
Citation: Li, X.; Lv, X.; Sun, L.; Zhang,

J.; Lan, R. RepRCNN: A Structural

Reparameterisation Convolutional

Neural Network Object Detection

Algorithm Based on Branch

Matching. Electronics 2023, 12, 4180.

https://doi.org/10.3390/

electronics12194180

Academic Editors: Nikolay Hinov,

Ognyan Nakov and Milena

Lazarova

Received: 6 September 2023

Revised: 6 October 2023

Accepted: 7 October 2023

Published: 9 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

RepRCNN: A Structural Reparameterisation Convolutional
Neural Network Object Detection Algorithm Based on
Branch Matching
Xudong Li , Xinyao Lv, Linghui Sun, Jingzhi Zhang and Ruoming Lan *

School of Physics and Electronics, Shandong Normal University, Jinan 250358, China;
2021020627@stu.sdnu.edu.cn (X.L.); 2020020592@stu.sdnu.edu.cn (X.L.); 2021020630@stu.sdnu.edu.cn (L.S.);
2022020640@stu.sdnu.edu.cn (J.Z.)
* Correspondence: lanrm@sdnu.edu.cn

Abstract: A CNN object detection method based on the structural reparameterisation technique
using branch matching is proposed to address the problem of balancing accuracy and speed in
object detection techniques. By the structural reparameterisation of the convolutional layer in the
object detection network, the amount of computation and the number of parameters in the network
inference are reduced, the memory overhead is lowered, and the use of the branch-matching method
to improve the structural reparameterisation model improves the computational efficiency and speed
of the network while maintaining the detection accuracy. Optimisation is also carried out in terms of
target screening and loss function, and a new CPC NMS screening strategy was introduced to further
improve the performance of the model. The experimental results show that the proposed method
achieves competitive results on the PASCAL VOC2012 and MS COCO2017 datasets compared to the
traditional object detection methods and the current mainstream models, achieving a better balance
between the detection accuracy and detection speed.

Keywords: object detection; structural reparameterisation; branch matching; CPC NMS strategy

1. Introduction

Object detection is an important branch in the field of computer vision, and its main
task is to identify the location and category of the target from the image. In recent years,
with the rapid development of deep learning technology in the field of computer vision,
the field of object detection has also made great progress, and deep learning-based object
detection algorithms have become the mainstream method. Object detection can currently
be divided into one-stage detection and two-stage detection methods. One-stage detection
models such as YOLO [1] and SSD [2] have a fast detection speed but slightly lower
accuracy, and the models in the YOLO series [1,3,4] have achieved the recognition of
researchers; two-stage detection methods such as the faster R-CNN [5] model have a clear
advantage in terms of their accuracy in object detection, but it is to their disadvantage that
the detection speed is slower and less efficient. In addition, cascade detector models such as
Cascade R-CNN [6] are gradually gaining attention. In addition to the improvements in the
algorithm itself, many new research directions have emerged in the field of object detection.
For example, to solve the problems of small object detection and multi-scale detection,
methods such as MS-CNN [7] and FPN [8] are proposed; for the problem of long-tailed
data distribution, methods such as focal-loss [9] are proposed; and to improve the detection
accuracy and anti-jamming ability, attention mechanisms, including the spatial attention
mechanism and channel attention mechanism, are proposed [10]. At the same time, the
application of deep learning in the field of object detection also faces some challenges, such
as how to balance detection accuracy and speed, algorithm interpretability, computational
resource limitations, and other issues.

Electronics 2023, 12, 4180. https://doi.org/10.3390/electronics12194180 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12194180
https://doi.org/10.3390/electronics12194180
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0005-5183-0658
https://doi.org/10.3390/electronics12194180
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12194180?type=check_update&version=1


Electronics 2023, 12, 4180 2 of 22

With the increasing application of deep learning in the field of object detection, re-
searchers continue to propose a variety of new models, which usually have deeper and
wider network structures, and the number of parameters in the network model has dramat-
ically increased. Too many model parameters lead to models consuming a large amount
of computational time and storage space, especially when training on large-scale datasets,
which makes the time cost is huge. Currently, the use of Transformer for detection is also a
hot topic of research, as is the DETR family that emerged with it [11]; although this brings
an additional computational cost, we are concerned that the DETR family of models [11,12]
has a good performance on the detection task. Models that utilise image noise to tune up
the detection performance have also emerged [13]. To solve the problem of the excessive
number of parameters, researchers proposed various structure compression techniques
such as pruning, quantisation, and distillation in recent years.

Pruning methods [14] reduce the number of network model parameters by removing
redundant network structures but require a complex pruning strategy design as well as
network reconfiguration, which remains a challenge in terms of the training time and
computational resource consumption. Quantisation methods [15] reduce the overhead of
network models in terms of storage and computation by reducing the number of bits in
floating point numbers but require a trade-off between accuracy and speed, where the cost
of loss of accuracy is exchanged for an increase in speed. Distillation methods [16], on
the other hand, reduce computational and storage overheads by transferring knowledge
from large networks to smaller ones. Although a lot of progress has been made in object
detection research, too many network model parameters and excessively long training
times are still some of the difficulties in the current research to achieve a good balance
between accuracy and speed.

To address the shortcomings of object detection algorithms in the detection task, this
paper proposes a structural reparameterisation-based object detection algorithm RepRCNN
using branch matching from a structural reparameterisation perspective and achieves
competitive results on two datasets, namely PASCAL VOC2012 and MS COCO2017. The
main research work of RepRCNN is summarised into three points:

(1) Network architecture reparameterisation design. Through mathematical derivation
in the structural reparameterisation stage, we merge the three branching structures of
3 × 3 branching, 1 × 1 branching, and residual branching into a single convolutional
branching structure, which reduces the number of parametric quantities of the model and
improves the detection speed at the same time. By using the structural reparameterisation
technique, the computational overhead and storage consumption can be reduced and
lowered, and a better balance of model speed and accuracy can be achieved, which is of
great value for the research and application of visual object detection.

(2) Unique branch-matching strategy. In the process of merging the 3 × 3 branch,
1 × 1 branch, and residual branch into a single branch structure, we design different gating
units to control the importance of the three branches, using global gating to adapt to the
3 × 3 branch and residual branch, and using local gating to adapt to the 1 × 1 branch.
The simple add-and-merge method is cancelled, and the feature merging is performed
by making full use of the image feature information extracted from the three branches,
which improves the detection performance on two datasets, PASCAL VOC2012 and MS
COCO2017.

(3) CPC NMS strategy. We adopted a new CPC NMS strategy on the heavily param-
eterised model, which can effectively reduce redundant detection results and improve
the accuracy of object detection. The speed performance of the model is improved by
eliminating the time-consuming and complex processing.

2. Related Work
2.1. Structural Re-Parameterisation Method

In recent years, structural reparameterisation has become an effective means for
convolutional neural network compression and acceleration, and its main idea is to reduce



Electronics 2023, 12, 4180 3 of 22

the number of model parameters and computation by adjusting the network structure
and through a reasonable pruning strategy, to achieve the model’s high efficiency, and it
has been widely used in a variety of visual tasks, including image classification, object
detection, and semantic segmentation.

The earliest structural reparameterisation approach to object detection was YOLOv2 [17],
which used a convolutional neural network called “Darknet-19” as the backbone of the
detector. In Darknet, 3 × 3 convolutional kernels are replaced with 1 × 1 convolutional
kernels, which reduces the number of model parameters. This approach greatly reduces
the number of model parameters while maintaining the detection accuracy of the model.
However, the reparameterisation algorithm of the YOLOv2 model only considered the
shapes of the convolutional kernels without considering their positional relationships,
which resulted in some adjacent convolutional kernels being incorrectly merged, reducing
the detection accuracy of the model.

The RepLKNet [18] algorithm uses an oversized convolutional kernel, and with the ad-
dition of structural reparameterisation, depth-wise convolution, and other design elements,
the oversized convolution is strong and fast, surpassing the Swin Transformer [19] in tasks
such as object detection and semantic segmentation, and far surpassing the traditional small
convolutional model. The RepLKNet algorithm is proposed for industrial applications
with low FLOPs and fast real-world operation. RepMLP [20] cleverly bridges the heavy
parameter convolution with the fully connected layer, while exploiting the global mod-
elling and location-aware properties of the fully connected layer with the local structure
extraction capability of the convolution.

DBB and OREPA [21,22] are deep neural network optimisation methods based on
structural reparameterisation that have emerged in the last two years. The main goal of
the DBB method is to improve the computational efficiency and model accuracy of deep
neural networks. The core part of the DBB algorithm is the residual block-based design of
the dense block, as well as the structural reparameterisation of the dense block. This design
allows the information of the feature map to be more fully conveyed and utilised, thus
improving the performance of the network. The main goal of OREPA [22] is to improve
the performance of object detection. OREPA achieves the goal of reducing the amount of
computation during inference by dynamically adjusting the weights of the convolutional
layers. The OREPA method dramatically reduces the network parameters and computation
while maintaining a relatively high level of accuracy. It can be widely used in resource-
constrained scenarios such as mobile devices. The method combines the ideas of structural
reparameterisation and relational parsing to improve the accuracy and robustness of object
detection by learning the interrelationships between many different objects.

For the network to have a better quantisation performance, both the distribution of
weights and the arbitrary distribution of processed data should be “quantisation-friendly”.
Both are essential to ensure a better quantisation performance. More importantly, these
principles have led to the design of a novel architecture, called QARepVGG [23], which does
not suffer from severe quantisation crashes and whose quantisation performance has been
significantly improved. The structural reparameterisation technique was also applied in
the recently released YOLOv7 [1] model, which drastically improves the network detection
performance by merging multiple branches into a single-branch structure, outperforming
all previous models in terms of FPS.

A comprehensive analysis of the literature shows that structural reparameterisation
methods are all used to improve the computational efficiency and model accuracy of deep
neural networks, and have been widely used in several visual tasks.

2.2. NMS Design Methodology

Non-maximal suppression (NMS) is a commonly used technique in the field of target
detection for selecting the best detection results among overlapping candidate frames. The
goal of NMS methods is to improve detection accuracy and efficiency by filtering and
merging candidate frames to reduce redundant detection results. Traditional NMS methods



Electronics 2023, 12, 4180 4 of 22

usually perform candidate frame rejection based on the intersection and merger ratio of
overlapping regions, which is simple, intuitive, and easy to implement, but in some cases,
may reject some candidate frames that overlap with the target but with lower confidence,
resulting in the omission of some real targets. To solve this problem, a series of improved
NMS methods were proposed.

Soft-NMS is a common improvement method [24] which retains some low-confidence
but somewhat overlapping frames by reducing the confidence of overlapping frames, and
it introduces a decay function that reduces the scores of candidate frames according to the
degree of overlap. This method can improve the recall of the object, but it may not be able to
effectively reject the overlapping candidate boxes in some cases. Weighted NMS is another
improved method [25], which introduces the weights of the candidate boxes, integrates the
confidence and the degree of overlap, and the calculation of the weights can more accurately
select the best detection results. However, the calculation of the weights may be affected by
the training data and the model, which needs to be appropriately adjusted and optimised. In
recent years, some other improved NMS methods have emerged. For example, Softer NMS
employs a variance-weighted average operation similar to Weighted NMS by inducing the
setting of its extreme value, which is weighted by a scoring penalty mechanism similar
to Soft NMS [26]. Adaptive NMS applies a dynamic suppression strategy by designing a
density-subnet network to predicting the target perimeter’s denseness and sparseness, and
introducing density supervisory information so that the threshold value shows a rise or
decay correspondingly with the sparseness of the target perimeter.

NMS methods play an important role in the field of object detection, and the accuracy
and efficiency of the detection can be improved by the reasonable screening and merging
of candidate frames. Researchers have continued to propose improved methods to address
the problems of NMS and made significant progress in object detection tasks. Different
NMS methods have different advantages and disadvantages in terms of recall, accuracy, the
handling of redundant detection results, etc. The selection of an appropriate NMS method
should be weighed against specific task requirements and algorithm performance.

3. Design of Algorithms
3.1. Design Ideas

Structural reparameterisation is a network compression technique that reduces the
number of network parameters by clustering the convolutional kernels in a convolutional
neural network and merging similar convolutional kernels into a new one. To demonstrate
that the structural reparameterisation technique can improve the accuracy and speed of the
object detection task, we propose a novel algorithmic framework for the object detection
task, as shown in Figure 1.

Figure 1. Schematic diagram of the algorithm framework.

The network model uses a structural reparameterisation-based backbone network,
where the backbone network is a structural reparameterised VGG [27] network. Firstly, the
images fed into the model are preprocessed, mainly by cropping and normalising them.
Secondly, features are extracted from different stages of the backbone network, and the
feature pyramid network is used to process multi-scale features and enhance the network’s
ability to detect objects at different scales. The bottom–up FPN [8] network approach is
used and the multi-scale feature maps are obtained by up-sampling and merging. In our



Electronics 2023, 12, 4180 5 of 22

network model, the FPN structure adopts the standard FPN structure and is fine-tuned
in terms of the number of channels to better match the backbone network, with multiple-
resolution feature map outputs. The network model then feeds the feature maps at all scales
into the detection header, where a large number of prediction frames are generated on the
feature maps at different scales to predict the class and location of the object. The output of
the network results in a multi-scale detection result, for each of which the corresponding
confidence scores and bounding box locations are calculated for filtering and merging.
Finally, we used a novel NMS screening strategy in the screening phase to output the final
detection results.

3.2. Structure Reparameterisation of the Backbone Network

The backbone network after structural reparameterisation is used as the backbone
network of the whole model for extracting the basic image features. The reparameterised
RepVGG [28] network has five stages, and each stage consists of a variable number of
RepVGG blocks as [n1, n2, n3, n4, n5], where ni denotes the number of RepVGG blocks
in each stage. We designed two quantitative network models for detection, called the
light-weight model RepRCNN-T and the medium-weight model RepRCNN-S. The number
of RepVGG blocks in each stage of the light-weight model is set to [1, 2, 4, 14, 1], and the
number of RepVGG blocks in each stage of the medium-weight model is set to [1, 4, 6,
16, 1] for each stage of the medium-weight model. In the reparameterisation phase, we
merge the multi-branch structure into a single-branch structure, as shown in Figure 2. The
multi-branch structure of the network is used in the training phase, and the merged single-
branch structure is used in the inference phase. In the training phase, we use a three-branch
structure for training the network, including the identity branch, 3× 3 convolutional layers,
and 1 × 1 convolutional layers, where BN layers are set after the convolutional layers for
normalisation, but in the inference phase, we merge the three branches into one branch.

Figure 2. Schematic diagram of merging three branches into a single branch.

The fused convolutional layers are converted to Conv3×3, i.e., the convolution of
specific different convolutional kernels are all converted to convolution with convolutional
kernels of size 3 × 3. Since the whole residual block may contain both the Conv1×1 branch
and identity branch, for the Conv1×1 branch, the whole conversion process is to replace the
1 × 1 convolution kernel with the 3 × 3 kernel, i.e., the value in the 1 × 1 kernel is moved
to the centre of the 3 × 3 kernel, as shown in Figure 3. For the identity branch, this branch
does not change the value of the input feature mapping, so we can set a 3 × 3 convolution
kernel, and set the weight value at all 9 positions to 1. Then, it keeps the original value after
multiplying with the input feature mapping. Merge the Conv3×3 in the residual branches



Electronics 2023, 12, 4180 6 of 22

and superimpose the weights W and bias B of all branches to obtain a fused Conv3×3
network layer after fusion.

Figure 3. Illustration of heavy parameter merging.

For the merged convolutional layers, we fuse the convolutional and BN layers to per-
form accelerated computation operations in the training and inference phases. The strategy
of fusing the convolutional and BN layers in a RepVGG block is mainly implemented by
merging the convolutional and BN layers into a basic block. Each RepVGG block inside the
module consists of two parts: one reparameterised convolutional layer and one nonlinear
activation function, where the reparameterised convolutional layer consists of one 3 × 3
basic convolutional block and one BN layer, and after the nonlinear activation function in
each block, we use the ReLU function. Specifically, as shown in Figure 4, each basic block
consists of one normal convolutional layer, one BN layer, and one ReLU activation function,
where the convolutional and BN layers are fused into a single learnable convolutional
operation. During the training of the network, the gradient of the fused convolutional
and BN parameters is simultaneously calculated and updated by the backpropagation
algorithm of the network, thus enabling the end-to-end training of the network.

Figure 4. Schematic diagram of the merged structure.

For the merging of 3 × 3 convolutional layers and BN layers, we generally ignored
the bias b parameter in the convolutional layer of Equation (2) to achieve reparameterisa-
tion. Where W in Equation (2) denotes the parameters of the convolutional layer before
conversion, the mean denotes the mean of the BN layer, Var denotes the variance of the
BN layer, and gramma and beta denote the scale factor and offset factor of the BN layer,
respectively. The convolution layer Equation (1) and BN layer Equation (2) in the residual



Electronics 2023, 12, 4180 7 of 22

block are fused by Equation (3). And, W’ and b’ in Equations (4) and (5) denote the weight
and bias of the convolution after fusion, respectively.

Conv(x) = Wx + b (1)

BN(x) = γ ∗ x−Mean√
Var

+ β (2)

BN(Com(x)) =
γ∗W√

Var
∗ x + β− γ∗Mean√

Var
(3)

W ′ =
γ∗W√

Var
(4)

b′ =
γ∗Mean√

Var
− β (5)

3.3. Attention Matching Strategies for Structural Branches
3.3.1. Characteristics of Different Branches

In traditional object detection networks, multiple branches are often used to extract
different levels of feature information from the input image. These branches can capture
low-level to high-level semantic information at different layers of the network, resulting in a
multi-scale feature representation. In our approach, we use three branches to extract image
information, called the 3 × 3 convolutional branch, the 1 × 1 convolutional branch, and the
residual branch. These three branches focus on the global detail information, local feature
information, and global context information of the image, respectively, and therefore can
better acquire different levels and types of features.

When performing branch merging for structural reparameterisation, we consider that
the three branches have their importance for image features. Among the three branches, the
branch with 3 × 3 convolution has the global semantic information of the image features
obtained in each stage, and the obtained features have a stronger representation ability on
the whole; the branch with 1 × 1 convolution retains the main semantic information of the
image features in the local context, which is helpful for us to obtain more accurate detection
results; the residual branch mainly contains the original image feature information before
convolution, which reflects the contextual semantic information. Based on the above
reasons, if we simply weight the three branches to improve the speed, we will lose some
valuable feature information, which will have an impact on the detection accuracy.

3.3.2. Three-Branch Merge Strategy

To improve the performance of the model, we explore two different branch merging
strategies in the branch merging stage: direct branch merging and adaptive weight branch
merging. The strategy of direct branch merging can save computational resources, but
the default importance of all branches is equal, which cannot improve the effectiveness
of important branches. The design of adaptive weight branch merging can effectively
improve the weight of each branch and increase the importance of important branch
weights to achieve the effect of improving accuracy. In order to illustrate the effects of the
two strategies on the model, we design multiple sets of ablation experiments to analyse
them in Section 4.4. According to the results of the ablation experiments in Section 4.4, after
using adaptive weight branch merging, the adaptive weight branch merging strategy is
more helpful to improve the detection performance compared to the base model.

3.3.3. Implementation of Control Branch-Matching Attention

In direct branch merging, we directly splice the features of the 3 × 3 convolutional
branch, the 1 × 1 convolutional branch, and the residual branch, and merge them into
a uniform-sized feature map, as shown in Figure 5A. However, this strategy, although



Electronics 2023, 12, 4180 8 of 22

simple, is prone to the problems of information redundancy and excessive dimensionality.
In contrast, the adaptive weighted branch merging strategy allows us to introduce an
“attention-like mechanism” to dynamically adjust the contribution of each branch. By
introducing attention weights to determine the weight of each branch in the feature merging,
the model can adaptively learn to efficiently combine the feature information from different
branches, as shown in Figure 5B. This strategy avoids information redundancy while
effectively exploiting the advantages of different branches, which improves the performance
of the model.

Figure 5. Schematic diagram of branch-matching merge.

To dynamically adjust the attention weights of each branch, we design different gating
units to adjust and control the contributions of each branch concerning the characteristics of
each branch. In Figure 6A, part(a) shows a single-branch global attention adaptive gating,
part(b) shows a single-branch local attention adaptive gating, and part(c) shows a schematic
of the application of two branches.

Specifically, we generate the attention weights using a lightweight gating unit that
takes the branch features as input before fusion and undergoes convolution and global
average pooling to obtain the attention weights. These weights are applied to the feature
maps of each branch by matrix multiplication, enabling the adaptive weighting of different
branch features. We apply this method to three branches, as shown in Figure 6B.

Firstly, the image features obtained in the 3 × 3 convolution branch in each stage
have global semantic information, and we use global adaptive weighting on this branch.
After the image features C × H ×W are input into the global gating control after 3 × 3
convolution, in the two branches, they go through a global average pooling layer, a 1 × 1
convolutional layer, and a ReLU layer, respectively, to obtain the global adaptive weights
with the size of C × 1 × 1, and after the sigmoid operation, the final result is obtained as
a result of the size of C × 1 × 1 multiplied with the original input, to achieve the global
adaptive control on the 3 × 3 convolutional branch.

Then, the 1 × 1 convolution branch locally retains the main semantic information of
the image features, and we use local adaptive weighting on this branch. After the image
feature C × H ×W after 1 × 1 convolution is input into the local gating control, the global
adaptive weights of size C × 1 × 1 are obtained in the first of the two branches by going
through the global average pooling layer, 1 × 1 convolutional layer, and ReLU layer, and



Electronics 2023, 12, 4180 9 of 22

the local adaptive weights of size C × H ×W are obtained in the second branch by going
through the 1× 1 convolutional layer and ReLU layer only. We sum up the results obtained
from the two branches, and after the Sigmoid operation, the final result of size C × H ×W
is obtained by multiplying with the original input to achieve the local adaptive control of
the 1 × 1 convolutional branch.

Finally, the residual branch mainly contains the original, pre-convolution image fea-
ture information, reflecting the contextual semantic information. We want to retain as
much original contextual information as possible in this branch. After the image features
C × H ×W obtained from the residual branch are input into the third gating control, the
same operation is performed in the two branches, which only passes through the 1 × 1
convolutional layer and the ReLU layer the adaptive weights with the size of C × H ×W
are obtained, and we believe that such an operation can retain contextual information in
the residual branch. We sum the results obtained from the two results obtained from the
branches are summed, and after the Sigmoid operation, the final result of size C × H ×W
is obtained by multiplying it with the original input to achieve the adaptive control of the
residual branch.

Figure 6. Detailed structural diagram of the three-branch-matching design.

We add the results of three gating and three branch multiplications as the final output,
thus achieving attentional control over the three branches. Our strategy effectively learns
the relationship between different branches and adjusts the contribution between the
branches according to the needs of the task to achieve a better performance.



Electronics 2023, 12, 4180 10 of 22

3.4. FPN Combined with Reparameterised Backbone Network

We divided the overall network into five stages after reparameterisation, and the
image P1 input into the backbone network to extract features will gradually reduce the
feature map size, and the final feature map used for detection tends to lose the detailed
information of the large-scale feature maps due to the small scale. To be able to play a better
role in general-purpose object detection, we add the FPN structure to the backbone network,
which performs feature extraction on images of each scale and can produce multi-scale
feature representations and feature maps of all levels with strong semantic information,
even including some high-resolution feature maps. The structure of the backbone network
combined with FPN is shown in Figure 7.

Figure 7. Combination schematic.

The fusion of the large-scale feature information P2, P3, P4, and the small-scale feature
information P5 and P6 increases the low-level receptive field, enabling more contextual
information to be obtained when performing the detection. Since the size of the feature
map produced by each stage is adjustable, it is possible to combine the feature outputs
from the FPN structure and each stage layer of the backbone network, and feed the fused
feature map into the RPN [29] detection head for detection. Based on the feature pyramid,
the RPN head is used to generate candidate frames for target classification and bounding
box regression, and finally obtain the object detection results.

In the process of designing the algorithm, we also tried to reparameterise the FPN
structure together with the backbone network to achieve a more concise structure and
make the detection accelerate further. However, in practice, we only compared the model
with the parameterised backbone network and the model with the parameterised backbone
network and neck, and we found that the detection performance of the latter had a slight
degradation, so the focus of our detection algorithm design is still on the backbone network.

3.5. Head Achieves Detection

In our network model, the FPN structure is used to extract feature maps at multiple
scales from the input image, which have different scales and semantic information. These
feature maps will be fed into head for object detection to produce detection results, as shown
in Figure 8, which consists of two main parts, the RPN network and the classifier network.

In Figure 8, after receiving the feature map, the feature map is fed to the anchor
generator to generate the feature map with the anchor box. Firstly, the generator generates
H × W anchor points centred at each pixel on the H × W feature map. Then, anchor
boxes are generated by applying different aspect ratios on the feature map for better target
coverage. The sizes and ratios of these anchor frames are calculated from the datum frame,
which has three main sizes, namely 512 × 512, 256 × 256, and 128 × 128. Nine anchor



Electronics 2023, 12, 4180 11 of 22

frames are generated on each anchor point according to the 1:1, 1:2, and 2:1 of the datum
frame’s length and width.

Figure 8. Head structure diagram.

The RPN section in Figure 8 performs classification and regression operations on
the multiple anchor frames generated at each anchor point. Specifically, after generating
the anchor box, the feature map is fed into the RPN part, which first performs one 3 × 3
convolutional layer to keep the feature map size, and then performs the computation of two
1× 1 convolutional layers to achieve the binary classification task and the border regression
task, respectively. For each anchor frame, it is determined whether the anchor frame is a
target object (foreground) or background. Then, a regression operation is performed to
adjust the position and size of the anchor frame to better match the real position of the
target object. We generate proposals based on the results of classification and regression.
We employ the NMS algorithm to filter the proposals. Each box containing the target is
sorted from highest to lowest according to the classification score. After sorting each box,
we calculate the IoU value for each box and for each box, when its value is above a certain
threshold, it is removed from the box. Finally, the result is fed into the classifier. IoU is a
commonly used value in detection tasks, and is the result of dividing the overlapping part
of two regions by the aggregated part of the two regions, and comparing the result of this
IoU calculation by a set threshold value. Generally, we consider that an object detection is
recognised when the IoU is greater than the threshold value.

The classifier part in Figure 8 performs a second classification and regression operation
on the filtered candidate boxes. The NMS screened candidate boxes are fed into RoIAlign,
which corresponds to the feature map to obtain the corresponding features, providing
input for subsequent tasks such as target classification and regression. The features on the
grid of fixed-size feature maps generated by RoIAlign are fed into a classification network,
which passes through the fully connected layer, and the classification score is used using a
SoftMax activation function to convert to a probability distribution. Eventually, for each
candidate box, a probability vector is obtained, indicating the probability that the candidate
box belongs to different target categories. The regression operation is used to predict the
bounding box offset values after going through the fully connected layer. These offset
values are used to correct the position, width, and height of the candidate boxes to better
match the true position of the target object.

3.6. CPC NMS Strategy Application

A new graph-model-based bounding box clustering framework CP-Cluster is used in
our detection model, which is fully parallelizable and can be used as a post-processing step
of the object detector instead of the traditional soft-NMS method [30], called CPC NMS
strategy [31]. Based on the CP-Cluster framework, we first convert all candidate frames into
a collection of undirected graphs, where all frames with IoU less than a certain threshold
belong to a graph. Then, in each graph, the nodes pass a positive message and negative



Electronics 2023, 12, 4180 12 of 22

message to each other simultaneously. Finally, while the duplicate boxes are eliminated,
the confidence level of those selected boxes is enhanced. The strategy is shown in Figure 9.

Figure 9. CPC NMS strategy diagram.

For the CPC NMS strategy of Figure 9 [31], we first transform the multiple candidate
boxes generated by the RPN into the form of a set of undirected graphs by defining each
anchor box as a node and B = [b1, b2, b3, . . . ] is the original set of boxes output from
the model before processing. For two boxes bi, bj (bi, bj ∈ B), if their IoU is greater than
the set threshold, we draw an undirected edge between them to generate a set of graphs
G = [g1, g2, . . . ]. In addition to the need to suppress redundant frames, it is also necessary
to improve the confidence level of the real candidate frames. Specifically, we design positive
messages Mp to reward those true positive messages and negative messages Mn [31], to
penalise those redundant boxes. Both Mp and Mn only update the confidence values of the
object boxes by default. As described in the previous section, positive messages are passed
from the weaker object box to the stronger object box. Conversely, negative information
flows from stronger object frames to weaker object frames. Candidate frames after filtering
have higher confidence levels. Since each candidate box is affected by only one neighbour
within a certain range, k threads can be created to process each box in parallel, where k is
the number of candidate boxes.

3.7. Loss Function

For the loss function of the whole RepRCNN network, we combine the two losses in
the RPN network therein, which consists of two parts, i.e., the category prediction loss and
the target frame loss, and the two losses are linearly combined as shown in Equation (6):

Ltotall{(pi, p∗i ), (bi, b̂σ̂)} =
N

∑
i=1

[− 1
N

log[pi∗pi + (1− pi∗)(1− pi) + {ci 6=∅}Lbox(bi, b̂σ̂(i))] (6)

where y is the predicted value of the model, ŷ is the true value, and I{ci 6=∅} is a Boolean
function that is 1 when ci 6= ∅. ci is the category label of the i object. p̂σ̂(i)(ci) denotes the
probability that the predicted σ(i) prediction box has a category ci. bi and b̂i are the true
and predicted coordinates of the i object, respectively. Lbox is the distance between the two
rectangular boxes.

For the classification task, we used cross entropy to calculate the loss between the
result and the true target. pi denotes the probability that the output result is the target, and
p∗i is a numerical value for the cross-concatenation ratio of the predicted result to the true



Electronics 2023, 12, 4180 13 of 22

value, which is greater than 0.5, p∗i = 1 and less than 0.5, p∗i = 0. We summed and averaged
the entropy values to make a value of the loss for the classification task.

For the regression task, we use Lbox(·, ·) for the calculation. Since the algorithm
directly generates prediction frames for all scales, if the l1 loss is used directly, the difference
in the size of the loss value due to the different scales for small and large target frames
makes the model more biased towards optimising the large-scale target frames. To alleviate
this problem, a linear combination of l1 loss and GIoU loss Liou(·, ·) is used, which is
scale-invariant, i.e., the effect on the loss function is the same regardless of whether it is
for a large-scale prediction frame or a small-scale object frame. In total, the box loss is
Lbox

(
bi, b̂σ̂(i)

)
, as defined in Equation (7):

Lbox

(
bi, b̂σ̂(i)

)
= λiou Liou

(
bi, b̂σ(i)

)
+ λL1

∥∥∥bi − b̂σ(i)

∥∥∥
1

(7)

where λiou , λL1 ∈ R, Liou(·, ·) is the GIoU loss, as expressed as Equation (8):

Liou

(
bσ(i), b̂i

)
= 1−


∣∣∣bσ(i)

⋂
b̂i

∣∣∣∣∣∣bσ(i)
⋃

b̂i

∣∣∣ −
∣∣∣B(bσ(i), b̂i

)
/bσ(i)

⋂
b̂i

∣∣∣∣∣∣B(bσ(i) b̂i

)∣∣∣
 (8)

3.8. Inference Process

We use a multi-branch structure to train our model, transforming the model into
a single-branch structure in the inference phase. We take the network structure in the
inference phase and build a structure similar to ResNet [32] by stacking multiple reparame-
terisation modules.

In the inference process, the test images are first preprocessed and then fed into the five
stages of the parameterised backbone network to obtain the feature maps. A multi-scale
feature pyramid is generated after the FPN network. Then, the feature map is input into
RPN head, and after generating anchor points and anchor frames on the feature map,
proposals are generated through the RPN section. Then, the improved NMS algorithm
is used to filter the candidate frames that may contain the target. After the RoI align
operation, the feature map region corresponding to each candidate box is divided into
fixed-size sub-regions, and the features in the sub-regions are average-pooled to obtain
the feature vector of each candidate box. These feature vectors are passed through the
detection header and fed into multiple fully connected layers for predicting the class and
location of the object. The final detection result includes the category, confidence, and
location information for each detection frame.

4. Experiments

To verify the feasibility of the algorithm and the corresponding improvement effect,
we conducted several experiments on the PASCAL VOC2012 dataset and MS COCO2017
dataset. The Nvidia RTX3090 GPU (NVIDIA Corporation, Santa Clara, CA, USA) envi-
ronment was chosen, and all experiments were conducted under the system Ubuntu18.04
using the MMDetection framework. MMDetection is a PyTorch-based library of object
detection tools, which currently contains dozens of models and methods.

4.1. Dataset

PASCAL VOC2012 is a classical computer vision dataset widely used for object detec-
tion, semantic segmentation, and image classification tasks. The dataset includes images
from 20 different categories and contains a total of 17,125 images covering common object
categories such as people, cars, planes, and animals.

MS COCO2017 is a large-scale dataset for tasks such as object detection, semantic
segmentation, and image description. The dataset contains more than 330,000 images,
including 328,000 training images and 41,000 validation images. These images are collected
from a variety of scenarios, including scenes from daily life, natural landscapes, and



Electronics 2023, 12, 4180 14 of 22

industry. The MS COCO2017 dataset contains 80 common object categories, including
people, animals, vehicles, electronic devices, furniture, and food. In addition, the dataset
contains annotation information such as object bounding boxes, semantic segmentation
masks, and instance segmentation masks associated with each image.

4.2. Baseline Criteria and Evaluation Metrics

Under the MMDetection framework, we chose the performance of two models, the
classical faster R-CNN and cascade R-CNN, on the PASCAL VOC2012 and MS COCO2017
datasets as the baseline criteria. We also refer to the performance of current popular
models such as DETR, DETR variants, and YOLO series on the two datasets. We also
compare the experimental results with the OREPA model, which also employs the structural
reparameterisation technique, and use this as a baseline for comparison as well.

The experimental evaluation metrics are mAP and AR, which are commonly used in
object detection. mAP is an evaluation metric on the MS COCO2017 dataset commonly
used to measure the accuracy of the object detection model, and the value of mAP ranges
from 0 to 1, with a larger value indicating a more accurate detection result. AP50 and AP75
represent the detection accuracy at the IoU thresholds of 0.5 and 0.75, respectively. AR is the
calculated detection recall for different categories of objects at all IoU thresholds, while the
AR1000 metric represents the average detection recall for selecting the best 1000 candidate
frames on each image to be evaluated at the time of testing.

4.3. Experimental Setup

We use RepRCNN-T and RepRCNN-S as representatives of the lightweight and
mediumweight models, respectively. We vary the number of reparameterisation modules
in each stage and set them to [1, 2, 4, 14, 1] and [1, 4, 6, 16, 1], respectively, with the
lightweight model being suitable for tasks that require a high detection speed and the
middleweight model being suitable for tasks that require a high detection accuracy.

Following the official PyTorch example, we use a global batch of size 8, initialised
to a learning rate of 0.001, with a weight recession set to 1.0 × 10−4 and a standard SGD
optimiser (momentum factor of 0.9) on a single GPU. The model was trained using a
cross-entropy loss function and a regression loss function. The maximum basic clipping
size of the dataset was kept as (1333, 800), an image inversion probability of 0.5 was used
for both, the same image normalisation operation as in the baseline, and the minimum
unit for Resize of the image was set to 32. We used 32-bit floating point numbers (single
precision) on our device, the NVIDIA 3090, to represent the weights and activation values
of the network, which provided sufficient numerical precision to handle the object detection
task and maintain model performance.

Different ablation experiments were also designed by continuously adjusting the
hyperparameters during the experiment to achieve optimal experimental results. The
model performance metrics are evaluated separately in the experimental part in a cycle
of 24 rounds. To illustrate the enhancement of network performance by branch-matching
reparameterisation, a before-and-after comparison of the model testing results is performed.

4.4. Ablation Experiments

We first investigated the changes in performance before and after the model of the
reparameterisation approach and made adjustments accordingly based on the results. The
effectiveness of the combination of the reparameterisation strategy and the new NMS
strategy on the model is demonstrated by improving the lightweight Base model. For
the CPC NMS strategy, since CPC does not require retraining the model, we download
popular models from MMDetection and evaluated them by CPC. The results of the ablation
experiments on the MS COCO2017 dataset are reported in Table 1 and Figure 10.



Electronics 2023, 12, 4180 15 of 22

Table 1. Ablation experimental performance.

Method NMS CPC Rep mAP Parameter Inf Time Round

Base N N N 37.6 45 M 12.1 1×
Base+NMS Y N N 37.7 45 M 11.9 1×
Base+CPC N Y N 38.1 45 M 12.5 1×
Base+Rep N N Y 38.7 38 M 13.9 1×
Base+Rep+NMS Y N Y 39.1 38 M 14.2 1×
Base+Rep+CPC N Y Y 39.5 38 M 14.1 1×

The meaning of Y in the table is that the method of the column was used, i.e., yes. The meaning of N in the table
is that the method of the column was not used, i.e., no. The meaning of 1× is after one training cycle and each
training cycle is 12 epochs.

Figure 10. Histogram of ablation experiment results.

As can be seen from Table 1 and Figure 9, after using CPC NMS, the mAP of the
model is improved compared to standard NMS. Compared with the standard NMS, after
using CPC, it can improve the mAP while maintaining a certain FPS, which proves that
our method is effective. Meanwhile, from the presentation of experimental data about
reparameterisation, we can conclude that the network model with reparameterisation has
reduced in terms of the number of parameters during the training period, which meets
our expected criteria. In terms of mAP metrics and FPS metrics, it can be seen that the
new model maintains better results. In particular, the model performance is significantly
improved by the use of the reparameterisation approach and the CPS NMS strategy.

For the branch-matching reparameterisation strategy, Table 2 shows the performance
change of our model on the PASCAL VOC2012 dataset before and after using the branch-
matching strategy, and we actively explored the use of different gating for the three branches.

Table 2. Experimental performance of branch-matched ablation.

Method 3 × 3 Branch 1 × 1 Branch Residual mAP

Base None None None 51.7

Base+ Branch Matching

Global Global Global 53.0
Global Distributions Global 53.2

Distributions Global Global 52.2
Distributions Distributions Global 51.5

As can be seen in Table 2, the mAP of the model changes after using the adaptive
weight branch-merging strategy. Compared to the base model without branch matching,
the model performance improves when the appropriate gating type is selected on all three
branches. When using global gating units on all three branches, the mAP improves by 1.3.



Electronics 2023, 12, 4180 16 of 22

The greatest performance improvement is achieved when using global gating on the 3 × 3
branch and the residual branch, and local gating only on the 1 × 1 branch, with an increase
in mAP of 1.5. The performance of the model decreases when we try to use local gating on
a larger number of branches. Based on the ablation experiments described above, we chose
to apply global gating on the 3 × 3 branch, local gating on the 1 × 1 branch, and global
gating on the residual branch.

4.5. Experimental Results and Analyses
4.5.1. PASCAL VOC2012 Performance

In pursuit of better the accuracy performance in the detection process, we discard the
training speed to see the extreme performance of each baseline model and our model in
terms of accuracy on the PASCAL VOC2012 dataset. The training period is set to 24 epochs
to explore the best performance of the model in terms of detection accuracy. Eventually, the
location where our model converges is explored and compared with the baseline model,
and the experimental results are shown in Table 3.

Table 3. Model performance on PASCAL VOC2012.

Method Backbone Train Data mAP AP50 AP75

Faster RCNN [5] VGG-16
VOC2012 – 67 –
VOC2007+2012 – 70.4 –
COCO+VOC2007+2012 – 75.9 –

Ca.RCNN [6]
AlexNet

VOC2007
38.9 66.5 40.5

VGG-16 51.2 79.1 56.3
ResNet-50 51.8 78.5 57.1

KL loss [24] ResNet-50 VOC2007 – 75.8 –
Co-teaching [33] ResNet-50 VOC2007 – 75.4 –
SD-LocNet [34] ResNet-50 VOC2007 – 75.7 –
FreeAnchor [35] ResNet-50 VOC2007 – 73.0 –
OA-MIL [13] ResNet-50 VOC2007 – 77.4 –
SSD-Det [36] ResNet-50 VOC2007 – 77.1 –
DETR/150 [11] ResNet-50 VOC2007 49.9 74.5 53.4
DETR/300 [11] ResNet-50 VOC2007 54.1 78.0 58.3
YOLOX-T [37] ResNet-50 VOC2012 35.4 57.9 –
YOLOX-S [37] ResNet-50 VOC2012 42.6 64.5 –

RepModel RepRCNN-S VOC2012 51.6 75.8 56.2
RepRCNN-S COCO+VOC2012 53.2 78.4 58.1

With the experimental data in Table 3, we can see that the models using the branch-
and-merge reparameterisation models all have performance gains compared to the baseline
model. After training 24 epochs on PASCAL VOC2012 using RepRCNN-S, we achieved
accuracies of 51.6, 75.8, and 56.2 for mAP, AP50, and AP75, respectively, which further
confirms the effectiveness of the branch-merging strategy.

To further improve the performance of the model on the PASCAL VOC2012 dataset,
we adopt a training strategy similar to that of faster RCNN, We first expand the training set
of the model to the training concatenation of MS COCO2017 and PASCAL VOC2012, and
then use the model to test it on PASCAL VOC2012, and the experimental results are similar
to that of only training on PASCAL VOC2012. The experimental results are competitive
with mainstream models. RepRCNN-S outperforms faster R-CNN with the same training
method by 2.5. RepRCNN-S and DETCNN with only 150 epochs are more competitive than
DETCNN with only 150 epochs. RepRCNN-S has 3.3, 3.9, and 4.7 higher mAP, AP50, and
AP75, respectively, compared with DETR trained with only 150 epochs. We note, however,
that the accuracy of DETR after 300 epochs is also substantially improved, but DETR is
much more computationally intensive than our model, so from the computational cost
point of view, RepModel has a better speed–accuracy balance.



Electronics 2023, 12, 4180 17 of 22

4.5.2. MS COCO2017 Performance

We similarly view the limiting performance of each baseline model and our model in
terms of accuracy on the MS COCO2017 dataset. Tables 4 and 5 show the mAP and AR1000
performances of the models on the MS COCO2017 dataset, respectively.

Table 4. Model performance on MS COCO2017.

Method Backbone mAP AP50 AP75 Parameters Inf Time

KL loss [24] ResNet-50 31.0 54.3 30.3 – –
Co-teaching [33] ResNet-50 30.5 54.9 30.5 – –
SD-LocNet [34] ResNet-50 30.0 54.5 30.3 – –
FreeAnchor [35] ResNet-50 28.6 53.1 28.5 – –
OA-MIL [13] ResNet-50 32.1 55.3 33.2 – –
OREPA [22] ResNet-50 37.4 – – – –
DETR [11] ResNet-50 42.0 62.4 44.2 – –
UP-DETR [12] ResNet-50 42.8 63.0 45.3 – –
YOLOV3 [3] Darknet-53 36.2 60.6 38.2 – –

Faster RCNN [5] ResNet-50 37.7 59.2 40.9 25 M 13.6
ResNet-101 40.0 61.8 43.7 45 M 11.9

Ca.RCNN [6] ResNet-50 41.3 59.4 45.3 25 M 11.9
ResNet-101 43.3 61.7 47.2 45 M 10.3

YOLOX-T [37] PANet 32.8 50.3 – 5.1 M 7.1
YOLOX-S [37] PANet 40.5 59.3 – 9 M 15.0
YOLOv6-T [4] EfficientRep 40.3 56.6 – 15 M 11.1
YOLOv6-S [4] EfficientRep 43.2 60.4 – 17.2 M 12.9
YOLOv7-T [1] EfficientRep 37.4 55.2 – 6.2 M 11.8

RepModel RepRCNN-T 41.2 59.7 43.5 14 M 14.1
RepRCNN-S 42.0 61.4 44.1 38 M 12.3

New RepModel RepRCNN-T 41.8 60.2 43.7 14 M 14.1
RepRCNN-S 43.3 62.1 45.6 38 M 12.3

Table 5. AR1000 performance of the model on 24 epochs training.

Model Backbone AR1000 Parameter Training Time Inf Time Round

RPN Resnet-50 57.6 25M – 17.7 2×
Resnet-101 59.1 45M – 14.4 2×

RepRCNN RepRCNN-T 58.6 14M 0.449 18.2 2×
RepRCNN-S 59.9 38M 0.512 15.6 2×

The meaning of 2× is after one training cycle and each training cycle is 24 epochs.

From the experimental data in Table 4, we can see that, except for the training time
and inference speed, the parameterised models have improved performance compared to
the baseline model. RepRCNN-T and RepRCNN-S still maintained an advantage in FPS
metrics, which are 14.1 FPS and 12.3 FPS, respectively. Compared with the similar reparam-
eterised models, OREPA RepRCNN-T and RepRCNN-S both have excellent performances.
In terms of detection accuracy, we achieved 41.8, 60.2, and 43.7 for mAP, AP50, and AP75,
respectively, after 24 epochs of training on the MS COCO2017 dataset using RepRCNN-T,
and 43.3, 62.1, and 45.6 for mAP, AP50, and AP75, respectively, using RepRCNN-S. After
using branch matching before and after use, the model performance improves at mAP,
AP50, and AP75 by 1.3, 0.7, and 1.5, respectively.

With a similar number of parameters, the model with a branch-matching strategy
is more competitive compared to the lightweight networks of YOLOv6 and YOLOv7.
RepRCNN-T improves mAP, AP50 by 1.5, 3.6 compared to YOLOv6-T; RepRCNN-S im-
proves mAP, AP50 by 0.1 compared to YOLOv6-S, 1.7; mAP improves by 1.3 compared to
the mainstream model DETR, and mAP improves by 0.5 compared to the variant UP-DETR.
In terms of detection speed, our model ranks second with an FPS of 14.1 but has a higher
detection accuracy than the fastest YOLOX-S, considering that the computational overheads



Electronics 2023, 12, 4180 18 of 22

and training time of DETR and the variant UP-DETR are much higher than the RepModel,
which maintains a better accuracy and achieves a better speed–accuracy balance.

With the data in Table 5, we can see that, with the gradual deepening of the network
and the increase in the number of training rounds, our model significantly improved the
metrics in AR1000 compared to the RPN network, and in terms of accuracy performance,
RepRCNN-T and RepRCNN-S are higher by 1 and 0.8, respectively.

Different IoU thresholds were also used to compute the P–R curves in our object
detection task, as shown in Figure 11.

Figure 11. P–R curves at different thresholds.

From Figure 11, we can see that, at high thresholds, our model has higher accuracy,
while at low thresholds, our model has higher recall. This indicates that our model can
capture more targets when detecting them. Therefore, our model has better performance
and adaptability.

4.5.3. Visualisation of Detection Results

We visualised the detection results for the MS COCO2017 dataset. The four photos
in Figure 12 show the results when the scene is more homogeneous and has less object
detection, and the four photos in Figure 13 show the results when the scene is complex and
has more object detection.

From the demonstrated results in Figure 12, in the case of a simpler scene situation
with fewer targets, and with sufficient light and unobstructed targets, our model can detect
the objects contained in the picture to be detected and gives a high level of confidence that
the detection results are very accurate.

From the demonstration effect in Figure 13, in the case of a more complex scene with
a larger number of objects to be detected and the presence of occlusion between multiple
objects, our model is still able to maintain the detection of the main objects in the picture
to be detected and give a reasonable confidence level. For most of the occluded targets,
the model is also able to detect and classify the corresponding objects, showing a good
detection performance.



Electronics 2023, 12, 4180 19 of 22

Figure 12. The effect of simple scene detection.

Figure 13. The effect of complex scene detection.



Electronics 2023, 12, 4180 20 of 22

5. Conclusions

With the rapid development of deep learning technology applications in the field of
computer vision, deep learning-based object detection algorithms have become mainstream
methods. However, the application of deep learning in the field of object detection also faces
some challenges, such as how to better balance detection accuracy and speed, algorithm
interpretability, and computational resource limitations. Aiming to resolve the problem
of balancing accuracy and speed in object detection techniques, a CNN object detection
method based on a structural reparameterisation technique using branch matching is pro-
posed. We use a neural network after structural reparameterisation with branch matching
for the detection task, by which the technique reduces the number of parameters in the
network and saves the storage overhead and computational overhead in the inference
process. For real-time detection, the structural reparameterisation technique can signifi-
cantly improve the detection speed of the model, which is advantageous in terms of FPS.
Structural reparameterisation techniques have good performance in detection tasks that
require speed aspects but lose some accuracy. As a result, reparameterisation techniques
tend to be less suitable for applications in tasks that require higher accuracy.

Author Contributions: Conceptualisation, X.L. (Xudong Li) and R.L.; methodology, X.L. (Xudong
Li); software, X.L. (Xinyao Lv); validation, L.S. and J.Z.; formal analysis, L.S.; investigation, X.L.
(Xudong Li); resources, L.S.; data curation, J.Z.; writing—original draft preparation, X.L. (Xinyao
Lv); writing—review and editing, R.L.; visualisation, X.L. (Xudong Li); project administration, X.L.
(Xudong Li); funding acquisition, R.L. All authors have read and agreed to the published version of
the manuscript.

Funding: The research leading to these results received funding from Natural Science Foundation of
Shandong Province under Grant Agreement No. ZR2020MF119 and the Shandong Provincial Key
Laboratory of Medical Physics and Image Processing Technology.

Institutional Review Board Statement: The data used in this paper were obtained from publicly
available sources and comply with relevant laws and regulations. This study uses PASCAL VOC2012
and MS COCO2017 datasets provided by Microsoft. These datasets do not involve human or animal
subjects or samples. This study did not involve human or animal subjects.

Data Availability Statement: The datasets generated during and/or analysed during the current
study are available in the [COCO2017] repository, [https://cocodataset.org/] (accessed on 17 July
2023). All the details of this work, including data and algorithm codes, are available from the author:
sdnulixudong1025@163.com

Conflicts of Interest: The authors declare no conflict of interest. All authors certify that they have no
affiliation with or involvement in any organisation or entity with any financial interest or non-financial
interest in the subject matter or materials discussed in this manuscript.

References
1. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object

detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada,
18–22 June 2023; pp. 7464–7475.

2. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings
Part I 14; Springer: Berlin, Germany, 2016; pp. 21–37.

3. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
4. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection

framework for industrial applications. arXiv 2022, arXiv:2209.02976.
5. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv 2015,

arXiv:1506.01497.
6. Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6154–6162.
7. Cai, Z.; Fan, Q.; Feris, R.S.; Vasconcelos, N. A unified multi-scale deep convolutional neural network for fast object detection. In

Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016;
Proceedings, Part IV 14; Springer: Berlin, Germany, 2016; pp. 354–370.

https://cocodataset.org/


Electronics 2023, 12, 4180 21 of 22

8. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

9. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

10. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

11. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In
Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 213–229.

12. Dai, Z.; Cai, B.; Lin, Y.; Chen, J. Up-detr: Unsupervised pre-training for object detection with transformers. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1601–1610.

13. Liu, C.; Wang, K.; Lu, H.; Cao, Z.; Zhang, Z. Robust Object Detection with Inaccurate Bounding Boxes. In Proceedings of the
European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 53–69.

14. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv 2015, arXiv:1510.00149.

15. Malsagov, M.Y.; Khayrov, E.M.; Pushkareva, M.M.; Karandashev, I.M. Exponential discretization of weights of neural network
connections in pre-trained neural networks. Opt. Mem. Neural Netw. 2019, 28, 262–270. [CrossRef]

16. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
17. Redmon, J.; Farhadi, A. YOLO9000: better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.
18. Ding, X.; Zhang, X.; Han, J.; Ding, G. Scaling up your kernels to 31x31: Revisiting large kernel design in cnns. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11963–11975.
19. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted

windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October
2021; pp. 10012–10022.

20. Ding, X.; Xia, C.; Zhang, X.; Chu, X.; Han, J.; Ding, G. Repmlp: Re-parameterizing convolutions into fully-connected layers for
image recognition. arXiv 2021, arXiv:2105.01883.

21. Ding, X.; Zhang, X.; Han, J.; Ding, G. Diverse branch block: Building a convolution as an inception-like unit. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10886–10895.

22. Hu, M.; Feng, J.; Hua, J.; Lai, B.; Huang, J.; Gong, X.; Hua, X.S. Online convolutional re-parameterization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 568–577.

23. Chu, X.; Li, L.; Zhang, B. Make RepVGG Greater Again: A Quantization-aware Approach. arXiv 2022, arXiv:2212.01593.
24. He, Y.; Zhu, C.; Wang, J.; Savvides, M.; Zhang, X. Bounding box regression with uncertainty for accurate object detection. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 2888–2897.

25. Ning, C.; Zhou, H.; Song, Y.; Tang, J. Inception single shot multibox detector for object detection. In Proceedings of the 2017 IEEE
International Conference on Multimedia & Expo Workshops (ICMEW), Hong Kong, China, 10–14 July 2017; pp. 549–554.

26. He, Y.; Zhang, X.; Savvides, M.; Kitani, K. Softer-nms: Rethinking bounding box regression for accurate object detection. arXiv
2018, arXiv:1809.08545.

27. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
28. Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13733–13742.
29. Brazil, G.; Liu, X. M3d-rpn: Monocular 3d region proposal network for object detection. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9287–9296.
30. Bodla, N.; Singh, B.; Chellappa, R.; Davis, L.S. Soft-NMS–improving object detection with one line of code. In Proceedings of the

IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5561–5569.
31. Shen, Y.; Jiang, W.; Xu, Z.; Li, R.; Kwon, J.; Li, S. Confidence propagation cluster: Unleash full potential of object detectors. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 1151–1161.

32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

33. Han, B.; Yao, Q.; Yu, X.; Niu, G.; Xu, M.; Hu, W.; Tsang, I.; Sugiyama, M. Co-teaching: Robust training of deep neural networks
with extremely noisy labels. arXiv 2018, arXiv:1804.06872.

34. Zhang, X.; Yang, Y.; Feng, J. Learning to localize objects with noisy labeled instances. In Proceedings of the AAAI Conference on
Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 9219–9226.

35. Zhang, X.; Wan, F.; Liu, C.; Ji, R.; Ye, Q. Freeanchor: Learning to match anchors for visual object detection. arXiv 2019,
arXiv:1909.02466.

http://doi.org/10.3103/S1060992X19040106


Electronics 2023, 12, 4180 22 of 22

36. Wu, D.; Chen, P.; Yu, X.; Li, G.; Han, Z.; Jiao, J. Spatial Self-Distillation for Object Detection with Inaccurate Bounding Boxes.
arXiv 2023, arXiv:2307.12101.

37. Zhou, W.; Min, X.; Hu, R.; Long, Y.; Luo, H. FasterX: Real-Time Object Detection Based on Edge GPUs for UAV Applications.
arXiv 2022, arXiv:2209.03157.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Related Work
	Structural Re-Parameterisation Method
	NMS Design Methodology

	Design of Algorithms
	Design Ideas
	Structure Reparameterisation of the Backbone Network
	Attention Matching Strategies for Structural Branches
	Characteristics of Different Branches
	Three-Branch Merge Strategy
	Implementation of Control Branch-Matching Attention

	FPN Combined with Reparameterised Backbone Network
	Head Achieves Detection
	CPC NMS Strategy Application
	Loss Function
	Inference Process

	Experiments
	Dataset
	Baseline Criteria and Evaluation Metrics
	Experimental Setup
	Ablation Experiments
	Experimental Results and Analyses
	PASCAL VOC2012 Performance
	MS COCO2017 Performance
	Visualisation of Detection Results


	Conclusions
	References

