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Abstract: This article presents the classification of optoelectronics encoder faults in a permanent
magnet synchronous motor (PMSM) drive system. This paper proposes the deep neural networks
(DNNs) speed sensor faults classification application in the vector-controlled PMSM drive. This
approach to the issue has not been discussed in the literature before. This work presents a solution
based on early detection with the use of the model reference adaptive system (MRAS) estimator and
fault classification based on artificial intelligence. The innovative nature of this work is also due
to the simulation of speed sensor damage using the developed optoelectronics encoder model in
the Matlab/Simulink environment. This work is focused on simulation studies, which have been
supported by experimental results obtained on the MicroLabBox platform. This article compares two
structures of deep neural networks in fault detection. The results were also compared with previous
experimental studies on the classification of speed sensor failures using shallow neural networks.

Keywords: DNN; 2D-CNN; speed sensor; FTC; PMSM

1. Introduction

Currently, AC drives diagnostics [1] are met with great interest in research centers [1,2].
This is due to the use of AC motors [3] in many sensitive industries wherein failure can be
a threat and lead to serious consequences [4,5]. Both the motor and drive control system
are subject to diagnostics. A significant number of research works focus on detecting and
classifying damages to the stator [6–8] or motor bearings [9–11]. The topic of frequency
converter diagnostics is also well-developed and described in the literature [12–14]. Cur-
rently, however, an important trend is the diagnosis of damage in measurement sensors.
Measuring sensors are necessary elements for the operation of the drive system in the
vector control structure [15]. Additionally, sensors are widely used in the fault detection of
other components of the drive system. In the case of a permanent magnet synchronous
motor (PMSM), three types of sensors are used: speed/position, currents, and voltage. One
of the most important listed here is the speed sensor. Damage to the remaining sensors
reduces the quality of the drive system operation and, possibly, in the most important
failures, may lead to a shutdown of the system [16]. This situation is different with the
speed sensor. In the case of any fault, the drive system is not able to work correctly and a
significant threat may appear. For this reason, many research papers describe this issue
only in simulation studies.

In control systems with a PMSM, an optoelectronics encoder is most often used to
determine the position of the shaft. The encoder uses digital signals, which makes it highly
resistant to signal interference, but it does not allow for such high accuracy as in the case of
analog measurement. However, this does not mean that such a transducer is not exposed
to other types of failures, which result mainly from its construction. In research works on
speed sensor damage, the sensor type is usually not specified and faults that may apply
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to both analog and digital signals are considered [17,18]. Article [17] shows the detection
of a constant gain error, without explaining the cause of the failure and the type of sensor
considered. The same type of failure is described in the article [18]. In this work, the authors
developed an encoder model to simulate a failure in a way that is as close as possible to
the failure of a real element, which significantly distinguishes their work from others in
the literature. In addition, the value of the measured speed is much closer to the real value
than in the case of simulations that do not use the speed sensor model.

The detection of speed sensor damages is mainly described by using a comparative
analysis of the measured and estimated value of the speed [17–23]. Various types of
estimators are used for this purpose. However, it is difficult to find works that describe
the detection of speed sensor faults in a wide range of drive operating conditions and
with various types of simulated damages. Paper [17] presents the detection of two types
of speed sensor faults: measurement noise and offset. The detection system is based on
the sliding mode observer. Only simulation results are shown here and failure detection
performance is presented without detailed statistical data. Another example of this type
of solution is presented in [18]. Also, in this case, the effectiveness of the fault detector is
supported only by simulation results. The observer used in that work is the unknown input
observer (UIO). Only gain error failure is investigated. However, it is not specified what
kind of speed sensor the authors are considering in the paper. A slightly different approach
is presented in [19], which describes a detection strategy based on the computation of the
energy of the average standard deviation of speed data. The authors described the detection
of tachometric faults (offset fault, uncertain measurement fault, zero feedback fault). Much
more interesting results are reported in the work [20]. Experimental results are presented
and four types of failures are considered. In addition, each of them is described. The higher-
order sliding mode observer (HOSMO) was used as the speed estimator. Simulation studies
of speed sensor damage detection using the model reference adaptive system observer
and fuzzy logic controller are described in [22]. The use of the Luenberger observer (LO)
is described in the paper [23]. The advantage of that work is that it determines the type
of speed sensor (encoder) under consideration and explains the basis of the possibility
of failure. The loss of information by the encoder as a result of diode damage caused by
improper power supply to the encoder is considered. However, the paper presents only
simulation results.

Detection using the object model requires prior knowledge of the motor parameters
and does not provide damage classification. Determining the type of fault may be ex-
tremely useful, in particular when an incorrect measurement results from the improper
parameterization of the measured signal. For this reason, it is necessary to use artificial
intelligence methods.

In the literature, works can be found wherein the use of artificial intelligence methods
in detecting damage to the stator [6,24,25], rotor [26,27], and bearings [28,29] are described.
Article [6] presents stator winding fault detection and classification based on a bispec-
trum analysis and CNN. Another solution to this problem based on raw signals and a
CNN is presented in the paper [25]. Another approach to preliminary data processing is
described in [28], which addresses bearing diagnostics. Filtering, decimation, and normal-
ization were used. 1D-CNN was used for classification. AI methods allow for achieving
very high efficiency in diagnosing damage in the motor itself. However, there is little
research on measuring sensors’ fault detection using advanced methods. In the case of
damage to the current sensor, several solutions using shallow neural networks have been
presented [30–32] with the use of the multilayer perceptron (MLP). The papers [30,31]
present only simulation results, while in the paper [32] the results are also supported by
experiments. The detection of speed sensor damage, also using the MLP, is described in
the works [33,34]. These works present simulation and experimental results. These results
are satisfactory; however, it is worth working on the use of currently more popular deep
learning methods to improve the efficiency of speed sensor fault classification.



Electronics 2023, 12, 4184 3 of 22

The basis of this article is the development of the encoder model in the Matlab/Simulink
environment. This made it possible to simulate fault in a manner not previously presented
in the literature. This approach made it possible to simulate the loss of pulse failure in
individual encoder channels A and B. In general, three types of faults are considered in
this paper: loss of pulses, software scaling error of the signal, and total loss of the signal.
The fault monitoring system is based on a detector and classifier. The MRAS estimator
was used for initial damage detection. After detecting a fault, the system is switched to
sensorless mode. Deep neural networks (DNNs) were used as damage classifiers. The
results are presented for two types of networks, namely a simpler version without the
use of convolutional layers and a more complex classifier with five convolutional layers,
wherein the innovative nature of this work also lies. There are no works in the literature
that present the classification of damage in measurement sensors using DNNs. This work
presents detailed statistical analyses of the obtained results and input vectors. Usually,
statistical analysis is not presented in works on similar topics. As in the previous work, the
authors present the use of shallow neural networks in the classification of speed sensor
failures [33]; this work also shows a percentage comparison of both methods.

This work is organized as follows. The first chapter describes the review of the
literature and the innovativeness of this approach. The second part presents the developed
model of the optoelectronics encoder in simulation studies. The failure simulation method
using the encoder model directly is also presented in the second section. The third chapter
is a description of the developed fault classifier based on DNNs. Selected structures, input
and output vectors, and training methods are described. The following chapters contain the
classification of faults based on DNNs, successively in simulation and in experimental tests.
Statistical data and examples of the application’s operation during offline classification are
presented. The last part is a summary of the obtained results.

2. Optoelectronic Encoder Model
2.1. Modeling of the Optoelectronic Encoder in Simulink

This chapter presents the optoelectronics encoder model used in simulation studies.
The model was developed on the basis of the works [35,36]. The main components of
the incremental encoder are the rotating code disc and the optical system, containing
transmitters–LEDs and receivers–phototransistors (Figure 1) [37,38]. The increments ap-
plied to the code disc are laser-cut spaces in the metal disc through which the light of
the transmitter passes. The number of marked increments defines the encoder resolution
parameter. The model presented in this research is based on a resolution of 3600 impulses
per rotation. This value was chosen because it is a commonly used value.
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The position of the motor shaft is calculated based on the two basic encoder channels
A and B, which are shifted in phase by 90 degrees. The simultaneous use of channels
A and B enables the identification of the rotation direction of the shaft. The controller
detects which signal is reported first. For this purpose, appropriate logical determinants
are used. If channel A is reported first, then the encoder rotates clockwise; if channel B
is the first, it means that the direction of rotation has been changed to counterclockwise.
All possible logical notations used to determine the direction of the shaft are presented in
Table 1. An additional signal (Z) is generated after each full rotation. The third channel is
called a synchronization signal. The signals logic from the optoelectronic system is defined
as follows:

A(θ) =

{
1, 0 < θmod(θp) ≤

θp
2

0, θp
2 < θmod(θp) ≤ θp

, (1)

B(θ) =

{
1, 0 < (θ − θp

4 )mod(θp) ≤
θp
2

0, θp
2 < (θ − θp

4 )mod(θp) ≤ θp
, (2)

Z(θ) =
{

1, θmod(2π) = 0
0, θmod(2π) 6= 0

, (3)

where θ—angular position, θp—angular step of encoder.

Table 1. Counterclockwise (CCW) and clockwise (CW) logic, where 0→1—raising edge, 1→0—falling
edge.

From CCW to CW Logic From CW to CCW Logic

A B A B

0 0→1 0→1 0

0→1 1 0 1→0

1→0 0 1 0→1

1 1→0 1→0 1

The developed encoder model can be divided into four main parts (Figure 2):

– A, B, Z signal generation block (1–3);
– Position determination block (4);
– Speed determination block (5);
– Direction identification block based on logic presented in Table 1.
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The A, B, Z signal generation block is based on the shaft position determined from
the PMSM model in Simulink and Equations (1)–(3). Next, the direction of rotation is
determined. Here, the logic shown in Table 1 and the Set-Reset block were used.

Logical notations presented in Table 1 enable the generation of pulses defining a
specific direction of rotation, which in the next step are counted with the use of a Simulink
counter and summed up accordingly. The impulse from the Z channel after a full revolution
is responsible for resetting the counter. This makes it possible to determine the shaft position
based on the following equation:

θenc = θp(
CCW

∑
i

Ni −
CW

∑
j

Nj) = θpN (4)

where

θp = 2π
3600 —encoder graduation based on encoder resolution 3600;

N—number of counted impulses.

Calculation of the speed with the use of an encoder consists in counting the appearing
impulses in any channel in a specific time interval—Ts. In this research, it was decided to
calculate the number of pulses on channel A. Determining the speed based on the generated
pulses must be conducted with a higher sampling period (1 × 10−2) than the entirety of
the simulations (1 × 10−6). Otherwise, pulse counting would not be possible. At most,
one pulse could occur in one sample. In the speed determination block, encoder speed is
calculated based on the following equation:

ωenc
m =

θp∆N
Ts

(5)

where

θp = 2π
3600 —encoder graduation based on encoder resolution 3600;

∆N—number of counted impulses in a defined period;
Ts = 10−2—encoder sampling period.

Example waveforms of signals from channels A, B, and Z are shown to confirm their
correct generation on the basis of the shaft position in Simulink (Figure 3). Signals A and
B are 90 degrees out of phase. The waveforms obtained from the direction determination
block are also shown below (1—clockwise, 0—counterclockwise).

The waveforms comparing the speed and position of the motor determined from the
PMSM model in Simulink and using the encoder model are shown in Figure 4. The results
are presented for both directions of rotation. The speed curves are shown after applying
a filter 1

1+0.005s to minimize the quantization effect. The lowest velocity determination
accuracy appears for the lowest speeds. In the case of position calculation, the quantization
effect is hardly noticeable at the selected resolution of 3600.
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2.2. Fault Simulation with the Use of a Developed Encoder Model

The encoder uses digital signals and is resistant to measurement noise. The worst
damage that can appear in this type of transducer is the complete loss of the measurement
signal, which can lead to a catastrophe. Such a loss may result from a damaged cable or
electronic components. Another factor responsible for incorrect speed measurement may
be a scaling error in the control structure. The last considered failure in operation is the
loss of pulses. The development of the encoder model made it possible to simulate the loss
of individual pulses in channels A and B—resulting from the blocked holes of the encoder
disc. Depending on the kind of fault, it may be a signal loss only in channel A or B, or
in both. A loss in one channel leads to a situation wherein only pulses in one direction
are counted, which can lead to a speed calculation with the opposite sign. Such a case is
shown in Figure 5. In the case of loss of pulses from both channels, the damage remains in
a course of measurement noise. The impact of individual-considered faults on the speed
and position transients is shown in Figure 5.
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3. Speed Sensor Fault Detection and Classification Mechanism
3.1. Fault Detection Mechanism Based on Model Reference Adaptive System

In the presented solution, a comparative detector based on the model reference adap-
tive system (MRAS) estimator is responsible for early failure detection and switching the
system to sensorless mode. The detailed analysis of this type of detector was described in
the authors’ earlier paper [33]. This work is mainly focused on damage classification. The
MRAS estimator structure is divided into three basic elements: reference model (PMSM),
adjustable model, and adaptive law. The operation of the MRAS adjustable model is based
on the following equation:

d
dt

[
îd
îq

]
=

[
−Rs

L ω̂e
ω̂e

−Rs
L

][
îd
îq

]
+

1
L

[
U

d
+

RSψ f
L

Uq

]
(6)

where

id, iq, îd, îq—measured and estimated currents in d-q coordinates;
ψ f —magnetic flux;
L—stator inductance;
Rs—stator resistance;
Ud, Uq—voltages in d-q coordinates;
ωe, ω̂e—measured and estimated electrical speed.

In MRAS, speed is determined using the adaptive law. In this research, the adaptation
law defined by the following equation was selected:

ω̂ = (Kp +
Ki
s
)(id îq − iq îd −

ψ f

L
(iq − îq)) (7)

A general diagram of the MRAS speed estimator is presented in Figure 6.
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Early damage detection is based on comparing the measured and estimated values of
speed and current in the q-axis. In the fault detection system, the threshold for switching
to sensorless mode is set to 0.013 for a speed error, and for a current error it is set to 0.005.
The choice of these values is a compromise between fast detection and limiting false alarms
about damage.

3.2. DNN Structures Used in Research

Machine condition monitoring based on deep neural networks is characterized by
great possibilities in terms of selecting the network structure, the number and type of layers,
and the parameters of the learning process. For this reason, in this study, it was decided
to analyze two structures—one with convolutional layers and another simplified without
these layers. Due to the complex structure of the DNN, they enable the detection of object
features that would not be possible with the use of shallow neural networks, like multilayer
perceptron.

In the DNN structure, we can divide the applied layers into feature detectors and
classifiers. In this work, only the layers used in the research will be characterized [39].
There are no specific rules in the literature regarding the selection of neural structures. In
this article, empirical tests were the basis for selecting the types and parameters of network
layers. Apart from that, it was based on structures described in articles on monitoring other
types of damage. In the case of the first type of classifier, the number of fully connected
layers and their size had the greatest impact on the effectiveness. However, for the type II
classifier, the number of convolution layers, the size of the filters, and their number had a
significant impact on the effectiveness. With a smaller number of convolutional layers, the
classification efficiency decreased, while increasing their number led to over-fitting to the
training data and reduced the generalization properties of the neural network.

In the type I classifier, convolutional layers are not included. The overall structure is
similar to the multilayer perceptron but it is more complex. The network structure consists
of the following layers:

• Fully connected layers—layers responsible for multiplying the input signals by appro-
priate weights and adding biases—operation similar to multilayer perceptron’s;

• Batch normalization layers—responsible for the standardization of the input vector to
each mini-batch. The main purpose of using a layer is to stabilize the training process;

• ReLU layers—non-linear activation function defined as

f(x) =
{

x, x > 0
0, x < 0

; (8)

• Softmax layer—is responsible for transforming the output vector so that the sum
of the individual elements is 1. Softmax converts output values to a probability by
first taking it to an exponential and then dividing by the summed exponential all the
elements in the original output vector. The operation on a particular element is as
follows:

ezi

K
∑

j=1
ezj

(9)

where

zi—individual vector element;
K—number of output vector elements.

• Classification layer—the cross-entropy loss for classification is computed in this layer
for elements determined in the classification layer, which occurs before.

In the case of the type II classifier, convolutional and maxpooling layers were addi-
tionally used. Five convolutional layers were used with 5 × 5 filters in the amount of 30
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(first layer), 60 (second and third layers), and 90 (fourth and fifth layers) for the respective
layers. The structure of the type II classifier contains the following layers:

• Convolutional layers—layers containing filters whose parameters are selected during
the learning process. Before the training process, the size of the filters is defined;

• Batch normalization layers;
• ReLu layers;
• Maxpooling layers—operation consisting of selecting the largest element from the

feature map, covered by filters;
• Fully connected layer;
• Softmax layer;
• Classification layer.

3.3. Inputs and Outputs of DNN Classifiers

The signals used as DNN inputs are the essence of proper fault classification. The input
vector is based on the measured and estimated values of speed and current in the q-axis.
The next input signals are the differences between the measured and estimated quantities
using MRAS. Currents in the q-axis and their previous values are also used. The current
values in the q-axis were chosen because previous research showed the high effectiveness
of simple failure detectors, based on state variable observers, using this signal [33]. The full
input vector for experimental (10) and simulation studies (11) is shown below:

[ωre f (k), ωmeas(k), ωerr(k), ωerr(k− 1), ωerr(k− 3),
ωerr(k− 5), ωerr(k− 7), isqmeas(k), isqerr (k), isqerr (k− 1),
isqerr (k− 3), isqerr (k− 5) isqerr (k− 7)]

(10)

[ωre f (k), ωenc(k), ωerr(k), ωerr(k− 300), ωerr(k− 1000),
ωerr(k− 1500), ωerr(k− 2000), isqenc(k), isqerr (k), isqerr (k− 300),
isqerr (k− 1000), isqerr (k− 1500) isqerr (k− 2000)]

(11)

In the case of the type I classifier, the network input is given without any transforma-
tions. The type II classifier requires transformation using the reshape Matlab function of
individual inputs to the form [13 1 1]. This is due to the fact that the convolutional process
should, by definition, be performed on matrices, not vectors.

The input vector used in simulation studies and experiments differs slightly in terms of
the number of previous samples used. This is due to the fact that a different sampling time
(1 × 10−6) was used in the simulation studies than in the experimental studies (1 × 10−4).
Table 2 shows all classifier inputs with appropriate descriptions.

Table 2. Description of individual DNN classifier inputs.

Input Experimental Studies Simulation Studies Description

ωre f (k) ωre f (k) ωre f (k) Reference speed value.

ωmeas(k) ωmeas(k) ωmeas(k)
Measured speed value in

actual sample.

ωerr(k− i) =
∣∣ωmeas(k− i)−ωestMRAS (k− i)

∣∣ i = 1, 3, 5, 7 i = 300, 1000, 1500, 2000
The error between measured and

estimated speed values in
previous samples.

isqmeas (k) isqmeas (k) isqmeas (k)
Measured and estimated q-axis
current value in actual sample.

isqerr (k− i) =
∣∣∣isqmeas (k− i)− isqMRAS

(k− i)
∣∣∣ i = 1, 3, 5, 7 i = 300, 1000, 1500, 2000

The error between measured and
estimated q-axis current value in

previous samples.

where ωmeas—measured speed, ωestMRAS —MRAS estimated speed value, isqmeas —measured q-axis current value,
isqMRAS

—MRAS estimated q-axis current value.
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The output of both types of classifiers is information about the type of damage to
the speed sensor. The classifier output is identical for both simulation and experimental
research:

0—no fault;
1—loss of pulses;
2—scaling error;
3—loss of measurement signal.
The complete structures with the input and output of both classifiers are shown

in Figure 7.
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3.4. Training Process of DNN Classifiers

SGDM (stochastic gradient descent with momentum) was chosen as the training
method for both types of classifiers. When choosing this learning method, it is necessary to
specify the Initial Learning Rate, which was selected as 0.01. The choice of Initial Learning
Rate value was made empirically. Decreasing or increasing the value worsened the fit
of the network to the training data. The mini-batch size was left as the default value of
128. The momentum default value of 0.9 was also left. Training Accuracy and Training Loss
waveforms in the initial part of learning for simulation and experimental studies are shown
in Figures 8 and 9. In both cases, a faster fit to the network training data is obtained for the
type II classifier. A fit close to 100% is already obtained at about the 1500th epoch. The full
learning process consisted of 62,500 iterations and lasted nearly 30 min. The time of the
training process is mainly due to the number of samples in the training vector.
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4. Simulation Results

This section describes the obtained statistical results and exemplary waveforms from
simulation tests for offline damage classification. Simulation tests were carried out in the
Matlab/Simulink (R2021b) environment. In this research, the Euler method with a fixed
step size equal to 1 × 10−6 s was used. In order to calculate the speed using the encoder
model, 1 × 10−2 s was set. The model of the control structure was prepared in the Sim
Power System Toolbox and the neural network was designed using the Deep Learning
Toolbox. The preparation of the training and testing vector was carried out in the Simulink
environment, while the network training and testing process was developed in Matlab.
The motor parameters used in the simulation tests are identical to the motor parameters
from the experimental tests (Table 3).

Table 3. Parameters of the tested motor.

PN (kW) Pp (-) nN (rpm) TN (Nm) IN (A) J (kg·m2) RS (Ω)

0.894 4 6200 1.4 1.9 0.000039 4.6615

The input vector for the training process was based on three speed values in both
directions, while the tests were carried out using courses with two constant speeds. The
exact parameters of the training and testing vectors are presented in Table 4. To determine
the statistical significance of the input data, the average p-value was determined for all
observations, which is 0.0378 in the case of the training vector and 0.0358 in the case of
the test vector. Assuming a significance threshold of 0.05, the obtained data are significant
and the null hypothesis is rejected. The next statistical test was the determination of the
correlation between individual elements of the input vector and the output vector. The
results are presented in Figure 10. Based on these results, it can be concluded that the most
important values in the classification of damages are the values from previous samples of
both speed and current errors. Moreover, each input shows a significant association with
the output vector.

Table 4. Training and testing data parameters in simulation studies.

Feature Training Data Testing Data

Number of samples 16,000,002 10,400,002

Speed values ±0.2ωref, ±0.5ωref, ±0.9ωref ±0.3ωref, ±0.7ωref

Confusion matrices were used to illustrate the effectiveness of individual classifiers
(Figure 11). The results show that the more complex type II classifier allows for slightly
higher efficiency. This is particularly visible in the classification of the scaling error and
the loss of pulses from the encoder. A significantly higher level of fit to the training data
can be seen in the case of the type II classifier. This was previously also depicted by the
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Training Accuracy transient (Figure 8). However, for the data selected for testing, there is
no negative effect of overfitting when the testing data show a wide range of speed in both
directions. Scaling error and loss of pulses from the encoder are the most complex faults to
classify. Particularly in the case of loss of pulses from the encoder, the effect on the control
structure is not always visible. This results in classification errors. Errors also appear in
distinguishing these failures from each other. Here, samples from previous values are
particularly important in the classification. Extending the training vector with additional
values from previous samples leads to an increase in the efficiency of classification, at the
cost of increasing the complexity of the classifier and extending the learning process.
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Another element presenting statistical data is a comparison of the percentage results
of the classifier effectiveness depending on the motor speed for the testing vector. Data are
obtained for static operations only during failures, ignoring non-failure states (Figure 12).
The basic conclusion that follows from the figure presented is the increase in the effective-
ness of the classifier with the increase in speed. Additionally, higher efficiency is obtained
for negative speed values for both types of classifiers.
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Figure 12. Percentage results of classifier effectiveness depending on speed in simulation studies for
both types of classifier.

In the further part of this section, examples of classification of all types of damage are
presented. The presented samples make it possible to draw certain conclusions as to the
operation of the classifier, but they are not as meaningful as the statistical data presented
using the confusion matrices. Moreover, these are waveforms without modification of
the output of the neural network, e.g., by rounding the values from several samples,
which will only be performed in future online classification research. First, the operation
of the classifier during the loss of the encoder pulses was analyzed (Figure 13). The
waveform of the detector trigger signal based on the difference between the measured and
estimated speed was also presented. This is the signal responsible for switching the system
permanently into sensorless mode. A loss of signal in channel A or B affects more samples
than the duration of the loss itself, which both of the classifiers capture accordingly. It
is also visible here that errors in distinguishing scaling failure from loss of pulses occur
mainly at low speeds. In addition, it can be observed that, in the case of the type I classifier,
single pulse losses are more often not detected.

Further on, the transients of the two other types of failures are presented: signal loss
and scaling error (Figure 14). The simplest type of damage to classify, i.e., signal loss, is
detected almost flawlessly. In waveforms with this fault, there are false fault alarms (single
samples), resulting from the dynamic states of the PMSM. In the case of scaling error, there
is a clear advantage in the operation of the type II classifier. In the case of the type II
classifier, there are few errors during the whole presented transient. Switching on a fault in
a dynamic state does not significantly affect correct classification.
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5. Experimental Results

Experimental tests were carried out on a 0.894 kW PMSM motor from Moog (G403-
2007A). Other motor parameters are presented in Table 3 in the simulation studies chapter.
The dSpace DS1103 rapid prototyping system with Control Desk (version 6.4) and Mat-
lab/Simulink (R2021b) software were used in the tests. Real-Time Simulink Toolbox was
used to conduct experimental research. The position of the shaft was measured with an
incremental encoder (36,000 imp./rev), and the current measurement was carried out using
LEM-type current transducers. Another Moog PMSM motor (G404-2009A—0.89 kW, with
nominal load 1.09 Nm and nominal speed value 7800 rpm) controlled by a Multi-Axis
Servo Drive System was used as the load. Moog Drive Administrator 5 (5.4.52) software
was used to control the test motor load. The load of the appropriate value was switched
on using the torque control method. A photo of the test stand is shown in Figure 15. The
parameters of the data used in the training and testing of the classifiers are presented in
Table 5. Experimental studies were carried out for the same type of damage, but the loss
of the pulses was simulated by adding measurement noise to the speed course, which is
consistent with the A and B channels’ signal loss simultaneously.
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Figure 15. Photos of test stand elements.

Table 5. Parameters of training and testing vectors in experimental studies.

Feature Training Data Testing Data

Number of samples 1,260,162 840,096

Speed values ±0.1ωref, ±0.2ωref, ±0.35ωref
±0.08ωref, ±0.25ωref,

±0.4ωref

Load Values 0.1TN, 0.2TN 0.15TN

In the case of experimental studies, the average p-value was also determined, which
was 0.0093 for the training vector and 0.014 for the test vector. In this case, the obtained
data are significant and the null hypothesis is rejected (p-value < 0.05). The correlation
values of individual elements of the training input vector and the output vector are shown
in Figure 16. The inputs from previous samples, in particular the speed error, have the
greatest impact on the output value. These values also indicate that the expansion of the
input vector should be based on subsequent values of the speed error in the previous
samples. The influence of the values from previous samples in the case of current errors is
not as significant as in the simulation studies.
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Figure 16. Correlation values between output vector and individual input vector elements of training
data in experimental studies.
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In this case, also, statistical data were presented first using confusion matrices. In
the event of experimental research, the advantage of the type II classifier is particularly
visible (Figure 17). Encoder pulse loss is detected correctly for test data with a more than
10% higher efficiency. Only the scaling error is detected by the type I classifier without
the convolutional layer with greater accuracy (5% higher effectiveness) for test data. This
damage, however, does not cause significant symptoms at low speeds and is mistaken for
a non-damaged operation. This error could be improved by extending the input vector
with additional values of constant speed. In the case of experimental studies, the influence
of speed on the effectiveness of damage classification was also analyzed (Figure 18). The
results are presented for static motor states for samples with simulated damages. In this
case, the basic conclusion is also the increase in effectiveness with increasing speed.
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Figure 19 shows the waveforms for the total signal loss during the speed in both
directions. Classification proceeds with high efficiency. A slightly better fit to the expected
value can be observed for the type II classifier. Single errors appear only in dynamic states.
Additionally, the activation of a fault in a transient state does not result in its incorrect
classification.
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Figure 18. Percentage results of classifier effectiveness depending on speed in experimental studies
for both types of classifier.
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Figure 19. Transients speed, MRAS detector, and fault classifiers during the loss of signal fault for
negative (a) and positive (b) speed direction.
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Subsequent results are shown for scaling error (error from the start of the measurement—
simulation of erroneous indication resulting from the incorrect parameterization of the
measurement by the user) and decay of pulses. Based on Figure 20, it can be seen that the
scaling error is detected only from about a 0.1 ωref value in experimental studies, which
is an effect similar to the one found in the simulation results (classification scaling error
from about 0.15ωref). The results obtained from the encoder pulses loss classification are
also close to the simulation results. This damage is mistaken for a scaling error in several
samples, and the output of the classifier is not constant.
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The last element of this section is the presentation of the obtained percentage results
of classification based on DNN and shallow neural networks presented in the work [33]
(Figure 21). These results confirm that it is worth using more complex neural structures, as
they increase the efficiency of classification. The type II classifier is characterized by the
highest efficiency. Deep neural networks using a simple MRAS estimator allow for a higher
effectiveness than using shallow neural networks with a complex SMO estimator.
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6. Conclusions

This article presents the possibilities of using deep neural networks in the optoelec-
tronics encoder fault detection and classification system. This article presents solutions
with two types of deep neural networks as classifiers and an MRAS speed estimator as fault
detector. An important aspect of this work is also the incremental encoder model used to
simulate the loss of pulses and information by the sensor. This article presents simulation
and experimental results during offline classification. On the basis of the obtained results,
the following conclusions can be formulated:

– The simulation of pulse loss using the encoder model confirms that such damage
partially causes an effect similar to measurement noise;

– The use of deep neural networks improves the efficiency of damage classification in
relation to shallow neural networks—both for training and testing data, for each of
the analyzed damage types, the MLP is less effective than any of the DNN classifiers;

– The use of deep neural networks with convolutional layers makes it possible to obtain
higher efficiency in classifying optoelectronics encoder faults—a lower result than
the classifier without convolutional layers was obtained only for the scaling error
classification in experimental studies (lower by 5%);

– Despite the high fit to the training data (nearly 100% Training Accuracy), the classifiers
show flexibility in operation on unknown samples;

– Scaling error is the fault most difficult to detect at low speeds, while pulse loss is more
difficult to recognize during the entire duration. In addition, as the resolution of the
encoder increases, it is less noticeable.

The presented solution also has its limitations. The main one is the sensitivity of the
MRAS estimator to motor parameters. For this reason, the authors plan to develop an
estimator based on deep neural networks in further research. After appropriate normaliza-
tion of the input vector, this could increase the universality of the solution. An additional
extension may be the development of the damage model. In particular, for the damage due
to incorrect scaling and pulse losses.

The process of selecting the layers of the neural structure in the case of using deep
neural networks is a complex task and is not subject to more precisely defined rules.
Therefore, in further work, the authors plan to conduct research on online speed sensor
damage classification and analyze the operation of an extended number of neural structures.
Such studies may also be performed using a different type of observer, for example SMO,
which made it possible to obtain higher efficiency in previous studies with shallow neural
networks.
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