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Abstract: The selection of the optimizer is critical for convergence in the field of on-chip training. As
one second moment optimizer, adaptive moment estimation (ADAM) shows a significant advantage
compared with non-moment optimizers such as stochastic gradient descent (SGD) and first-moment
optimizers such as Momentum. However, ADAM is hard to implement on hardware due to the
computationally intensive operations, including square, root extraction, and division. This work
proposed Hardware-ADAM (HW-ADAM), an efficient fixed-point accelerator for ADAM highlighting
hardware-oriented mathematical optimizations. HW-ADAM has two designs: Efficient-ADAM (E-
ADAM) unit reduced the hardware resource consumption by around 90% compared with the related
work. E-ADAM achieved a throughput of 2.89MUOP/s (Million Updating Operation per Second),
which is 2.8× of the original ADAM. Fast-ADAM (F-ADAM) unit reduced 91.5% flip-flops, 65.7%
look-up tables, and 50% DSPs compared with the related work. The F-ADAM unit achieved a
throughput of 16.7MUOP/s, which is 16.4× of the original ADAM.

Keywords: adaptive moment estimation; FPGA; on-chip training; accelerator

1. Introduction

Deep neural networks (DNNs) are excellent in discovering complex structures in
high-dimensional data with high accuracy. Over the past decades, DNNs have played an
important role in various domains, such as image classification [1], autonomous driving [2],
and object detection [3]. For example, Krizhevsky et al. classified the 1.2 million high-
resolution images in the ImageNet LSVRC-2010 competition into 1000 different classes by
a large CNN [1]. Chenyi Chen et al. recognized image features for estimating affordance
related to autonomous driving upon AlexNet framework [2]. Currently, the deep reinforce-
ment learning (DRL) algorithm combining DNNs and RL has a great success in the field of
robot control [4], speech recognition [5] and gaming [6].

However, the performance improvements typically come with the increased density
of the DNNs and more time cost [7]. Therefore, there is a growing demand for accelerators
with high training efficiency to accommodate the development of DNNs. Hardware
accelerators such as graphic processing unit (GPU), application-specific integrated circuit
(ASIC), and field programmable gate array (FPGA) have been implemented to improve the
throughput of the DNNs [8]. FPGA and ASIC accelerators have lower power consumption
compared with GPU-based accelerators [9,10], while FPGAs have higher flexibility and less
cost compared with ASIC-based accelerators [11,12]. In the past practices, DNNs generally
completed the backward propagation process off-line [13]. Then, the off-line trained DNNs
are used in the forward propagation process to execute the inference tasks [14]. Therefore,
most previous accelerators [15,16] focused only on the inference phase of DNNs.

With the development of edge computing, local DNN training with private data and
domain-specific is required for personalization [17–19]. The training process of DNNs can
be divided into three phases: forward propagation (FP), backward propagation (BP), and
weight gradient update (WG). All the phases need to be accelerated in an on-chip learning
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system. Generally, DNN training introduces about 3× computational cost and consumes
10× to 100× memory compared with the single inference phase. On-chip learning also
requires higher efficiency and lower power consumption [18].

On-chip learning has been widely studied by methods such as quantizing [20–22],
and exploiting network sparsity [23]. Work [21] counts the maximum value of the layers
and quantifies the synaptic weights as 8-bit floating point data, and work [22] computes
the cosine similarity between the quantized weights and the original weights to obtain
INT8 data. Work [24] combines algorithmic adaptation with dataflow and hardware
optimization to improve energy efficiency and throughput. Work [17] proposes FGMP that
divides features into FP8-group and FP16-group at the data-element level, considering the
acceleration efficiency in both the inference and the training phases.

However, few researches have focused on weight gradient updating (WG) completed
by the optimizer. The optimizer is one of the most important modules of the training
process. The selection of the optimizer has a critical influence on the convergence and the
performance of the trained model. Nowadays, sufficient researches have shown that second-
moment optimizers have much better convergence and robustness than non-moment and
first-moment optimizers [25]. However, most of the previous works of on-chip train-
ing focus on forward and backward propagation. Those works use simple non-moment
optimizers such as gradient descent (GD) and stochastic gradient descent (SGD) [26] or
complex optimizers without hardware optimization [27,28]. Work [29] implemented the
second moment optimizers near the storage. However, the optimizer itself is not optimized.
Some works have been proposed to accelerate the first-moment optimizers. Work [30]
presented various highly scalable and parameterizable FPGA-based stochastic gradient
descent implementations for performing linear model training. However, second-moment
optimizers have not been designed and implemented with full hardware optimization.
Adaptive moment estimation (ADAM) is one of the most widely adopted second-moment
optimizers [31]. The ADAM calculates and stores the first and second moment for each
weight of the neural network. The second-moment calculation comprises computationally
intensive operations including square, root extraction, and division, resulting in high exe-
cution latency and hardware resource consumption. The storage of the first and second
moment also consumes many hardware resources. Thus the ADAM is expensive to im-
plement on hardware despite the high convergence and training efficiency. To solve these
problems, this work proposed Hardware-ADAM (HW-ADAM), an efficient fixed-point
accelerator for ADAM highlighting hardware-oriented mathematical optimizations. To our
best knowledge, the proposed work is the first to make specific optimizations to accelerate
the ADAM by mathematical methods. The main contributions of this work include:

1. Efficient-ADAM (E-ADAM) is proposed by simplifying the calculation of square
and root extraction into the calculation of comparison, logic shifting, and addition. The
hardware-oriented optimization for hyper-parameters and the approximation to the updat-
ing step are proposed to further simplify the circuit design. The proposed E-ADAM reduces
the critical resource consumption by 85% while achieving a throughput of 2.89MUOP/s
(Million Updating Operation per Second), which is 2.8 times the original ADAM.

2. Fast-ADAM (F-ADAM) is proposed based on E-ADAM and accelerates the division
in the calculation of updating step. We leverage the theory of Fast Inverse Square Root
(Fast InvSqrt) [32] and propose a fast division calculation based on the storage format of
single-precision floating-point number. The proposed F-ADAM achieves a throughput of
16.7MUOP/s, which is 16.4 times the original ADAM.

2. Background Knowledge
2.1. Overview of Adaptive Moment Estimation

The training of the neural network is completed by the iteration of forward propaga-
tion, backward propagation, and weights updating. In one training iteration, the forward
propagation is first executed to obtain the inference result, based on which the training
loss is calculated. The gradient for each weight of the neural network is calculated by the
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backward propagation based on the training loss. Then the optimizer generates the updat-
ing step for each weight with a specific strategy. Then the weights are updated according
to the updating steps. Different optimizers are thus defined by the different strategies of
updating step calculation. There are three major types of optimizers: non-moment optimiz-
ers, first-moment optimizers, and second-moment optimizers. The updating methods of
non-moment and first-moment optimizers are simple and hardware-friendly. In gradient
descent (GD), the forward and backward propagation is executed on the whole training
set and the updating steps are the resulting gradients. The weights are subtracted by the
updating steps with the scale of the learning rate. The propagation and updating based on
the whole data set may result in the over-fitting and local optimum. Stochastic gradient
descent (SGD) reduces the probability of over-fitting and local optimum by training the
model on a stochastic small batch of the data set in one iteration. The first-moment optimiz-
ers such as Momentum [33] and Nesterov [34] introduce the conception of the moment to
improve convergence. The second-moment optimizers introduce the self-adaptive learning
rate by calculating the second moment of the gradients. The second-moment optimizers
have much better convergence and robustness compared with the previous types according
to sufficient experiments. However, the calculation complexity on the hardware of the
second moment optimizers increases significantly.

Adaptive moment estimation (ADAM) is the most widely used second-moment opti-
mizer with high convergence and robustness. The overall structure of the original ADAM
is shown in Figure 1. The ADAM calculates both the first and second moment. The first
moment influences the updating direction. In ADAM, the resulting updating direction
is the current moment, which is the weighted vector sum of the current gradient and the
last moment. The direction shaping avoids the local optimal by providing inertia to the
optimization process. The second moment influences the updating length (learning rate)
for each weight. The updating is more efficient because each weight has an independent
learning rate. In conclusion, the calculation of ADAM can be divided into three parts: first
moment calculation, second moment calculation, and updating step calculation. The first
and second moments are stored in the buffers and updated iteratively. A series of ADAM
processing units can be implemented and run in parallel. One ADAM unit processes the
updating of one weight at each time. The ADAM unit first receives the current gradient gt
from the backward propagation. Then the ADAM unit reads the first moment mt−1 and
the second moment vt−1 of the last updating step from buffers. The current first moment
mt and the current second moment vt are calculated as Equations (1) and (2), where b1 and
b2 are hyper-parameters recommended by [31] as b1 = 0.9 and b2 = 0.999. The current
updating step is calculated as Equation (3), where ε is a small value to avoid dividing
by zero. Finally, the weights are updated as Equation (4) outside the ADAM unit with
a learning rate a. The first moment mt and the second moment vt are stored back to the
buffers at the end of the iteration. The overall algorithm is shown as Algorithm 1.

mt = b1 ∗mt−1 + (1− b1) ∗ gt (1)

vt = b2 ∗ vt−1 + (1− b2) ∗ gt ∗ gt (2)

st =
mt√

vt + ε
∗

√
1− bt

2

1− bt
1

(3)

wt = wt−1 − a ∗ st (4)
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Figure 1. Overall structure of original ADAM.

Algorithm 1 The workflow of original ADAM.

Require: a: Stepsize
Require: b1, b2 ∈ [0,1): Exponential decay rates for the moment estimates
Require: f (θ): Stochastic objective function with parameters θ
Require: θ0:Initial parameter vector

1: m0 ← 0
2: v0 ← 0
3: t← 0
4: while θt not converged do
5: t← t + 1
6: gt ← ∇θ ft(θt−1)
7: mt ← b1 ·mt−1 + (1− b1) · gt
8: vt ← b2 · vt−1 + (1− b2) · g2

t

9: θt ← θt−1 − α ·
√

1−bt
2

1−bt
1
· mt√

vt+ε

2.2. Overview of Fast Inverse Square Root

Fast inverse square root (Fast InvSqrt) provides a simple and efficient method to
calculate the inverse square root without complex calculations including division and root
extraction. The Fast InvSqrt leverages the storage format of single-precision floating point
numbers shown in Figure 2. The actual value of the floating point number can be calculated
as Equation (5), where ex = Ex − B is the exponent representing the shifting bits. The mx is
the actual value of the significand part ranging from 0 to 1 when considered as a fixed-point
number with no integer bit and 23 fraction bits. The value of exponent bias B is set as 127 in
the IEEE 754 standard. When mx is relatively small, the logarithm of x can be estimated by
Equation (6), where σ denotes the estimation error. Denoting the value of the significand
part as Mx when considered as an unsigned integer, we have mx = Mx/L, where L = 223.
Regarding the 32-bit number as an unsigned integer Ix, the relationship between Ix and
log(x) can be derived as Equation (7). Finally the estimation of log(x) is calculated as
Equation (8). Given y1 = 1/

√
x, Equation (9) is derived. According to Equations (8) and (9),

the first estimation of y1 = 1/
√

x can be calculated as Equation (10), where Iy1 is actually
y1 in the format of floating point number. The estimation error σ is set as 0.0450466 in the
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original work. Finally, the second estimation can be calculated by the Newton method.
The Newton method is shown as Equation (11). To perform the Newton method on y, the
calculation of y = x−1/2 is converted into the zero point of f (y) as shown in Equation (12).
According to Equations (11) and (12), the second estimation is calculated as Equation (13).

Figure 2. Storage format of floating point numbers.

x = 2ex (1 + mx) (5)

log(x) = ex + log(1 + mx)

= ex + mx + σ
(6)

Ix = ExL + Mx

≈ Llog(x) + L(B− σ)
(7)

log(x) ≈ Ix/L− (B− σ) (8)

log(y1) = −
1
2

log(x) (9)

Iy1 = −1
2

Ix +
3
2

L(B− σ) (10)

xn+1 = xn −
f (xn)

f ′(xn)
(11)

f (y) = y−2 − x (12)

y2 = y1 ∗ (1.5− 0.5 ∗ x ∗ y1 ∗ y1) (13)

3. Proposed Method
3.1. Design of Efficient-ADAM

The proposed efficient-ADAM (E-ADAM) simplifies the calculation of the first and
second moment. The calculation of the second moment requires the square operation, then
the square root of the second moment is extracted when calculating the updating step.
Both the squaring and extraction of the square root are time-and-resource-consuming for
hardware implementation. To optimize the ADAM calculation, Lemma 1 is introduced
with a brief proof. The overall optimization of the ADAM is shown in Figure 3, where
Figure 3b is the original ADAM and Figure 3e is the E-ADAM. Firstly, we define a new
variable vrt which is the square root of vt. By introducing Lemma1, the calculation of
vrt can be derived as Figure 3c. The vrt can be calculated iteratively by one comparison
and two multiplications at each timestep. The original ADAM calculates

√
vt by complex

squaring and root extraction. Thus, the calculation is significantly simplified. Noting
that the vrt is the

√
vt used in the calculation of updating step, the extraction of the

square root is eliminated directly. The optimization of the hyper-parameters is designed
to further simplify the circuit as shown in Figure 3d. The original hyper-parameters
b1 = 0.99, b2 = 0.999 require multiplications during the calculation of updating step.
However, when the hyper-parameters are designed as b1 = 0.875, b2 = 1 − 2−10, the

multiplication can be simplified as subtraction and bit shifting. In addition, the
√

1−bt
2

1−bt
1

is

simplified to
√

1−b2
1−b1

, which further reduces the number of required multiplications. The
overall workflow of E-ADAM is illustrated in Algorithm 2.
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Lemma 1. Given two non-negative rational numbers a and b, then c =
√

a2 + b2 can be approxi-
mated by: c ≈ max(a, b) + 1

3 min(a, b)

Proof of Lemma 1. Given a, b ≥ 0, let r =
√

a2 + b2, a = rcosθ, b = rsinθ, θ ∈ [0, π/2].
Let a ≥ b⇔ sinθ ≥ cosθ ⇔ θ ∈ [π/4, π/2], tanφ = 1

3 , 0 < φ < π/8,
Then,
ε =
√

a2 + b2 − (a + 1
3 b) = r[1− sinθ − 1

3 cosθ] = r[1−
√

10
3 sin(θ + φ)],

where ε is the approximation error. The ε equals 0 at the following two cases:
(1) θ = π/2
(2) θ = arctan( 4

3 )
The ε has the max absolute value when θ = π/4 and the ε = 0.0572r.
Thus,

√
a2 + b2 ≈ max(a, b) + 1

3 min(a, b). The relative error is within 5.72%, and equals to
0 at the following four cases:
(1) a = 0;
(2) b = 0;
(3) a = 4

3 b
(4) a = 3

4 b

define: = , then
= = 2  ∗ −1 + 1 − 2 ∗ 2

define: max = max( 2 ∗ −1 , 1 − 2 ∗ | |)
= max( 2 ∗ −1, 1 − 2 ∗ | |)

min = min( 2 ∗ −1 , 1 − 2 ∗ | |)
= min( 2 ∗ −1, 1 − 2 ∗ | |)

then,

≈ +
1
3 ,

while not converged do
 ← + 1

 ←  ∇ ( −1)
←  1 ∗  −1 + 1 − 1 ∗
←  2  ∗ −1 + 1 − 2 ∗ 2

← −1  − ∗

1. Optimize the values of hyper-parameters:
b1 = 0.875, b2 = 1 − 2−10

Thus multiplication can be finished by logic 
shifting
2. Simplify the multiplication coefficient at the 
calculating of st

lemma:
given non-negative rational number a 
and b, then = 2 + 2 can be 
approximated by:

≈ max , +  
1
3 min , )

while not converged do

 ← + 1

 ←  ∇ ( −1)

←  1 ∗  −1 + 1 − 1 ∗

= max ( 2 ∗ −1, 1 − 2 ∗ | |)

= min ( 2 ∗ −1, 1 − 2 ∗ | |)

← + 1
3

← + ∗ 1− 2

1− 1
← −1  − ∗

(a) (b)

(c)

(d)

(e)

Figure 3. Proposed optimization of Efficient-ADAM. Subgraph (a) is the introduced lemma. Subgraph
(b) is the workflow of the original ADAM. Subgraph (c) is the proposed approximation. Subgraph (d)
is the further optimization of the hyper-parameters and calculation. Subgraph (e) is the workflow of
the proposed E-ADAM.
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Algorithm 2 The workflow of E-ADAM

Require: a: Stepsize
Require: b1 = 0.875, b2 = 1− 2−10 : Exponential decay rates for the moment estimates
Require: f (θ): Stochastic objective function with parameters θ
Require: θ0:Initial parameter vector

1: m0 ← 0
2: vr0 ← 0
3: t← 0
4: while θt not converged do
5: t← t + 1
6: gt ← ∇θ ft(θt−1)
7: mt ← b1 ·mt−1 + (1− b1) · gt
8: m = max(

√
b2 · vrt−1,

√
1− b2 · |gt|), n = min(

√
b2 · vrt−1,

√
1− b2 · |gt|)

9: vrt = m + 1
3 n

10: θt ← θt−1 − a ·
√

1−b2
1−b1

· mt
vrt+ε

In addition to the efficiency improvement, the optimization also avoids the truncation
error of fixed-point calculation. The original ADAM calculates the second moment vt = g2

t .
However, the gradients of the weights are usually quite small. Take an example of the
calculation in the format of 16-bit fixed point number with 8 bits for the fraction part
(denoted as fixed-point 〈16,8〉). When the gt is less than 2−4, the square g2

t equals to 0
due to the truncation error. The interval where gt < 2−4 thus becomes a blind area of
the calculation. In the E-ADAM, the square operation is eliminated, thus the blind area
is solved.

The hardware designs for the second and first moment estimation are respectively
illustrated in Figure 4a,b. The hardware design can be used for different fixed point formats.
To calculate the current second moment vrt, the last second moment vrt−1 is first read from
the buffer and then multiplied by the constant

√
b2 as shown in Figure 4c. The current

gradient gt is input from the backward propagation and the absolute value |gt| is calculated
directly. Then the |gt| should be multiplied by

√
1− b2. Because of the optimized hyper-

parameters, the value of
√

1− b2 is 2−5. Thus the multiplication can be simplified into
logic right shifting as shown in Figure 4f. Then one comparer and two multiplexers are
used to obtain the max and min value of

√
b2 ∗ vrt−1 and

√
1− b2 ∗ |gt|. The current second

moment vrt is calculated as the sum of max and 1
3 min. To further reduce the hardware

complexity, the series approximation is introduced as shown in Figure 4e. The operation
of division by 3 can be decomposed as one series of logic shifting and addition. In the
proposed design, the first three items of the series are reserved for the balance between
accuracy and efficiency. The calculation of the first moment estimation is also optimized
for hardware implementation. Both the multiplications for gt and mt−1 are simplified
as logic shifting because of the optimized hyper-parameter b1 = 0.875. To calculate the
mt = 0.875 ∗mt−1 + 0.125 ∗ gt, the mt and gt are both shifted three bits to get 1

8 mt−1 and 1
8 gt.

Then the result mt =
1
8 gt − 1

8 mt−1 + mt−1 is calculated by one subtractor and one adder.
Thus, no multiplication is used during the calculation of the current first moment mt.



Electronics 2023, 12, 263 8 of 17

CMP

| |−1

MUXMUX
0 1 01

    

Adder

>> 2 >> 4 >> 6

Adder

Adder

0.995115995
>> 5

1 − 2 ∗ | |
= 1 − (1 − 2−10) ∗ | |
= 2−5 ∗ | |
= | | ≫ 5

2 ∗ −1

= 1 − 2−10 ∗ −1
= 0.995115995 ∗ −1

= max (0.995115995 
∗ −1, | | ≫ 5)

= min(0.995115995 
∗ −1, | | ≫ 5)

1
3 = 4−

∞

=1

∗

= ≫ 2 + ≫ 4 + min ≫ 6

= ∗ − + − ∗

>> 3 >> 3

−1

SUB

Adder

= ∗ − + ( − ) ∗

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4. Hardware design of Efficient-ADAM. Subgraph (a) is the overall structure of the second
moment module. Subgraph (b) is the overall structure of the first moment module. Subgraph (c) is
the optimized calculation of

√
b2 ∗ vrt−1. Subgraph (f) is the optimized calculation of

√
1− b2 ∗ |gt|.

Subgraph (d) and subgraph (g) are the selection of the max and min values. Subgraph (e) is the
optimization of division by 3.

3.2. Design of Fast-ADAM

Fast-ADAM (F-ADAM) is proposed based on E-ADAM further optimizing the division
during the calculation of updating step. The division is time-and-resource-consuming in
the hardware design. To optimize the division, we propose the calculating workflow
by introducing the theory of Fast InvSqrt. Firstly, we convert the division mt

vrt+ε to the
multiplication mt ∗ 1

vrt+ε . Then the reciprocal is calculated leveraging the storage format
of the single-precision floating point number. Given a single-precision floating point
calculation y = 1

vrt
, Equation (14) is derived by taking logarithm on both sides. According

to Equation (8), both sides of Equation (14) can be approximated by simple logic shifting
and subtraction, and Equation (15) is derived. Thus, the Iy can be calculated as Equation (16)
and the result is the first estimation y1 in single-precision floating point format. To calculate
the second estimation, the function shown as Equation (17) is introduced and the zero point
of f (x) is the 1

vrt
. Then the Newton method is used to calculate the second estimation of

y2 = 1
vrt

as Equation (18). The final updating step is calculated by the multiplication of the

reciprocal of second moment 1
vrt

, the first moment mt, and the scaling factor
√

1−b2
1−b1

.

log(y) = − log(vrt) (14)

Iy

L
− (B− σ) = −( Ivrt

L
− (B− σ)) (15)

Iy = 2L(B− σ)− Ivrt (16)
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f (y) =
1
y
− vrt (17)

y2 = y1 −
f (y1)

f ′(y1)

= y1 −
y−1

1 − vrt

−y2
1

= 2y1 − y2
1 ∗ vrt

(18)

The hardware design for the updating step calculation is shown in Figure 5, where
Figure 5a is the overall structure. The first estimation of 1

vrt
is shown in Figure 5b. The

Fast InvSqrt is designed based on the storage format of single-precision floating point,
thus the vrt is converted from fixed point number into the single-precision floating-point
number Ivrt first. Then the subtractor is used to calculate Iy = 2L(B− σ)− Ivrt . Given
L = 223, B = 127, and σ = 0.0450466, the value of constant 2L(B− σ) is 0x7ef477d3. Then
the result Iy1 is converted from floating-point number into the original fixed point number
for the second estimation. The implementation for both directions of fixed-floating-point
conversion is completed by Xilinx Vivado high-level synthesis (HLS) tools automatically.
Then the second estimation is calculated as shown in Figure 5c which is in accordance with
Equation (18). The multiplication of 2 ∗ y1 is simplified into the logic left shifting to reduce
the calculation complexity. Finally the mt

vrt
is multiplied by the scaling factor

√
1−b2

1−b1
. The

scaling factor equals to 2−2 due to the optimized hyper-parameters. Thus the multiplication
is also simplified into logic right shifting as shown in Figure 5d.

FixFloat-CON

I

SUB

0 7 477 3

FloatFix-CON

MUL

MUL

<< 1

SUB

MUL

/

>> 2

(b) First estimation

(c) Second estimation

(d) Scale by Hyper-
parameters

(a) Updating step 
calculation

Figure 5. Hardware design for the updating step calculation module of F-ADAM. Subgraph (a) is
the overall structure of the updating step calculation module. Subgraph (b) is the first estimation of
1/vrt. Subgraph (c) is the second estimation of 1/vrt and the calculation of (1/vrt) ∗mt. Subgraph
(d) is the optimized calculation of scaling by hyper-parameters.

4. Experimental Results

The proposed designs are validated on the Xilinx Ultra96-v2 FPGA board as shown in
Figure 6. The proposed modules including first moment module, second moment module,
and step calculation module, are implemented on the programable logic (PL) while the
testbench environment is implemented on the processing system (PS). The fixed point
format is set as 〈32, 16〉, which has 32 bits in total and 16 bits for the fraction.
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Figure 6. Hardware implementation of the proposed method.

The reinforcement learning task HalfCheetah from PyBullet Gymperium [35] is used
to validate the functionality of the proposed optimizers. The training of a reinforcement
learning agent is unsupervised and consists of two stages: sampling and updating. At
the sampling stage, the agent interacts with the environment for N times, where N is the
number of samples collected in one training iteration. At each interaction, the environment
first provides the states to the agent as the input of the neural network. Then the neural
network executes forward propagation to get the action. The environment receives the
action and entershe next state accordingly for the next iteration. The reward for the action
chosen by the agent is output by the environment to calculate the objective function for
updating. At the updating stage, the objective function is calculated from the rewards
at each timestep. Then the neural network is updated based on the objective function
to achieve higher rewards. The HalfCheetah is one classical environment where the
neural network is trained to control the action of the HalfCheetah to walk forward. The
HalfCheetah has 26 dimensions of state and 6 dimensions of action. Proximal policy
optimization (PPO) [36] is used as the algorithm for neural network training. PPO maintains
two neural networks including the agent actor and the assistant critic. The critic is used
to calculate the objective function while the actor is the one controlling the HalfCheetah.
Both neural networks are trained during the training process. When the training process
is completed, only the actor is reserved as the training result. The actor neural network
contains two fully connected layers with linear rectification function (ReLU) as an activation
function. The shapes of the two layers are 64× 26 and 6× 64. Taking bias into consideration,
the total number of weights is 64 * 26 + 26 * 6 + 64 + 6 = 1890. The critic neural network has
the same structure and size except for the last layer, which has only one output dimension.
Thus, the number of weights is 64 * 26 + 26 * 1 + 64 + 1 = 1755. The updating of both the
actor and the critic uses our proposed E-ADAM and F-ADAM to validate the functionality.

4.1. Accuracy Validation of the Proposed Approximation

In this subsection, the accuracy of the approximation of Lemma 1 is validated. The
heat maps in Figure 7 show the comparison of relative error for c =

√
a2 + b2 with different

intermediate result bit widths, where the input a and b are small. The experiment is an
abstraction of the calculation vt = b2 ∗ vt−1 + (1− b2) ∗ g2

t in the original ADAM. Small
gradients are normal during the training of neural networks. In the original ADAM,
intermediate results with more bits are required to avoid the truncation error and blind
area caused by squaring operation. Given the input of total 16 bits, with 8 bits for the
fraction (〈16, 8〉), E-ADAM keeps a high accuracy when the intermediate results are in the
same format as the input, as shown in Figure 7a. Four conditions where the relative error
is zero are marked. The original algorithm with bit-width 〈16, 8〉 and 〈24, 12〉 has a high
error and has a blind spot due to the square operation when the input is small, as shown in
Figure 7b,c. Only when the intermediate width is doubled from the input width, the blind
spot can be avoided, as shown in Figure 7d. Therefore, E-ADAM achieves better accuracy
and reduces the bit width of intermediate results.
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(b) Original: <16,8>

(c) Original: <24,12> (d) Original: <32,16>

(a) Efficient-ADAM: <16,8>

b = 4/3 * a

b = 3/4 * a

b = 0

a = 0

Figure 7. The accuracy of the proposed approximation to the second moment estimation. The
calculation is

√
a2 + b2. Subgraph (a) is the relative error of E-ADAM with the 〈16, 8〉 fixed-point

number. Four cases where the relative error is 0 are illustrated. Subgraph (b) is the relative error
of the original ADAM with the 〈16, 8〉 fixed-point number. Subgraph (c) is the relative error of the
original ADAM with the 〈24, 12〉 fixed-point number. Subgraph (d) is the relative error of the original
ADAM with the 〈32, 16〉 fixed-point number.

4.2. Functionality Validation of the Proposed Design

The functionality validation comprises two stages: performance in one epoch and
performance in the overall training process of the task. The training processes of six different
optimizers in one epoch are shown in Figure 8. The optimizers include the proposed E-
ADAM, F-ADAM, the original ADAM, the Momentum, the GD, and the SGD. In one epoch,
the loss is calculated based on the collected samples and the weights are updated according
to the loss. The proposed E-ADAM and F-ADAM have similar convergence compared
with the original ADAM while outperforming other algorithms significantly. In addition,
the training curves of E-ADAM and F-ADAM are more stable compared with the original
ADAM. This is because the approximation in the calculation of the second moment and
updating step introduces a small noise into the training, which avoids over-fitting. The
overall training process of the task is shown in Figure 9. The ADAM algorithms have much
better convergence and efficiency compared with other tasks. The visualized training result
is shown in Figure 10, where the HalfCheetah walks forward stably under the control of
the trained agent.
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(a) (b) (c)

(d) (e) (f)

Figure 10. The visualized training result.The subgraphs (a–f) are captured serially during the walking
task of the trained HalfCheetah. The trained HalfCheetah is able to walk forward stably.

4.3. Efficiency Validation of the Proposed Design

The throughput of the proposed design is shown in Figure 11. Though different second
moment optimizers have been implemented in the previous works, the throughput is not
provided explicitly. The original ADAM implemented on the same platform is set as the
baseline. We measure the max throughput by the number of Million Updating Operations
per Second (MUOP/s). The E-ADAM achieves 2.89 MUOP/s, which is 2.8 times com-
pared with the original ADAM. The F-ADAM achieves 16.7 MUOP/s, which is 16.4 times
compared with the original ADAM.

1.02

2.89

16.7

0

2

4

6

8

10

12

14

16

18

Original Efficient Fast

Single-Core Max Throughput (MUOP/s)

2.8x

16.4x

Figure 11. The throughput of the proposed design.

The resource consumption of the proposed design is shown in Table 1. The E-ADAM
reduces 72.3% flip-flops (FFs), 85.3% look-up-tables (LUTs), and 80% DSPs compared with
the original ADAM. The F-ADAM reduces 73.9% FFs and 67.6% LUTs while consuming
more DSPs. The proposed design also shows significant resource efficiency compared with
reference work [27]. Work [27] implemented eight RMSProp [37] units in parallel, which
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has a similar calculation process to ADAM with division, squaring, and root extraction.
Thus the presented consumption is divided by 8 to obtain the normalized consumption.
The proposed E-ADAM reduces 91.0% FFs, 84.4% LUTs, and 92.9% DSPs compared with
work [27]. The proposed F-ADAM reduces 91.5% FFs, 65.7% LUTs, and 50% DSPs compared
with work [27]. When the resource is highly limited, the E-ADAM can be implemented
with the least costs and the F-ADAM can be used if DSPs are sufficient. In the situation
where all the resource is sufficient, the reduction of hardware resource consumption enables
pipelining with more depth and more parallels, which can further improve the throughput
significantly.

Table 1. The resource consumption of the proposed design.

E-ADAM F-ADAM Original ADAM FA3C [27]

Algorithm ADAM ADAM ADAM RMSProp
FF 729 686 2630 8.1k

LUT 1043 2297 7082 6.7k
DSP 2 14 10 28

The proposed design achieves outstanding efficiency in both resource consumption
and throughput. E-ADAM is suitable when the resource is highly limited, while F-ADAM
is suitable for the high demand for performance. The implementation details are shown in
Table 2.

Table 2. The implementation details of the proposed design.

ADAM E-ADAM F-ADAM

FF 2630 729 686
LUT 7082 1043 2297
DSP 10 2 14

Execution clocks 112 53 7
Max frequency (MHz) 115 153 117

Throughput (MUOP/s) 1.02 2.89 16.7

We provide the raw experimental data and the example HLS source code in the
Supplementary Materials.

5. Conclusions

This work proposed Hardware-ADAM (HW-ADAM), an efficient fixed-point accel-
erator of adaptive moment estimation (ADAM). Three major optimizations are proposed
to improve the throughput and reduce resource consumption. The approximation of the
second moment is first proposed to avoid the squaring and extraction of the root, based on
which the efficient-ADAM (E-ADAM) is designed. Then the fast algorithm for the division
is proposed inspired by the theory of the Fast Inverse Square Root (Fast InvSqrt), based on
which the fast-ADAM (F-ADAM) is proposed. The optimizations to the hyper-parameters
and specific calculations such as multiplication and division by 3 are proposed to further
improve the efficiency. Sufficient experiments are designed to validate the functionality,
throughput, and resource consumption. Efficient-ADAM (E-ADAM) unit reduced the
resource consumption by around 90% compared with the original ADAM while achieving
the throughput of 2.89MUOP/s (Million Updating Operation per Second), which is 2.8× of
the original ADAM. Fast-ADAM (F-ADAM) unit achieved the throughput of 16.7MUOP/s,
16.4× of the original ADAM. The hardware resource consumption of F-ADAM is also
largely reduced compared with the related work. To our knowledge, we are the first to
optimize the hardware implementation of the ADAM. The proposed design can be widely
adopted in different on-chip training tasks to reduce resource consumption or improve the
throughput. Moreover, while the mathematic-based designs for hardware and software
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show a great advantage in ADAM design, the optimization methods are also instructive
and promising to be used for other applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/electronics12020263/s1.
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