
Citation: Odle, E.; Hsueh, Y.-J.; Lin,

P.-C. Semantic Positioning Model

Incorporating BERT/RoBERTa and

Fuzzy Theory Achieves More

Nuanced Japanese Adverb

Clustering. Electronics 2023, 12, 4185.

https://doi.org/10.3390/

electronics12194185

Academic Editor: George A.

Tsihrintzis

Received: 1 September 2023

Revised: 26 September 2023

Accepted: 5 October 2023

Published: 9 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Semantic Positioning Model Incorporating BERT/RoBERTa
and Fuzzy Theory Achieves More Nuanced Japanese
Adverb Clustering
Eric Odle 1,* , Yun-Ju Hsueh 2 and Pei-Chun Lin 3

1 Department of Natural History Sciences, Graduate School of Science, Hokkaido University,
Sapporo 060-0810, Japan

2 Department of Foreign Languages and Applied Linguistics, Yuan Ze University,
Taoyuan City 320315, Taiwan; connie@saturn.yzu.edu.tw

3 Department of Information Engineering and Computer Science, Feng Chia University,
Taichung City 407102, Taiwan; peiclin@mail.fcu.edu.tw

* Correspondence: ericmichael.odle.q5@elms.hokudai.ac.jp

Abstract: Japanese adverbs are difficult to classify, with little progress made since the 1930s. Now in
the age of large language models, linguists need a framework for lexical grouping that incorporates
quantitative, evidence-based relationships rather than purely theoretical categorization. We herein
address this need for the case of Japanese adverbs by developing a semantic positioning approach
that incorporates large language model embeddings with fuzzy set theory to achieve empirical
Japanese adverb groupings. To perform semantic positioning, we (i) obtained multi-dimensional
embeddings for a list of Japanese adverbs using a BERT or RoBERTa model pre-trained on Japanese
text, (ii) reduced the dimensionality of each embedding by principle component analysis (PCA),
(iii) mapped the relative position of each adverb in a 3D plot using K-means clustering with
an initial cluster count of n = 3, (iv) performed silhouette analysis to determine the optimal
cluster count, (v) performed PCA and K-means clustering on the adverb embeddings again
to generate 2D semantic position plots, then finally (vi) generated a centroid distance matrix.
Fuzzy set theory informs our workflow at the embedding step, where the meanings of words are
treated as quantifiable vague data. Our results suggest that Japanese adverbs optimally cluster
into n = 4 rather than n = 3 groups following silhouette analysis. We also observe a lack of
consistency between adverb semantic positions and conventional classification. Ultimately, 3D/2D
semantic position plots and centroid distance matrices were simple to generate and did not require
special hardware. Our novel approach offers advantages over conventional adverb classification,
including an intuitive visualization of semantic relationships in the form of semantic position
plots, as well as a quantitative clustering “fingerprint” for Japanese adverbs that express vague
language data as a centroid distance matrix.

Keywords: bidirectional encoder representations from transformers; robustly optimized BERT
approach; natural language processing; deep learning; large language models; fuzzy logic; silhouette
analysis; principle component analysis

1. Introduction

In this study, we focus on how an innovative BERT workflow can bring clarity
to a notoriously confusing topic for Japanese linguists: adverbs. Recently, the field of
Natural Language Processing (NLP) has seen rapid advancements, leading to powerful
linguistic analysis tools [1,2]. Language modeling by machine learning [3,4], specifi-
cally using deep neural networks [5,6], has demonstrated superior performance on a
multitude of linguistic tasks such as sentence prediction [7], question answering [8,9],
and machine translation [10,11]. While these tasks differ, they share a basic mechanism
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that involves converting text into a numerical representation (tokenization), sending
that numerical representation through a series of mathematical modifications (forward
propagation), then outputting a changed mathematical representation at the end of the
model (embedding).

Large language models are presented with a massive amount of textual data during
their training phases. While training, language models learn to make predictions, and in
doing so they develop an understanding of grammar and vocabulary. Word embeddings,
manifested as multi-dimensional vectors, therefore reflect a precise semantic position in
high-dimensional space as learned by a given model on a given corpus of training text.
Despite the free availability of this powerful technology, there is a disconnect between
word embedding theory and practical application by linguists. This disconnect can be
attributed to two factors: a high technical barrier required to manipulate language models
in a programming environment, and a lack of established use cases. The present study
aims to address both of these factors by offering a novel application of word embed-
dings to Japanese adverbs along with beginner-friendly Jupyter Notebooks for users to
implement independently.

1.1. Approaches to Word Embedding

Word embeddings encapsulate incredible knowledge using relatively few numbers,
making them ideal for relational tasks such as vocabulary clustering. Methods of word
embedding generation vary, but they all aim to satisfy three criteria: unique representa-
tion, low dimensionality, and semantic proximity reflected by position in n-dimensional
space [12]. Such approaches to word embedding include Word2Vec [13] and GloVe [14],
which are statistical approaches that represent words as high-dimensional vectors. Alter-
natively, word embeddings may be obtained from pre-trained language models such as
recurrent neural networks or transformer-based BERT models. These approaches have been
applied to sentiment analysis tasks, revealing Word2Vec, GloVe [15], and convolutional
neural networks [16] to be effective embedding approaches in determining positive versus
negative online discourse. Moreover, BERT and RoBERTa were previously used to visualize
three-dimensional word embeddings in a recent study on fake news detection [17]. We
herein build upon previous work by also visualizing language model word embeddings
for the novel application of Japanese adverb clustering.

1.2. Conventional Japanese Adverb Classification

Japanese adverbs are notoriously difficult to classify. Proposed classification schemes
include pragmatic, evaluative, modal, and domain adverb classes [18], mood, tense, aspect,
voice, and object-referential adverb classes [19], classification byに (ni),も (mo), orにも (ni-
mo) particle conjugation [20], and a 41 computational class scheme [21]. Despite the wealth
of alternative categorization approaches, Japanese adverbs are most often categorized using
Yamada’s [22] Degree/Declarative/Status scheme.

Beyond the simple categorization shown in Table 1, there have been few attempts
to computationally analyze Japanese adverbs. One study [23] made use of IPADIC [24]
and ChaSen [25] to extract a glossary of adverbs with accompanying connotation details.
More recently, researchers considered the range of strength and polarity among Japanese
Degree adverbs in the context of Japanese-to-Korean machine translation [26], highlighting
a real-world need in the linguistics services industry for better computational models. Still,
few studies focus on either the semantic position or clustering of Japanese adverbs from a
computational perspective.

1.3. BERT-Based Language Models

BERT is a 110-million parameter Large Language Model (LLM) published in 2019 [27].
The architecture within BERT is distinct from other LLMs in that it does not employ
recurrence. Rather, BERT is composed of transformers [28], which are in turn built upon
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multi-head attention layers made of a parallel series of scaled dot-product attention layers.
A scaled dot-product attention layer may be described mathematically as

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (1)

where Q, K, and V are matrices containing matching query, key, and value data, respectively.
The superscript T is a linear algebra notation indicating that the preceding matrix is
transposed. The element dk represents the dimensions of the K matrix, and division by
the square of this value is used as a scaling factor in the softmax calculation. Scaled dot-
product attention layers are combined in parallel to produce multi-head attention layers.
Mathematically, the increased layering is expressed via the equation

MultiHead(Q, K, V) = Concat(head1, . . . headh)W
o (2)

for which

headi = Attention(QWQ
i , KWK

i , VWV
i ) (3)

where the parameter matrix WO belongs to the set of all real numbers contained within the
cross product of V and the model, times the number of layers, while QWQ

i , KWK
i , and VWV

i
are similarly-defined parameter matrices for input data matrices Q, K, and V, respectively.

Table 1. Adverb category examples. Examples of the three Japanese adverb types according to the
Yamada taxonomy from 1936. Declarative adverbs tend to express emphasis and uncertainty, Degree
adverbs tend to express abstract and physical quantity, and Status adverbs tend to express auxiliary
information pertaining to a subject such as its good/bad quality, state of activity, etc.

Type Examples

Degree 少し (sukoshi; a little),沢山 (takusan; much),とても (totemo; very),
だいぶ (daibu; considerably)

Declarative 必ず (kanarazu; must/certainly),お陰で (okagede; thanks to),実は (jitsuha; in fact),
多分 (tabun; probably so)

Status よく (yoku; well),まだ (mada; not yet),自分で (jibunde; by yourself),
ずっと (zutto; constantly)

This transformer-based architecture advanced the capabilities of LLMs, and Japanese-
trained BERT models continue to demonstrate utility in multiple fields such as medicine [29–32],
literature [33,34], law [35], automation [36,37], and second language education [38,39].
Together, recent work suggests that BERT remains relevant, powerful, adaptable, and
applicable in yet-unstudied ways. With the success of BERT, researchers began modifying
the architecture and training parameters for optimizing various tasks. One such BERT-
inspired model is RoBERTa (Robustly optimized BERT approach), which maintains the base
BERT architecture but changes the training method to include dynamic rather than static
masking, full-sentence training text without using next-sentence prediction loss, larger
mini-batches, and a higher capacity text encoding scheme [40]. In this study, both base and
large iterations of BERT and RoBERTa were considered during adverb analysis. Neither
fine-tuning nor architectural modifications were performed in this study. Fine-tuning was
avoided because there is no established ground truth to guide model training. Changes to
the pre-trained architectures were avoided out of conflict with our stated goal of making
the proposed process as user-friendly as possible.

1.4. Fuzzy Logic in Natural Language Processing

Fuzzy logic, first proposed in 1965 [41], is a method of handling uncertainty by
allowing the truth values to range from 0 to 1. This approach differs from Boolean logic,
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which only allows for binary truth values of 0 (False) or 1 (True). Vagueness in the
context of fuzzy logic refers to the ambiguous boundaries between categories and is a
fundamental principle in fuzzy logic. Moreover, vagueness deserves attention because it
reflects the complexity and nuance of real-world systems such as human language. While
some scholars have argued that fuzzy logic is not well suited for linguistic semantic
analysis [42,43], these conclusions were drawn without considering LLMs. More recently,
researchers have revisited fuzzy logic as it applies to natural language. For example,
fuzzy natural language [44] is a subfield that aims to model linguistic semantics using a
fuzzy logic approach [45].

Within the field of Japanese linguistics, applications of fuzzy logic include studies
on Japanese language pedagogy [46] and machine translation [47]. In line with our focus,
some researchers echo the position that Japanese words may be best described through the
lens of fuzzy logic rather than rigid a priori classification schemes [48]. However, to our
knowledge, no published work has proposed a method for quantifying Japanese adverbs
that takes into account the vagueness of human language. Fortunately, LLMs trained on
massive text corpora are now freely available, providing researchers with high-dimensional
word representations.

In this study, we define a semantic position model that uses the coordinates of a 768-
or 1024-dimension Japanese adverb embedding following dimensional reduction via PCA.
Using this simple and powerful 2-step process of embedding followed by dimensional
reduction, we were able to obtain quantitative representations of learned meaning for
Japanese adverbs. This semantic position model enabled us to perform two key tasks:
(1) evaluate the conventional Japanese adverb classification scheme against LLMs, and
(2) propose a novel quantification approach to working with Japanese adverbs that re-
searchers and language teachers in the age of computational linguistics will find useful.
Finally, we conclude that our semantic position model, informed by fuzzy logic, better
reflects the vague data that is human language.

2. Methodology

In this study, we present a novel semantic position model for Japanese adverbs inspired
by fuzzy logic and driven by LLM word embedding. In the most general sense, our model
takes as input a list of Japanese adverbs in plain text form, then generates two products as
the output: (1) a 2D semantic position plot with number of clusters optimized by Silhouette
Analysis, and (2) a centroid distance matrix of the position plot. A pseudo-code outline of
the proposed workflow is provided below in Algorithm 1.

Algorithm 1 Description of the Workflow
Input: List of Japanese adverbs in plain text
Output: 2D semantic position plot and centroid distance matrix

1: procedure
2: Generate word embeddings by LLM
3: Reduce dimensionality with PCA
4: Initialize K-means Clustering with 3 clusters
5: Plot adverb positions in 3D
6: Determine optimal cluster count by Silhouette Analysis
7: Re-cluster with the optimal cluster count
8: Plot adverb positions in 2D
9: Generate centroid distance matrix

10: end procedure

In further detail, this semantic positioning model involves the following steps. First,
we obtain multi-dimensional embeddings by passing a list of Japanese adverbs through a
LLM such as BERT or RoBERTa. Second, we reduce the dimensionality of each embedding
by principle component analysis (PCA), then plot the positions of each adverb in 3D
following K-means clustering with an initial cluster count of n = 3. Third, we perform
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silhouette analysis to determine the optimal cluster count, followed by another round
of PCA and K-means clustering on the original embedding vector to generate a 2D plot.
Finally, we generate a centroid distance matrix for each 2D plot. The analysis workflow is
shown visually as a flowchart in Figure 1.

Figure 1. Workflow illustrating the proposed semantic positioning model for Japanese adverbs
incorporating LLM embedding, principle component analysis, and K-means clustering. The Japanese
adverb例えば (meaning “for example”) is provided as an example input.

2.1. Adverb Selection

Following Yamada’s Degree/Declarative/Status classification scheme [22], an initial
list of 350 common adverbs was collected and categorized. Categories were unevenly
represented, so each category was randomly assigned a more manageable size of 20 adverbs.
Written Japanese incorporates Chinese characters (kanji), resulting in multiple variants
(akin to alternative spellings in English) for many words. Given that BERT models are
trained on written text, we aimed to select the adverb variants most likely to appear in
writing. The resulting adverb list is shown in Table 2.
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Table 2. List of adverbs used for analysis. This table shows 20 Japanese adverbs from the cate-
gories Degree, Declarative, and Status, following Yamada’s [22] three-category classification system.
Adverbs shown in this table were used to evaluate the semantic position model.

Degree Declarative Status

一層 以外に 一応

非常に 一軒も 序でに

凄く いったい 相変らず

結構 恐らく 思いっきり

だいぶ 却って 主に

あんなに 決して 普段

少々 流石に 基本的に

ずっと さっぱり 態と

大変 確か 偶然

一杯 それ程 自分で

かなり 誰とも 詳しく

こんなに どうやら こう

大抵 なるべく 更に

殆ど 真逆 突然

大勢 滅多に しっかり

大体 別に 元々

随分 例えば 次第に

沢山 結局 色々

少し たしかに 順番に

とても 絶対に じろじろ

2.2. Model Selection

The training process for a complex model such as BERT can be computationally
prohibitive, requiring a GPU and extended run-time resources. Fortunately, several general-
purpose BERT models pre-trained on Japanese text are freely available. Four models were
selected for this study: the BERT-base-Japanese and BERT-large-Japanese models from
Tohoku University [49], and the RoBERTa-base-Japanese and RoBERTa-large-Japanese mod-
els from Waseda University [50]. These BERT models were trained on massive amounts
of internet text, providing broad linguistic exposure. Such pre-trained knowledge can be
invaluable for tasks where understanding context and semantics is critical, as in word em-
bedding. Moreover, BERT/RoBERTa were selected over generative pre-trained transformer
(GPT) models for their encoder-decoder architecture, which allows for contextual learning
in both left-to-right as well as right-to-left directions. BERT-base-Japanese was trained on
approximately 30 million Japanese sentences pulled from Wikipedia. The training lasted for
5 days using TPU acceleration, processing 512 tokens per pass with a batch size of 256 and
a total of 1 million training epochs [49]. The RoBERTa models were trained on a Japanese
Wikipedia dump in addition to the Japanese portion of the CC-100 corpus [51] over seven
days using eight NVIDIA A100 GPUs [50].

2.3. Semantic Positioning: 3D Plotting and Comparison

Our first data manipulation step aimed to test the validity of the conventional De-
gree/Declarative/Status scheme against massive language models. This experiment fol-
lows the reasoning that if a three-category classification truly reflects semantic relation-
ships among Japanese adverbs, then those relationships should be quantitatively apparent
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through LLMs fed more text than is feasible for human reading. For each of the four mod-
els examined (BERT-base, BERT-large, RoBERTa-base, and RoBERTa-large), adverbs were
tokenized using the model’s native tokenizer, then passed through the model to generate a
multi-dimensional embedding for each adverb. Specific embedding dimensions depend on
the model used: BERT-base/RoBERTa-base has an output layer of 768 dimensions, while
BERT-large/RoBERTa-large has an output layer of 1024 dimensions. These embedding
values were then normalized to between 0 and 1, compressed to 3 principle components
using PCA, and then clustered using K-means clustering. Finally, these processed adverb
representations were plotted in 3D [52] to visualize their relative positions in compressed
semantic space.

PCA and K-means clustering were performed using scikit-learn [53], a popular ma-
chine learning library for Python. Principle component analysis (PCA) [54] is a method
of reducing the dimensionality of a dataset without losing essential differences (variance)
between each point. Dimensionality is reduced by searching for perpendicular (orthog-
onal) axes called principle components that preserve the highest variance among the
dataset. PCA involves five main steps: centering, covariance matrix calculation, eigen-
value/eigenvector calculation on the covariance matrix, eigenvector sorting, component
selection, and low-dimensional projection. The covariance matrix C for a dataset is calcu-
lated by multiplying the data feature matrix X (m data points, n dimensions, and shape
m× n) with its transposed clone X> according to the below formula.

C =
1

m− 1
X ∗ X> (4)

During the subsequent eigenvalue/eigenvector calculation step, eigenvalues (λ) and
eigenvectors (v) are calculated for each dimension of the dataset as solutions to the equation

Cv = λv (5)

Eigenvalues reflect the amount of variance in each eigenvector, while the eigenvectors
themselves reflect an axis oriented in the original high-dimensional dataset space. In
this study, we decomposed high-dimensional Japanese adverb embeddings from over
700 dimensions down to either 2 or 3 dimensions. With respect to PCA, this means we used
the two/three eigenvectors with the largest eigenvalues for our semantic position model.

Meanwhile, K-means clustering [55] is a process that aims to group points in a dataset
into a set number of clusters by minimizing the variance within each cluster. In general,
K-means clustering follows the steps of setting a number of clusters, assigning initial
cluster centroid positions, calculating distance (Euclidean) from each centroid for each
point in the dataset, assigning each point to its nearest cluster centroid, repositioning each
centroid to the mean position of all the points in its cluster, and checking for convergence to
either exit or repeat the process. During cluster assignment, the process may be expressed
mathematically in terms of points xi and centroid cj. The K-means algorithm searches for
an index value j that minimizes the Euclidean distance to cluster j from 1 to K clusters.
Finally, xi is assigned to cluster j in line with the below formula.

Membership to cluster j = argmin||xi − cj|| (6)

This is followed by the centroid update step, where the position of centroid cj for each
cluster j is relocated to the mean position of every point i in the cluster of Nj total points
according to

Updated cj =
1
Nj

∑
i

xi (7)

After K-means clustering, we are left with Japanese adverb embeddings optimally
grouped into a pre-defined number of clusters.
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2.4. Silhouette Analysis

A central question asked in this study is “What is the optimal number of categorical
clusters for Japanese adverbs?” To address this question, silhouette analysis [56] was
performed on the principle components of our embedded adverb vectors. Silhouette scores
from 1 to 50 clusters were considered during analysis, although only scores for clusters of
n = 3 or larger were used as possible valid results. Silhouette analysis is a technique used
to evaluate the quality of clustering results from unsupervised machine learning algorithms
such as K-means. Specifically, silhouette analysis helps determine how well-separated
clusters are and whether data points within each cluster are more similar to one another
than they are to data points in other clusters.

As originally proposed [56], the silhouette score s(i) for a single point is calculated by

s(i) =
b(i)− a(i)

max(a(i), b(i))
(8)

for which a(i) represents the mean Euclidean distance of point i to other points shared by
the same cluster, and b(i) represents the minimum mean Euclidean distance found between
point i and another point belonging to a different cluster. From this, the silhouette score
for a set of points can be defined as the mean of all silhouette scores for those points using
the expression

Silhouette Score =
1
N

N

∑
i=1

s(i) (9)

where N is the number of points in a given set. In our study, s(i) was calculated for each
three-dimensional Japanese adverb embedding following PCA. Then, the silhouette score
was calculated for the entire N = 60 set of adverbs.

2.5. Semantic Positioning: 2D Plotting and Distance Matrix Construction

Following silhouette analysis, raw adverb embeddings were re-compressed down
to two dimensions via PCA for 2D plotting. Next, the optimal number of clusters as
determined by silhouette analysis was used to repeat K-means clustering. Resulting
cluster centroids were plotted along with adverb embeddings to visualize the revised
categorization scheme, then a matrix was constructed to express the distances from each
centroid to the other. This distance matrix represents the final product of our semantic
position model: a clustering “fingerprint” for Japanese adverbs.

3. Experiment Results

During this study, we saw three major results. First, the conventional categorization
system (Degree/Declarative/Status) for Japanese adverbs did not agree with the semantic
positions from any of the four tested BERT/RoBERTa models. Second, while semantic
positions varied by language model, n = 4 clusters fit the data better than n = 3 in
all four BERT/RoBERTa models. Third, we were able to generate distance matrix “fin-
gerprints” for our target set of Japanese adverbs specific to individual BERT/RoBERTa
models. These representations of vague human data draw inspiration from fuzzy the-
ory, providing researchers with a novel, natural language-based framework for Japanese
adverb classification.

3.1. Conventional Categories Do Not Reflect Semantic Position

Adverb embedding using four transformer-based LLMs trained on Japanese text—
BERT-base, BERT-large, RoBERTa-base, and RoBERTa-large—revealed no apparent overlap
between the Yamada classification scheme and 3D principal component analysis followed
by K-means clustering. These results are visualized in Figure 2 below.
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Figure 2. Adverb representations in 3D semantic space following BERT/RoBERTa embedding, prin-
ciple component analysis (three principal components), and K-means clustering (n = 3). Points are
labeled with corresponding adverb, written in Japanese. Conventional categories Degree, Declarative,
and Status are represented in parentheses beside adverbs as 1, 2, and 3, respectively. K-means
clustering results are expressed by the colors blue, yellow, and green. Cluster centroids are shown as
bold marks.

Adverb semantic positions are shown in Figure 2 accompanied by Japanese text,
conventional category labels (Degree = 1, Declarative = 2, Status = 3; in parentheses), and
K-means cluster associations (blue, yellow, and green; cluster centroids indicated as bold
marks). There was minimal overlap between conventional classes and semantic embedding
by the four Japanese language models tested. Plot structure, including both cluster centroid
and adverb positions, varied widely depending on language model. Moreover, cluster
tightness varied greatly, with large models tending to produce more disperse semantic
position clustering.

As seen in Table 3, the scores were generally low across four common classification
metrics for all four LLMs considered. The RoBERTa models tended to perform better than
the BERT models, and base size models outperformed large size models. None of the four
models tested were able to achieve a classification accuracy of 0.5 or higher, suggesting
poor overlap between Yamada’s [22] a priori classification scheme and empirically-derived
semantic positions.
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Table 3. Classification scores from four Japanese Language models. This table provides scores for four
common classification task metrics: Recall, Precision, F1-Score, and Accuracy. Scores were calculated based
on Yamada’s [22] conventional degree/declarative/status classifications scheme for Japanese adverbs.

Model Recall Precision F1-Score Accuracy

BERT base 0.367 0.368 0.349 0.367
BERT large 0.317 0.345 0.323 0.317
RoBERTa base 0.483 0.632 0.458 0.483
RoBERTa large 0.400 0.403 0.399 0.400

3.2. Four Adverb Categories are Better than Three

Silhouette analysis was performed on cluster counts ranging from 1 to 50 to better
grasp clustering trends in the data. For all models, silhouette scores tended to decrease
with the increasing cluster count. With the RoBERTa models, a drastic drop-off in silhouette
score was seen within the first 10 cluster sizes, whereas the BERT models decreased less
dramatically. Moreover, while all four models displayed a degree of saw-like peaks and
valleys, RoBERTa models produced much smoother silhouette score curves than the BERT
models. The BERT-base in particular experienced an intermediate period of sharp rises and
falls, even into negative values, before completing the analysis cycle near the top of the
score range.

Ultimately, silhouette analysis found n = 4 clusters to better fit our adverb embeddings
than n = 3 clusters for all four models considered. Given the results shown in Figure 3, a
clustering scheme using n = 4 was employed for subsequent analysis.

Figure 3. Line plots of silhouette score vs. cluster number for four Japanese language models: BERT-
base, BERT-large, RoBERTa-base, and RoBERTa-large. In all four models, n = 4 clusters produced the
highest silhouette score (excluding n = 1 and n = 2).

3.3. Novel Framework for Classifying Japanese Adverbs

As with the 3D plots generated prior to silhouette analysis, conventional categorization
did not overlap well with either BERT or RoBERTa embeddings. Similarly, adverb positions
among the four models, even after re-clustering into the optimal n = 4 clusters, still showed
a high degree of heterogeneity between models. This is visually apparent in Figure 4 below.
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Figure 4. Adverb representations in 2D semantic space following BERT/RoBERTa embedding,
principle component analysis (two principle components), and K-means clustering (n = 4). Points are
labeled with corresponding adverb, written in Japanese. Conventional categories Degree, Declarative,
and Status are represented in parentheses beside adverb markers as 1, 2, and 3, respectively. K-means
clustering results are expressed by the colors blue, yellow, and green. Cluster centroids are shown as
bold marks.

In this study, we also introduced the novel approach of generating a centroid distance
matrix for Japanese adverbs following semantic positioning. Example distance matrices
are shown in Table 4, and present the relative Euclidean distances between each cluster
centroid (n = 4) following model embedding and dimensional reduction by PCA (principle
components = 2).

Table 4. Adverb centroid distance matrices from four Japanese language models. This table presents
relative Euclidean distances between cluster centroids (n = 4) for each of the four Japanese language
models considered (BERT-base, BERT-large, RoBERTa-base, and RoBERTa-large) following model
embedding, PCA, and K-means clustering.

BERT-base Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 0.0000 3.3369 5.0518 2.1428

Cluster 2 3.3369 0.0000 4.3964 2.9228

Cluster 3 5.0518 4.3964 0.0000 2.9092

Cluster 4 2.1429 2.9228 2.9092 0.0000

BERT-large Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 0.0000 3.8363 4.7875 4.2708

Cluster 2 3.8363 0.0000 3.0638 2.1723

Cluster 3 4.7875 3.0638 0.0000 5.2266

Cluster 4 4.2708 2.1723 5.2265 0.0000
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Table 4. Cont.

RoBERTa-base Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 0.0000 31.2850 28.0213 34.3317

Cluster 2 31.2850 0.0000 16.3790 17.1308

Cluster 3 28.02123 16.3790 0.0000 32.2291

Cluster 4 34.3317 17.1308 32.2291 0.0000

RoBERTa-large Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 0.0000 32.0137 51.8964 23.6767

Cluster 2 32.0137 0.0000 21.2812 25.6508

Cluster 3 51.8964 21.2812 0.0000 37.6306

Cluster 4 23.6767 25.6508 37.6306 0.0000

The four matrices in Table 4 were obtained using our proposed semantic position
model for Japanese adverbs. First, adverbs were embedded using one of four LLMs.
Next, high-dimensional embeddings were projected onto a 2D plane by PCA, and then
K-means clustering was used (n = 4) to group the projected embeddings. PCA allowed
for the reduction of the high-dimensional textual data into a lower-dimensional space,
preserving the most important variance between data points while minimizing noise.
Cluster centroids are positioned from one another at varying proportions depending on the
particular language model used (BERT-base, BERT-large, RoBERTa-base, or RoBERTa-large).

4. Discussion

The primary aim of this study was to evaluate a conventional Japanese adverb clas-
sification system using LLMs. Informed by the fuzzy set theory concept of vague data,
we arrived at a novel model for Japanese adverbs referred to as semantic positioning.
First, our n = 3 cluster test showed minimal overlap between conventional categorical
delineation and embedding-based clustering among Japanese adverbs when tested on four
Japanese language models (BERT-base, BERT-large, RoBERTa-base, and RoBERTa-large).
Quantitatively, RoBERTa models reproduced the Yamada [22] classification scheme with
better accuracy than BERT models, although none of the models achieved an accuracy
of 0.5 or greater. The slight advantage seen with RoBERTa over BERT is attributed to
the larger training text dataset. Model size did not provide a clear classification accuracy
advantage, with base size models outperforming their respective large size models (Table 3).
Together, these findings suggest that the a priori Degree/Declarative/Status classification
scheme is fundamentally incompatible with empirical, context-rich LLM word embeddings.
Intuitively, this result is unsurprising. Language in everyday use does not follow rigid
rules. Human thoughts are difficult to quantify—as are culture, intelligence, and other
factors. For this reason, the fuzzy logic notion of vague data was well suited for our subject
matter: Japanese adverbs.

Another contribution made by our study was in demonstrating the utility of LLMs
such as BERT and RoBERTa as engines for semantic embedding. Semantic distance, gener-
ally defined as the differences between words using a pre-determined metric [57], was used
in our study to quantify the relationships between Japanese adverbs. Semantic distance
is a result of passing text through a language model via forward propagation, applying
the weights and biases at each transformer layer to the tokenized text. Conceptually, if
two words are passed through BERT, then the distance between the resulting vector em-
beddings can be calculated by simple Euclidean means [58]. Ideally, those embeddings
should be closer to each other the more similar the original words are in meaning—hence,
semantic position.

One more interesting finding from this study was the striking inconsistency in ad-
verb positions and cluster behavior following plot generation (3D in Figure 2 and 2D in
Figure 4). This could be due to any of multiple variables including but not limited to model
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size, training data size, word frequency within the training data, tokenization methods,
random initialization, and hyperparameter differences. The four BERT/RoBERTa models
all varied in these respects, sufficiently explaining the differences seen in our results. As
such, researchers and educators should mind the following point when implementing our
semantic position model: keep the language model consistent. This inconsistency between
models has been noted by other researchers as well. For example, a comparative study
of 100 BERT models trained on the same dataset found consistent genre identification
capabilities among models but wide variation in the ability to generalize text [59]. Overall,
LLM complexity has outpaced our ability to fully describe their behavior, thus more work
is needed in this area.

5. Conclusions and Future Work

In this study, we evaluated the Degree/Declarative/Status scheme of Japanese adverb
classification using multi-dimensional embeddings obtained from LLMs. In doing so, we
devised an alternative framework which we called a semantic positioning model. Our
workflow involved (i) obtaining multi-dimensional embeddings for a pre-defined list of
Japanese adverbs using a BERT/RoBERTa model, (ii) reducing the dimensionality of each
embedding by PCA, (iii) mapping relative positions for each adverb in a 3D plot using
K-means clustering with an initial cluster count of n = 3, (iv) performing silhouette analysis
to determine optimal cluster count, (v) performing PCA and K-means clustering again on
the adverb embeddings to generate 2D semantic position plots, and (vi) generating centroid
distance matrices. These final distance matrices serve as unique identifying “fingerprints”
for Japanese adverbs.

Our novel process revealed three key findings: (1) Japanese adverbs optimally clus-
tered into n = 4 rather than n = 3 groups following silhouette analysis, (2) there was little
consistency between semantic positions and conventional classifications, and (3) plots and
centroid distance matrices were simple to generate without the use of special hardware.

From these results, we arrived at the following conclusions. First, our novel semantic
positioning workflow offers a simple and powerful method for understanding Japanese
adverbs as points in semantic space. This quantification of vague human data gives
linguists a more flexible way to work with language. Semantic positions varied widely
from model to model, and our method did not attempt to re-categorize adverbs based
on cluster membership alone. As such, further syntactic analysis will likely be required
to reconstruct a rigid four-class categorization system for Japanese adverbs in the future.
Second, we provided quantitative experimental evidence suggesting the conventional
Degree/Declarative/Status scheme does not hold true when compared against LLMs such
as BERT or RoBERTa, which are trained on massive amounts of real-world text. This
finding will hopefully inspire other researchers to abandon the conventional classification
scheme for Japanese adverbs, or at least preface the use of the scheme by emphasizing its
theoretical nature.

Furthermore, our investigation highlighted an important consideration when working
with LLMs: inter-model variability. The inconsistency in semantic positions from model
to model was striking and echoed the observations made by other researchers in the field.
In summary, we have herein proposed a simple, powerful, and quantitative workflow for
understanding Japanese adverbs as they manifest in natural language. It is our hope that
linguists and educators consider integrating our workflow, provided as easy-to-follow
Jupyter Notebooks, during research or Japanese language instruction.
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