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Abstract: The search for sustainability and green energy, in electricity production, has lead many
researchers to study and improve photovoltaic (PV) systems. The PV systems, being a combination
of power electronic modules and PV array, have high tendency of faults in sensors, switches, and
passive devices. Thus, a reliable fault diagnosis (FD) scheme plays a significant role in protecting
PV systems. In this article, a sliding mode observer (SMO)-based FD scheme is presented to figure
out the sensor faults in a standalone PV system. The proposed FD scheme makes use of residual
formation which in turn helps in detection of faults on the basis of a defined threshold. In addition to
the functionality of fault detection, the SMO provides the benefit of reduction in number of sensors
required in the PV system. This feature can be utilized as software redundancy in fault-tolerant
control (FTC). The test bench, standalone PV system, is equipped with a buck–boost converter for
maximum power transfer (MPT) to the connected load. Moreover, the FD scheme is backed by a back-
stepping (BS) analogy-based control scheme for extraction of maximum power from the PV panel.
The simulations are performed in the MATLAB/Simulink platform under varying environmental
conditions (temperature and irradiance) and resistive load. These simulations, subjected to varying
operating conditions, confirm the efficacy, in terms of robustness, chattering (oscillations about the
reference), and steady-state error, of the proposed scheme.

Keywords: PV sensor faults; residual formation; robust sliding mode observer; sensor fault diagnosis;
standalone PV system

1. Introduction

The Strategic Development Goals (SDGs) around the world are focused on sustainabil-
ity, environment-friendly nature, and affordability (economy) of the resources for energy
(electricity) generation. Renewable energy resources are one of the pronounced answers to
the mentioned focus areas due to an environment-friendly production and almost infinite
cost-effective capacity [1].

Renewable energy resources are categorized into different types on the basis of the
production source, such as solar, wind, and biomass, which are capable replacements for
conventional power resources [2]. Among these, the most commonly used renewable
energy resource is sunlight, which has led researchers around the world to improve the
associated photovoltaic (PV) systems [3]. This exclusive dissemination of PV system
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improvement was not followed by observing fault detection and diagnosis functions to
guarantee enhanced profitability [4]; several studies have been performed on diagnosis of
PV systems, but just a few have described the presence of faults in PV systems.

The ideal behavior is that a PV system must always operate under normal conditions,
but in practice, faults are unavoidable and can occur at any instant of time. The occurring
fault can seriously degrade the system’s profitability and efficiency, as well as the safety of
workers [5]. Thus, an accurate and early fault diagnosis (FD) is important in a PV system
to avoid the progression of faults.

The pronounced faults that can occur on the direct current (DC) side (PV array)
include open-circuit faults, short-circuits faults, hot-spot, and partial shading [6]. Besides
the DC side, there are certain other faults that can occur in sensors, switches, and passive
devices of the associated power electronic module. In order to protect PV systems from
unexpected serious faults, several conventional fault protection devices and technologies
are added to PV systems. These include overcurrent protection devices, ground fault
detection interrupters, and arc circuit interrupters [7–9]. However, early moderate faults
in PV systems may not be removed. Thus, a timely detection/diagnosis is significant for
improving the efficiency and safety of a PV system [10,11].

The fault diagnosis (FD) approaches are carried out with one of the two basic con-
cepts/requirements known as material redundancy (MR) and analytical redundancy (AR).
The MR-based FD is a very simple and effective process where sensor faults are diagnosed
through comparison between the delivered information from multiple sensors. However,
the material/hardware redundancy has accompanying demerits such as large space, extra
weight, and high cost. On the other hand, the AR-based FD schemes make use of only the
available sensor/s information, PV system dynamics, and mathematical models [12].

The AR-based FD approaches have been investigated a lot in recently [13–15]. In [13],
a model-based method is used for FD; in [14], sensor faults are diagnosed based on parity-
space (PS) methods and temporal redundancy; and in [15], an FD method, with varying
system parameters, based on PS, is discussed.

The most common type of model-based FD approaches are the observer-based tech-
niques. The analogy is to quantify the residual signal between a measured and observed
output. In [16], a survey about the utilization of observer-based FD schemes was presented
and the concept was extended to robust controller design. In [17], an observer-based
FD scheme was generalized for a class of bilinear systems, while in [18] the concept was
rigorously modified for a nonaffine system having soft nonlinearities. The concept of
observer-based FD via residual generation has been widely used in control applications.
In [19], an open switch fault in an induction motor drive was detected. In [20], the concept
of residual generation was employed in the optimization and design of networked control
systems. In [21], a fault identification routine was coined for switching power converters.

The observer-based techniques have been widely investigated for current, voltage,
and speed sensors’ faults [22,23]. A Kalman-filter-based approach was proposed in [24],
while in [25], a higher-order sliding mode (HOSM) observer was presented to reduce
chattering. Moreover, a generalized super-twisting algorithm (GSTA)-based differential
flatness approach (DFA) was used to retrieve all the missing system states [26].

Leunbergers’ observer is one of the earliest estimations, proposed in 1971 [27]. De-
spite a methodical and simple implementation, it is reported to have issues when system
parameters are not accurately known [28]. The sliding mode observers (SMOs) coped with
this problem via the application of a discontinuous control law to force the trajectories to
a predefined switching manifold [29]. The SMOs offer advantages such as fast response,
insensitivity to parameter changes, and strong robustness [30]. These benefits demonstrated
their success in fault diagnosis.

This work is focused on sensors’ fault detection in a standalone PV system. The
proposed FD scheme utilizes SMOs and the concept of residual formation. Moreover, a
specific threshold is designed for residuals. In addition to robustness, smoothness, and
simple implementation of the proposed scheme, it gives guaranteed accurate measurement
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of system states, thus reducing hardware requirement and, hence, cost of the PV system.
The MPPT performances of a back-stepping controller (BSC), with and without SMO, are
also compared to show the superiority of the proposed algorithm.

The rest of the article is organized as follows. In Section 2, a mathematical description
of the PV cell followed by the overall PV system is explained. The problem is formulated
in Section 3, while the design process of the proposed fault diagnosis scheme is explained
with details (nonlinear SMO design, residual formation, and threshold design) in Section 4.
Section 5 is dedicated to generation of reference voltage via a neural network under varying
environmental conditions. The simulation results are explained in Section 6, while Section 7
concludes this research.

2. Mathematical Description of PV System

The PV system, composed of PV cell and the accompanied noninverting buck–boost
converter (BBC), is described.

2.1. PV Cell Modeling

The model of a PV cell is defined by the current–voltage (I–V) and current–power (P–V)
curve of a PV module [31–33]. A single solar cell model is shown in Figure 1, where Iph is
the ideal source current, generated by solar light on the PV cell, and is directly dependent
on solar irradiance. D is the diode connected parallel to the source current Iph, and ID
is flowing through the diode. Ish is the shunt current flowing through the large shunt
resistance Rp, and Rs is the small series resistance, while Ipv is the output current and Vpv
is the output voltage. The Ipv is determined by Kirchhoff current law (KCL), as follows.

Ipv = Iph − ID − Ish, (1)

where

ID = I0[(Vpv + Rs Ipv)/(αkT/q)− 1] (2)

and

Ish = (Vpv + Rs Ipv)/Rp (3)

Figure 1. Single-diode model of PV cell.
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Here, I0 is the diode leakage current at a given temperature T, α is the diode ide-
ality factor, k is the Boltzmann constant (1.38× 10−23 K/J), and q is the electron charge
(1.602× 10−19 C).

In practice, an array of PV cells is used. The array is composed of series and parallel-
connected PV cells. The parallel-connected cells enhance Vpv while the series connection of
PV cells enhance Ipv. The Ipv of a practical PV array is given by

Ipv = Np Iph − Np I0[(Vpv + Rs I)/(αNskT/q)− 1] . . .

− ((Vpv + Rs I))/Rp (4)

where Np and Ns are number of PV cells connected in parallel and series, respectively.

2.2. PV System Modeling

A complete architecture of the PV system is shown in Figure 2. The buck–boost
converter (BBC), energized by the PV panel, either steps up or steps down the output
voltage according to the controller switching, with the objective to extract desired output
voltages from the PV module.

Figure 2. A complete PV model with a variable resistive load and an observer.

A usual complication in PV systems is the stochastic nature of the inputs, i.e., irradiance
and temperature, which causes fluctuations in the extracted output voltage. Thus, in the
proposed PV system, a noninverting BBC is employed to maintained the output at a desired
level. Such converters are composed of two power electronic switches and passive devices,
such as capacitors and inductors. The switches are utilized for either stepping the output
voltage up or down as a function of the controlled PWM from the control system module.
The BBC has two modes of operation, i.e., in mode one, both the switches are open, while
in mode two, both the switches are closed. Equations for the noninverting BBC, acquired
from [34], are as follows.



Electronics 2023, 12, 282 5 of 17

ẋ1 =
Ipv

Ci
− u

x2

Ci
(5)

ẋ2 =
x3

L
+ u

(x1 + x3)

L
(6)

ẋ3 =
x2

C0
+

x3

RC0
+ u

x2

C0
(7)

where, Ipv is PV current; x1 , x2, and x3 are the PV array output voltage (Vpv), inductor
current (iL), and output capacitor voltage (v0), respectively; u is the control input; and Ci,
C0, and L are the input capacitor, output capacitor, and inductor, respectively.

3. Problem Formulation

Consider a fault occurring in the sensor measuring x1; then the state, Equation (5), is
modified as follows.

ẋ1 f =
Ipv

Ci
− u

x2

Ci
∆(x1) (8)

∆(x1), is the unknown term added to the state x1, indicating the fault. The fault diagnosis
(FD) will be carried out for Equation (8), with the following assumptions.

Assumption 1. The parameters used in Equation (8), Ipv and u, are known base functions.

Assumption 2. There are three sensors installed in the PV system, for measuring x1, x2, and x3.

Assumption 3. The system is completely observable.

In subsequent sections, the sliding mode observer (SMO)-based fault diagnosis (FD)
scheme is explained briefly.

4. Design of the Fault Diagnosis Scheme

The overall sliding mode observer (SMO)-based fault diagnosis (FD) scheme depicted
in Figure 3 is explained in the subsequent sections.

Figure 3. FD scheme using SMO.
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4.1. Nonlinear SMO Design

The observer, being a mathematical replica of the plant under consideration, is em-
ployed to estimate/diagnose faults in the system. A sliding mode observer (SMO) is
designed because they stand tall in fault diagnosis (FD), parameter estimation, and control,
due to their remarkable robustness and simple design analogy.

The SMO design starts with the definition of sliding surface/s. To reconstruct all three
states of the system (see Equations (5), (6), and (7)) and to estimate parameters, the three
sliding surfaces (ξ1, ξ2, and ξ3) are defined in Equations (9), (10), and (11), respectively.

ξ1 = x̂1 − x1 (9)

ξ2 = x̂2 − x2 (10)

ξ3 = x̂3 − x3 (11)

A strong reachability SMO, for the system described by Equations (5)–(7) and sliding
surfaces given in Equations (9)–(11), is presented below.

ˆ̇x1 =
Ipv

Ci
− u

x2

Ci
− K01ξ1 − K1sign(ξ1) (12)

ˆ̇x2 =
x3

L
+ u

(x1 + x3)

L
− K02ξ2 − K2sign(ξ2) (13)

ˆ̇x3 =
x2

C0
− x3

RC0
− u

x2

C0
− K03ξ3 − K3sign(ξ3) (14)

where x̂i with i = (1, 2, 3) are the estimated states, whereas K0i and Ki, i = (1, 2, 3), are
positive gains of the SMO. The gains K0i are proportional and ensure a strong reachability
of the trajectories to the respective ξi, while the Ki accompanied by the ’sign()’ function
makes up the discontinuous part to ensure robustness during sliding phase. An obvious
result of any sliding mode algorithm is to enforce ξi = 0, and when this happens, the
estimated states are equal to the actual ones.

4.2. Residual Construction

The signal, giving an indication of a healthy or faulty system, in FD applications is
termed as residual. It is the difference between observer and plant output, usually termed
as error signal. The FD is performed on the basis of residual construction.

Let e1, e2, and e3 represent the difference between estimated and actual PV array
output voltage, inductor current, and output capacitor voltage, respectively. Then, the error
dynamics are defined for the three states as follows.

ė1 = ˆ̇x1 − ẋ1 (15)

ė2 = ˆ̇x2 − ẋ2 (16)

ė3 = ˆ̇x3 − ẋ3 (17)

Using Equations (5)–(7) and (12)–(14), the error dynamics in Equations (15)–(17) are
transformed as follows.

ė1 = −u
ξ1

Ci
− K01ξ1 − K1sign(ξ1) (18)

ė2 = − ξ3

L
+ u

(ξ1 + ξ3)

L
− K02ξ2 − K2sign(ξ2) (19)

ė3 =
ξ2

L
− ξ3

RC0
− u

ξ2

C0
− K03ξ3 − K3sign(ξ3) (20)

Proposition 1. If the gains of the controller (K0i and Ki, i = 1, 2, 3) are positive and large enough,
then the error dynamics governed by Equations (18)–(20) converge exponentially.
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Proof. In order to carry out the stability analysis, Lyapunov function candidates are utilized.
Let V1 be the Lyanpunov function candidate for Equation (18), as this state does not depend
upon the other states, so

V1 =
1
2

e2
1 (21)

Then the total time derivative of Equation (21) along the trajectories of Equation (18)
is given by

V̇1 = −u
e2

1
Ci
− K01e2

1 − K1|e1| (22)

which is negative definite if K01 is large enough. This guarantees that e1 → 0 exponentially.
Now, let V2 be the Lyapunov function candidate for the other two states such that

V2 =
1
2

(
e2

2 + e2
3

)
(23)

and

V̇2 = −
(

K02e2
2 + K03e2

3 +
e2

3
RC0

+ K2|e2|+ K3|e3|
)

...

+ u
[

e2e3

(
1
L
− 1

C0

)]
(24)

which is also negative definite. Hence, e2 → 0 and e3 → 0. This confirms the stability of the
proposed SMO.

It is always appealing to have more options for fetching the real-time information
about the system, e.g., having sensors for each and every state. However, adding more
components also carries demerits, such as that the system will be bulky, expensive, and
prone to more faults/errors.

The proposed SMO is also used to fulfill the purpose of analytical redundancy for
estimating the state x2 using the system information carried with x1. From Equations
(12)–(14), x2 is estimated as follows.

x̂2 =
Ipv

u
−

ˆ̇x1

u
− K01ξ1 − K1sign(ξ1) (25)

Specific fault limits are essential for the residual in the FD applications, which is
explained in the upcoming section.

4.3. Threshold Design

The residual of the observer signal is zero for a healthy system; however, if there are
faults, then a threshold may be defined as one of the two types available, i.e., fixed and
dynamic. In the case of fixed thresholds, the fault sensitivity becomes less pronounced,
especially when incipient faults occur. In the case of dynamic thresholds, the sensitivity
becomes more pronounced, hence facilitating and improving the efficacy of fault diagnosis.
Thus, a dynamic threshold function Kth is designed.

e ≤ Kth fa = 0

e ≥ Kth fa 6= 0

where Kth is the tolerance value and fa is the fault. The forthcoming section is regarding
the estimation of x2 through SMO.
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5. Formation of Reference Voltage

A stochastic nature of the environmental inputs to the PV system causes a variation
in possible/allowable maximum power point (MPP). Thus, a reference voltage (Vre f or
Vpvr), showing maximum power point tracking (MPPT) under varying environmental
conditions, is required. Tracking such reference, with the proposed scheme, will ensure
MPPT at the PV system output. A three-layer neural network (NN), trained with different
values of irradiance (650–1000 W/m2) and temperature (25–65 °C), is employed to generate
the required Vre f .

Let Wij be the weight of the ith node and jth neuron of a layer, pi be the input informa-
tion at an ith input node, and (bjo) be the reconstruction error or bias; then, a net activation
of the input layer is computed as follows.

aj =
n

∑
i=1

Wij pi + bjo

where j = 1, 2, 3..., lo represent the number of neurons in hidden layer. The hidden layer
takes aj to generate its ith output as follows.

yi = f (aj)

where f (.) = Tanh(.) is the activation function. Now, let ωkj represent weight between the
kth output layer node and the jth hidden layer node; then, the net activation of the output
layer is as follows.

ak =
Io

∑
j=1

ωkjyi + bko

where k = 1 represents the number of neurons in the output layer. The Vre f is generated at
the output layer as a function of its net activation.

Vre f = f (ak)

A 3D view of the estimated Vre f is shown in Figure 4, while the architecture of the NN
is shown in Figure 5, where irradiance Ir and temperature T form the input layer, followed
by a hidden layer, and then an output layer.

Figure 4. 3D plot of reference voltage.
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Figure 5. Internal architecture of NN.

6. Simulation Results

The efficacy of the proposed sliding mode observer (SMO)-based fault diagnosis (FD)
scheme is portrayed via simulations in the MATLAB/Simulink environment. As mentioned
earlier, the SMO is designed to fulfill two objectives, i.e., FD and estimation of state x2.

In the first case, the simulations are performed in the presence of multiple sensor faults
and varying environmental conditions (Figure 6) as well as load (Figure 7) to validate the
performance of the proposed scheme. Moreover, to extract maximum power from the PV
panel and to track the desired reference voltage, a back-stepping controller (BSC) [34] was
employed. In addition, the results, for ensuring MPPT, are compared for a BSC alone and a
BSC based on the proposed SMO.
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Figure 6. Varying temperature and irradiance profile.
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Figure 7. Varying resistive load profile.

The system parameters are shown in Table 1, while parameters of the SMO are listed
in Table 2.

Table 1. PV array parameters [34].

Parameters Symbol Value

Total modules in PV array Nm 16
Number of modules connected in series Ns 4
Number of modules connected in parallel Np 4
Number of cells per modules Nc 72
Voltage at open circuit Voc 165.8 V
Current at short circuit Isc 17.56 A
Voltage at maximum power Vmpp 102.6 V
Current at maximum power Impp 15.16 A
Maximum power Pmax 1555.4 W
Input capacitor Ci 1× 10−3 F
Inductor L 20× 10−3 H

Table 2. SMO parameters.

S.NO. Symbol Value

1 K1 100
2 K2 9000
3 K3 10
4 K01 10
5 K02 10
6 K03 10

6.1. Performance under Varying Conditions in the Presence of Sensor Fault

The robust performance validation of the proposed scheme is carried out by introduc-
ing faults, mathematically represented as 6Sin(x1)+ 0.5Sin(x1t) and 8Sin(x1)+ 1.5Sin(x1t),
to the sensor x1 at the time interval t = [0.14 to 0.18] and t = [0.25 to 0.27](s), respectively.
Inherently, at the instances of fault, the maximum power point tracking (MPPT) capability
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of the PV system is compromised. The proposed scheme copes with this deterioration
of MPPT.

As mentioned earlier, the neural network takes the environmental conditions (temper-
ature and irradiance) as input and generates a peak voltage curve. This trajectory/curve
serves as a reference for the MPPT algorithm. Thus, following such trajectory (Vre f ),
generated by the neural network, ensures the MPPT.

The PV array output voltage trajectories, attained by a BSC and the SMO-based BSC,
are shown in Figure 8. It may be noticed that both schemes effectively track the reference
voltage and, hence, attain MPPT. However, in the zoomed portions, a definite degradation
in performance is evident in the case of the BSC, at the instances of fault occurrences. The
degradation is revealed in the form of significant oscillations about the reference trajectory
and, hence, steady-state error. Therefore, the SMO-based BSC is coined to have stamped
qualitative transcendence over the BSC.

Time (s)

P
V

 a
rr

a
y
 o

u
tp

u
t 

(V
)

V
ref SMO BSC

0.15 0.152

0.26 0.261

Figure 8. Fault effect on sensor x1.

The subsequent figures (Figures 9 and 10) are the sensing/estimated values of induc-
tive current and capacitive output voltage, respectively. It may be observed that the SMO
successfully keeps tracking the trajectories (x2 and x3). Furthermore, the deviation from
Vre f , at the instances of faults (see Figure 8), is propagated to the other states as well (see
zoomed portions in Figures 9 and 10). However, the robustness properties of SMO coped
with this variation up to almost 100% effect (see Figure 11).

The core objective of any FD system is to give an indication of the abnormal opera-
tion/malfunctioning of the system under consideration. The indication is then used to take
prompt actions so that any inconvenience with respect to human and system safety may be
avoided. Here, this objective is fulfilled with the introduction of specific thresholds and
fault residuals.

Figures 11, 12, and 13 show the residuals for states x1, x2, and x3, respectively. It
is revealed that the residual for x1 crosses the threshold at the instances of faults (see
Figure 11), while the residuals for other states remain within the limits. This gives an
indication of fault in the sensor for x1, and hence it is concluded that the fault has been
diagnosed. Moreover, the effect of this fault in only one sensor does not cause much
inconvenience in other states, as the residuals are well under the threshold limits.
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Figure 9. Fault effect on sensor x2.
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Figure 10. Fault effect on sensor x3.
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Figure 11. Residual formation of sensor x1.

Figure 12. Residual formation of sensor x2.
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Figure 13. Residual formation of sensor x3.

In addition, the power output from the PV array may also be observed in Figure 14. It
is evident that the BSC, in combination with the proposed SMO, achieves the MPPT with
negligible distortion caused by the occurring fault.

Time (s)

P
V

 O
u

tp
u

t 
P

o
w

er
 (

W
)

Figure 14. MPPT by the proposed SMO and BSC.

6.2. Sensorless PV System

The robust nature of the proposed SMO, as coined in the earlier sections, is utilized to
introduce analytical redundancy (AR) in the overall PV system. Here, the SMO is employed
to estimate the state x2 using the information from x1. Thus, the need for having a sensor
for x2 is nullified, causing cost reduction and fewer maintenance hazards. The estimate,
shown in Figure 15, reveals the robustness and accuracy of the SMO.
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Figure 15. Estimated state by SMO.

7. Conclusions

A fast and robust Fault Diagnosis (FD) scheme was the aim of this article for sensor
faults in a PV system. An FD scheme based on Sliding Mode Observer (SMO), known for
remarkable robustness and parameter invariance, was presented. The FD scheme effec-
tively generated fault residuals, while fault alarms were efficiently initiated by comparing
residuals with specific thresholds. In combination with the objective of FD, the SMO
served as an Analytical Redundancy (AR) by providing the information/trajectory of the
inductor current.

In addition, a Neural Network (NN), taking varying environmental conditions (tem-
perature and irradiance) and resistive load as inputs, was employed to generate reference
peak voltage and power trajectories. Thus, the Maximum Power Point Tracking (MPPT) of
power output from the PV array was ensured by tracking these reference trajectories.

The probable future research directions/recommendations may include generation of
adaptive thresholds for varying faults and an extension to Fault-Tolerant Control (FTC).
Moreover, an experimental validation of the proposed FD scheme is also a pronounced
future direction.
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Nomenclature

PV Photovoltaic
SMO Sliding mode observer
MPT Maximum power transfer
SDGs Strategic Development Goals
AR Analytical redundancy
STA Super-twisting algorithm
MPPT Maximum power point tracking
FD Fault diagnosis
FTC Fault-tolerant control
BSC Back-stepping controller
MR Material redundancy
HOSM Higher-order sliding mode
BBC Buck–boost converter
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