, sensor noise, and affectations to control such as inertia and motors cumulative
error. However, the proposed method is the least affected by this domain change, since the
other methods decrease an average of 9.73% and up to 12.9% in the worst case. It can also
be observed that the smoothness is reduced since a metric of 0.598 is obtained due to the
path and physical effects complexity; however, the method is autonomous by 89%, which
is better by ≈17.7% than the average of the other methods.
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Table 2. Quantitative results of the experimentation on the scale prototype.

Method MSE Cosine Distance Behavior Path Smoothness Autonomy AAT

Pilotnet 0.185 0.171, −0.441 0.051 1.216 73.5% 75.5%
Donkeycar 0.205 0.322, −0.571 0.087 2.948 63.8% 66.9%

MADT 0.106 0.132, −0.100 0.030 0.834 78.3% 89.8%
Proposed 0.081 0.148, −0.075 0.027 0.598 89.0% 94.4%

Compared to human driving, the proposed method obtains a mean error of 0.081 and a
smoothness of 0.589. For the aforementioned reasons, the metrics show higher performance
and therefore lower performance. Even so, it is shown as the best by 0.025 with respect to
the maximum and 0.084 with respect to the average, which is up to 2× better than the rest
of the comparison methods.

An important observation is that the proposed method can complete the path without
interventions, compared to the Pilotnet model and the Donkeycar method, which require
forced interventions to stay on track. From these experimental observations it can be
inferred that the multiple data sources used improves the quality of self-driving, as well as
that the neurofuzzy aggregation layer helps to decrease computational consumption mak-
ing it possible to operate in a lightweight prototype. Furthermore, in this experimentation,
the proposed method can be trusted by 89% in the worst case and 95% in a normal case.
With these specific observations, the conclusions of this investigation can be reached.

4. Conclusions

Two main contributions are made in this work. The first is the formulation of a neuro-
fuzzy aggregation layer for deep learning neural networks, which allows for composing
new features from the several data sources fusion, reducing the computational cost while
maintaining the precision of a multisensory system. The second contribution is the appli-
cation of the proposed layer in the creation of a multisensory model for steering control.
Additionally, the proposed model was tested in a simulated urban environments in ROS and
in a scale prototype. The experimentation was carried out equally with our proposal and
other methods of the state of the art. From this experimentation the following was observed:
in simulation, an autonomy of 96.6% was obtained, which indicates that it depends on
human intervention only 3.4% of the time. Regarding the smoothness of the road, a metric
of 0.256 was obtained, demonstrating that the proposed method offers driving that is up to
2.8× smoother and more comfortable. Regarding human driving, a difference of 0.021 is
shown, which is 3.6 times more similar than the other methods. In the experimentation with
the scale prototype, an autonomy of 89% was obtained. However, the proposed method
is the one with the best performance, since the other methods only obtain an autonomy of
78.3% in the best case and 63.8% in the worst case. Compared with human driving, the
proposed method obtains a mean error of 0.081 and a smoothness of 0.589, so it is shown
to be the best by 0.025 with respect to the maximum and 0.084 with respect to the average,
which is up to 2× better.

In conclusion, the following advantages can be highlighted from this work: a model
was created that performs data fusion and self-driving in a single process, based on the
use of the proposed neurofuzzy aggregation approach, thus reducing the computational
cost and allowing for its operation in real time. The proposed model is 95% reliable on
average, with 2.8 better movement smoothness and 92% similarity to human behavior. The
autonomous model completed the paths in 100% of the experiments. All this is because
the two main contributions of this work offer the benefits of a multi-sensory system of
several processes, but they are unified in a single one and reduce the cost to the point of
being viable for use in real time in an embedded system. In future work, the model will be
adapted to operate with more and different sensors for tasks such as pedestrians and traffic
signs detection, as well as to integrate the capacity of planning and following routes. It is
also intended to increase experimentation in different environments to demonstrate the
feasibility of being implemented in a full-size prototype.
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