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Abstract: Knowledge tracing (KT) aims to trace a learner’s understanding or achievement of knowl-
edge based on learning history. The surge in online learning systems has intensified the necessity for
automated measurement of students’ knowledge states. In particular, in the case of learning in the
English proficiency assessment field, such as TOEIC, it is required to model the knowledge states by
reflecting on the difficulty of questions. However, previous KT approaches often overly complexify
their model structures solely to accommodate difficulty or consider it only for a secondary purpose
such as data augmentation, hindering the adaptability of potent and general-purpose models such
as Transformers to other cognitive components. Addressing this, we investigate the integration
of question difficulty within KT with a potent general-purpose model for application in English
proficiency assessment. We conducted empirical studies with three approaches to embed difficulty
effectively: (i) reconstructing input features by incorporating difficulty, (ii) predicting difficulty with a
multi-task learning objective, and (iii) enhancing the model’s output representations from (i) and (ii).
Experiments validate that direct inclusion of difficulty in input features, paired with enriched output
representations, consistently amplifies KT performance, underscoring the significance of holistic
consideration of difficulty in the KT domain.

Keywords: knowledge tracing; question difficulty; English proficiency assessment; transformers;
multitask learning

1. Introduction

Over recent years, the integration of artificial intelligence (AI) methodologies into
educational frameworks has witnessed a substantial increase. The unforeseen educational
disruptions caused by the COVID-19 pandemic have further hastened this trend. In this
context, intelligent tutoring systems (ITS) have emerged as a focal point in AI-driven edu-
cational endeavors. The crux of ITS’s success lies in their capacity to ascertain the present
knowledge levels of individual students and subsequently present pertinent questions,
leveraging the vast datasets acquired from online learning environments.

The knowledge tracing (KT) task aims to predict future achievement by tracing learn-
ers’ current understanding of knowledge based on their past learning history. According
to past correct/incorrect answers for each knowledge concept, it is determined to what
extent the learner has acquired the knowledge [1]. KT approaches are crucial in contempo-
rary online learning platforms, where they play a vital role in automatically gauging the
knowledge levels of numerous students [2]. These platforms strive to enhance learning
outcomes significantly by offering personalized feedback and recommendations tailored
to each individual [3]. Tracing the user’s knowledge state from the learning perspective
is complex enough that numerous factors, such as the question’s difficulty, the order of
problem-solving, and the process of forgetting, must be considered [4].
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Capturing cognitive relations among the learning materials, such as prerequisite
relations, by leveraging a knowledge structure inspired by the existing pedagogical litera-
ture [5] can be an alternative to the complexity. For example, the knowledge structure can
be regarded as a chain-type directed acyclic graph based on the question difficulty for sim-
plicity. In particular, it is essential to consider the difficulty of questions to track the user’s
current knowledge state accurately. Without considering the difficulty of the question, if
the user’s knowledge state is estimated only from the distribution of questions answered
correctly versus questions responded to, an overestimation problem occurs in the case of
difficulty imbalance [6]. Furthermore, difficulty consideration is even more crucial in the
field of foreign language learning, such as English proficiency assessment, because subtle
differences in difficulty play a significant role in learners acquiring a foreign language.

Figure 1 shows test examples of the Test of English for International Communication
(TOEIC). According to the examples, (a) is a question that can be solved within a short time
if one knows that the gerund comes after ’after’, whereas (b) is a question that needs to
capture subtle meaning differences in context while distinguishing intransitive/transitive
verbs. Previous studies for the KT task that utilize the difficulty factor exist. However, they
use the difficulty only for secondary purposes for augmenting data or adopt complicated
model structures only for the difficulty, reducing versatility [6,7].

(a) (b)

Immediate supervisor reprimanded 
Mr. Chuck after                 to give him 
the benefit of a doubt.

(1) pretend
(2) pretends
(3) pretended
(4) pretending

All employees are promised a two week
Bonus incentive if they                 in sales.

(1) exceed
(2) excel
(3) surpass
(4) reach

Figure 1. Examples of the TOEIC test. Both questions on both sides are 4-choice, but the difficulty
level experienced by foreign language learners is actually different. (a) represents a question with a
straightforward solution, easily solvable in a brief moment if one is aware of the gerund following ’af-
ter.’ Conversely, (b) portrays a question requiring the nuanced interpretation of context, necessitating
the differentiation between intransitive and transitive verbs.

Therefore, we explore how to effectively reflect question difficulty in a general-purpose
self-attentive KT model by applying various experimental methods, in order to serve as a
reference indicator for the experimental aspect of future research. In particular, our methods
are verified with a focus on tracing the learner’s knowledge state in the field of English
proficiency assessment, which is designed by adequately arranging the difficulty level. The
three experimental methods to ensure the model leverages the difficulty effectively are as
follows; (i) input feature diversification: feeding difficulty information into the model as
variants of input features; (ii) difficulty prediction: having the model predict the question
difficulty to enhance understanding of the difficulty of the problem by employing the multi-
task learning (MTL) manner; and (iii) representation enrichment: enriching the output
representation in the latent vector dimension. In detail, the question sequence is organized
in a specific order based on the probability of the correct answer computed from the
training data. More complex structures can be readily adopted for the knowledge structure.
Moreover, we provide additional analysis regarding the training time and dimensions of
the model. The experimental results show that providing difficulty as a training feature
and enriching the representation is consistent with performance improvement. In addition,
as the learning time and model dimension increase, the gap in the positive effect on
performance widens.
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2. Related Works
2.1. E-learning and Cybernetic Pedagogy

E-learning, also referred to as electronic learning, is a structured educational system
that utilizes electronic resources [8]. Due to information technology (IT) advancements,
e-learning has gained widespread acceptance within the education sector, particularly in
higher education. Nearly 99% of institutions have implemented learning management
systems (LMSs), with approximately 85% actively utilizing them [9]. The recent challenges
posed by the COVID-19 pandemic have prompted the expansion of online learning, en-
compassing diverse modalities such as intelligent tutoring systems and massive open
online courses, all of which have become crucial in mitigating disruptions to the field of
education [10,11].

In order to improve understanding of e-learning systems, it is necessary to describe
existing research in the field of cybernetic pedagogy, a fundamental theory that explains
the human learning process. The authors in [12] developed a cybernetic pedagogy that
was based on natural sciences, and [13] set the cybernetic foundations for learning and
teaching. Cybernetic pedagogy, which is a scientific discipline of how a learning process
can be influenced, leads to significant updates and is a useful basis for modern intelligent
learning environments.

In the realm of cybernetic pedagogy, the foundational premises encompass:

• The delineation and examination of instructional and learning trajectories manifest
in subsidiary systems, and their role in rendering the educational procedure objec-
tive. This entails the transition of all undertakings from human-operated domains to
technological infrastructures or software applications.

• Scrutiny of the interconnections and consequential impacts between objective (techno-
logical) and subjective (human) components of the educational mechanism, such as
appraising the interplay between a human educator and digital instructional resources
with an aim to fulfill established pedagogical objectives.

• Elucidation of the ties amongst varying forms of subsidiary systems within a specified
educational framework.

Within the academic sphere of online intelligent education, a learning process can
be technologically manifested as an intelligent tutoring system. In this context, it necessi-
tates the incorporation of a pedagogic algorithm, explicitly articulated through symbolic
representations grounded in mathematical logic. This algorithm takes into consideration
five conditional variables: L (learning material), M (media), P (psychological structure), S
(social structure), and Z (setting learning goals). In other words, the learning process can
be systematically represented as an integrative educational model, amalgamating all the
previously mentioned components into a cohesive entity [12,14].

From an e-learning perspective, the teacher, students, learning process, and the or-
ganization of lessons collectively constitute a distinct subsystem within an educational
system [15]. Considering that an e-learning system is an information system that combines
human elements (such as learners and instructors) with non-human components (such
as learning management systems), it is essential to explore various aspects of success
concerning both of these components [16]. Since the spread of e-learning, research has been
conducted on various aspects. Traditionally, earlier studies placed greater emphasis on the
technology itself. However, with the growing reliability and accessibility of technology,
contemporary research has increasingly centered on understanding the attitudes and in-
teractions of both students and instructors, recognizing their pivotal roles in e-learning’s
success [17,18].

2.2. Various Branches in Knowledge Tracing

The knowledge tracing (KT) task, which models the human cognitive process, en-
compasses concepts such as the knowledge concept, knowledge state, and interaction.
A knowledge concept refers to a specific concept to which a question belongs, akin to a
skill class. For instance, in the English education domain, knowledge concepts can consist
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of grammar, reading comprehension, and vocabulary. Knowledge state is an evaluative
measure of a learner’s grasp and acquisition of knowledge concepts based on prior learning
records. In addition, interaction in the KT task refers to a set of questions a user solves
during a specific period, along with the outcomes for the questions.

A KT task is a long-standing task that has been studied since before the era when
deep learning was prevalent, and the approach has branched into various streams based
on perspectives on how to model human cognition. Before the advent of deep learning,
the most conventional methodology was Bayesian knowledge tracing (BKT), which draws
inspiration from mastery learning in educational psychology, representing a learner’s KS
as binary latent variables [1]. Building upon the methodology of BKT, subsequent research
has expanded the tracing techniques by introducing features such as difficulty, cognitive
factors, and multiple knowledge concepts into KT models [19–21]. The initial deep learning-
based methodology is deep knowledge tracing (DKT), which departs from analyzing
users and extracting static features, instead utilizing problem-solving response records
(correct/incorrect responses to questions) as sequential data within a recurrent neural
network framework to predict the probability of correct answers for unseen questions [22].
However, there is a problem in that the learning state is stored as a single hidden state
without distinction for a specific concept, and the interpretability for individual students
needs to be improved.

Inspired by the DKT model, various deep learning-based studies have emerged, such
as attentive KT models and memory-augmented KT models [4]. Zhang et al. [20] introduced
the dynamic key-value memory networks for KT, which model the knowledge state for
individual students using key matrix-value matrix pairs with the concept of human mem-
ory. In addition, research to improve the tracing ability by advancing the model structure
has emerged, including self-attention-based KT studies. Pandey and Karypis [23] applied
the self-attention mechanism for the first time in a KT task. This approach benefits the
generalization to sparse data where only a few students interact with a given knowledge
concept by assigning attention weights to the concept that are related to previously an-
swered questions. In order to capture the relation between questions and answers even
when prior learning records are limited, Somepalli et al. [24] constructed the embedding of
questions as input for the encoder and the embedding of responses (interactions) as input
for the decoder. By extending this approach, Shin et al. [25] further expanded the type of
considered factors, including the temporal information, such as the time taken to solve the
problem, resulting in enhanced model performance.

2.3. Question Difficulty in Knowledge Tracing

The question difficulty that we focus on is an essential factor to model the human
learning process, not only within KT tasks but also to the extent that other downstream
tasks that solely predict the question difficulty exist [26–28]. Utilizing the difficulty levels
associated with given questions and knowledge concepts plays a crucial role in tracking
students’ knowledge states. This is because questions in the assessment cannot be of
the same difficulty level, and the proper question distribution based on the question
difficulty is important during test design [29,30]. Furthermore, without consideration of
difficulty during the learning process, KT-based application tasks may prove challenging.
For instance, in the student learning curricula, receiving only excessively challenging
problems relative to students’ level can diminish the desire to achieve, whereas consistently
encountering overly simple problems might lead to reduced interest [31,32].

Among KT studies, there have been attempts to modify the model with the difficulty
factor or deliberately exploit it as a training feature. For example, [6] designed a model
structure for computing user knowledge acquisition, including the difficulty. In detail,
the subjective difficulty that students perceive in the question is measured before the
actual evaluation and used for initialization. After the evaluation, the student’s knowledge
states are updated based on the newly obtained difficulty level. Lee et al. [7] adopted a
question replacement strategy according to the difficulty in terms of data augmentation. It
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is assumed that if a learner cannot solve a particular question, he or she will not be able
to solve a more difficult question, and conversely, if they can solve it, they will be able to
solve a more manageable problem.

However, the existing studies either build a complex model structure only for con-
sidering the difficulty factor or use difficulty only as a secondary factor, which hinders
application to pre-trained language models (PLMs) with general-purpose yet powerful
performance. It is necessary to explore how to dissolve desired features properly, i.e., diffi-
culty factors based on a general-purpose model such as the already existing Transformers
structure. Therefore, this study focuses on exploring methods enabling self-attention-based
models to leverage the difficulty factor effectively.

3. Materials and Methods

We introduce the following three approaches to allow the model to effectively leverage
the difficulty factor: (i) feeding the variants of input features with difficulty to the model;
(ii) learning the model using the MTL method, while adding an objective to predict the
difficulty; and (iii) enriching the representation including the difficulty information output
in the latent vector dimension through phases (i) and (ii). Figure 2 illustrates the overall
structure of the model to which our exploration methods are applied, and the Transformers
model with an encoder–decoder structure that shows good performance in the KT task
is used as the base model, following Shin et al. [25]. In the original SAINT+ model,
question and part information is fed into the encoder module, and correctness and temporal
information (i.e., elapsed time, lag time) are fed into the decoder module. However, unlike
the original SAINT+ model’s input structure, which is the baseline, we modify the input
structure to account for the difficulty factor.

𝑳𝒕𝒐𝒕𝒂𝒍	

+

Difficulty
Embeddings

+ + + + +

+ + + + +

Question
Embeddings

Part
Embeddings

Position
Embeddings

+

+ + + + +

Correctness
Embeddings

Position
Embeddings

Elapsed Time
Embeddings

+ + + + +
Lag Time

Embeddings

𝑳𝒇𝒆𝒂𝒕 (BCE)𝑳𝒅𝒊𝒇𝒇	(MSE)

Encoder

+ + + + +

Difficulty
Embeddings

Correctness
Embeddings+ + + + +

+ + + + +

Lag Time
Embeddings

Question
Embeddings

Part
Embeddings

Elapsed Time
Embeddings

+ + + + +

𝐿%&''	: Loss for Difficulty in (𝑡 + 1)
𝐿'()*	: Loss for Correctness in (𝑡 + 1)

+ + + + +

Position
Embeddings

+ + + + +

1) Question difficulty
2) Part difficulty
3) Question diff. * Part diff.

LSTM

+

Decoder

Figure 2. Overview of our methods for knowledge tracing with a difficulty factor. diff.indicates
difficulty (e.g., question diff., etc.).

3.1. Notations and KT Task Statement

Let us first elaborate on the basic denotations for the KT task. We denote the user set as
U = {u1, u2, . . . , u|U|}with |U| different users, and the question set as Q = {q1, q2, . . . , q|Q|}
with |Q| unique questions. A user’s learning interactions (i.e., previous learning history)
are denoted as X = {(q1, r1), (q2, r2), . . . , (q|X|, r|X|)}, where each interaction xt consists of
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(qt, rt), a tuple of question and response correctness at time t. qt is the question answered at
time step t and rt is the corresponding response correctness label. In other words, rt is 1
when the response is correct and 0 otherwise.

The KT task is formulated for predicting the probability of a student’s answer to a
particular question being correct given their previous interaction histories. Therefore, the
KT task aims to estimate the probability,

P[rt = 1|x1, x2, . . . , xt−1, qt]. (1)

3.2. Input Features Diversification

First, to diversify the input features through difficulty information, the difficulty is
computed based on learners’ response accuracy and provided together as input. Each
input of the encoder and decoder is reconstructed, including configured difficulty embed-
ding. Difficulty information is composed of question difficulty, part difficulty, or question
difficulty weighted by a relevant part weight. The red boxes and lines in the bottom
left of Figure 2 indicate the input features fed into the model. In particular, followed
by Shin et al. [25]’s input structure, part information is included along with the question in
the encoder part, and the obtained difficulty vector is concatenated together and provided
as input.

3.2.1. Question Difficulty

The question difficulty level is computed through distributional knowledge estimated
based on response correctness information for a specific question. In other words, when
constructing the difficulty vector, the individual difficulty D calculated based on rt, which
is the correct answer to question qt, is used and can be formalized as follows:

D =
|Ui |

∑
i

{rij == 1}
|Ui|

· pk, (2)

where Ui is a set of users who answer the question qj, and rij is the i-th user’s response
correctness corresponding to the j-th question. In addition, pk is a k-th component from P,
a set of weights for each part relevant to a specific problem q, and fixed to 1 if not used as
a weight. When pk is used as a weight, P is a set of heuristically defined weights or part
difficulties, and the method for obtaining it is described below.

3.2.2. Part Difficulty

Part difficulty p is calculated through distributional knowledge for each part instead
of estimating the distribution for individual questions. In other words, the difficulty is
obtained based on the corresponding part for each question, and the formula is calculated
based on the response correctness r, in the same way as the question difficulty.

3.2.3. Question Difficulty Weighted by Part

A weighted question difficulty set is obtained by multiplying the weight for each part
by the already calculated question difficulty. The type of weight set is divided into two
cases. The first is ‘Heuristic’, which consists in setting the ratio fixedly according to the
part. In particular, the English proficiency evaluation is divided into several parts, and
although it may differ depending on the question, there is actually a more difficult part.
In the case of TOEIC, in reading comprehension, part 7, which infers problems through
reading long sentences, is more complicated than part 5, which consists of vocabulary and
grammar problems such as idioms that can be solved quickly through memorization. In
listening comprehension, part 4, where the questions should be answered by listening to a
long monologue such as a phone recording, is more difficult than part 1, which one must
match sentences describing the situation by looking at pictures. Part 3 is usually the most
difficult of the parts, as the conversation between multiple speakers should be understood,
and the details grasped. Therefore, based on this difficulty tendency for parts, pre-defined
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weights are multiplied according to the part to which the question belongs. The second case
is ‘Distribution’, where the difficulty is calculated through the aggregation of the question
difficulty and the part difficulty. As described above, the part difficulty set is calculated
through distribution according to the correct answer rate for each part.

For the training objective, since the goal is to predict response correctness rt+1 ∈
{0, 1} for qt+1, binary cross-entropy (BCE) loss is employed. The objective is formulated
as follows:

L f eat = −
1
|Q|

|Q|

∑
1

rj ∗ log(r̂j) + (1− rj) ∗ log(1− r̂j), (3)

where r̂j is the correctness predicted by the model for the j-th question qj.

3.3. Difficulty Prediction

We introduce a training objective that allows the model to predict the difficulty level
of question qt+1 at time t + 1, where response correctness must be predicted, verifying its
effectiveness. In other words, by training the model in an MTL manner, we allow the model
to learn information related to difficulty directly. The blue boxes and lines in Figure 2
indicate input features employed for MTL. For the model to effectively predict the difficulty,
the question, part, and temporal data are input into the encoder part, and the correct answer
and difficulty data are used as input features of the decoder.

The difficulty feature is a vector composed of float-type labels, i.e., continuous distri-
bution knowledge. Therefore, we compute the average of the squared differences between
actual difficulty values and predicted difficulty values by adopting the mean squared error
(MSE) loss. It is trained by utilizing the objective as follows:

Ldi f f = −
1
|Q|

|Q|

∑
1
(D̂j − Dj)

2, (4)

where Dj and D̂j are the actual difficulty and the difficulty value predicted by the model,
respectively. The entire MTL model is trained as a joint loss between the lossL f eat (Section 3.2)
of the model having the input structure including the difficulty feature and the loss Ldi f f of
the model predicting the difficulty as follows: Ltotal = λ1 · L f eat + λ2 · Ldi f f .

3.4. Representation Enrichment

This section explores how to enhance the quality of representations that reflect the
difficulty factor output through Sections 3.2 and 3.3. Since the user’s learning history
information has a sequential data structure, we enrich the pooler output from the decoder of
the backbone model by using an additional layer that can deal with these characteristics well.
In detail, the output representation is improved by passing the vector from the Transformer
model into the LSTM [33] before being fed to the linear layer for label classification.

4. Experiments
4.1. Experimental Setup

The hyperparameters for the experiments are detailed in Appendix A.

4.1.1. Dataset

As a dataset for our experiments, we experimented with actual user learning assess-
ment data from TOEIC, a representative English language education assessment. The
EdNet dataset is a comprehensive resource that captures various aspects of student ac-
tions in an intelligent tutoring system (ITS) [34]. It encompasses a vast scale, with over
131 million interactions from more than 780,000 students since 2017. This dataset provides
a diverse range of interactions, including learning materials consumption, responses, and
time spent on tasks. It also offers a hierarchical structure, categorizing data points into four
levels based on the complexity of actions. The EdNet dataset has multiple versions, and
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the EdNet-KT1 version is used in this experiment. Statistical information about EdNet-KT1
data is shown in Table 1. We divided the data into train, validation, and test sets in a ratio
of 8 to 1 to 1 and used them in the experiment.

Table 1. Statistics of EdNet-KT1 dataset.

EdNet KT1

# of students 784,309

# of interactions 224,461,772

# of KCs 188

# of unique questions 12,284

# of correct answers 152,561,335

# of wrong answers 71,900,437

4.1.2. Metrics

We utilized the accuracy (ACC) score as the evaluation metric. ACC, widely employed
in classification tasks as an evaluation metric, can be defined as the ratio of correctly classi-
fied data instances to the total number of observations. In addition, we calculated the area
under the receiver operating characteristic curve (AUC), which is frequently adopted for
binary classification for discriminating between positive and negative target classes. AUC
represents the degree or measure of separability, telling us to what extent is the model ca-
pable of distinguishing between classes [35]. Our experimental performance measurement
recorded the average value of performance calculated from five random seeds.

4.2. Experimental Results

Table 2 shows the experimental results of the model with the diversified input by
considering the difficulty factor as a feature, the model trained in an MTL manner by
adding the difficulty prediction objective, and the model with representation enrichment.

Table 2. Main results for EdNet-KT1 dataset. ∗ indicates our re-implementation version. The highest
performance is bolded.

Method AUC ACC

SAINT+ ∗ [25] 79.23 73.78

+ Part Diff. 79.28 (+0.05) 73.81 (+0.03)
+ Question Diff. (dist.) 79.33 (+0.10) 73.84 (+0.07)

+ Question Diff. ∗ Part Wgt. (dist.) 79.29 (+0.06) 73.83 (+0.05)
+ Question Diff. ∗ Part Wgt. (heuristic) 79.34 (+0.11) 73.85 (+0.07)

+ Diff. Prediction (0.5) 79.30 (+0.07) 73.84 (+0.06)
+ Diff. Prediction (0.3) 79.34 (+0.11) 73.86 (+0.08)
+ Diff. Prediction (0.3) — CE 79.15 (−0.08) 73.72 (−0.06)

+ Question Diff. (dist.) + LSTM 79.43 (+0.20) 73.89 (+0.11)

+ Diff. Prediction (0.5) + LSTM 79.19 (−0.04) 73.71 (−0.07)
+ Diff. Prediction (0.3) + LSTM 79.36 (+0.13) 73.85 (+0.07)

In the feature diversification part, providing difficulty in the question unit tends to
yield better overall performance than providing part difficulty. It was observed that the
additional consideration of the weight for each part also affected the performance, but
this was marginal. The model trained with the MTL method performed slightly better
when Ldi f f was 0.3 than when it was 0.5, achieving an improvement of 0.11%p in AUC
and 0.08%p in ACC compared to the baseline. In addition, when replacing the type of
loss for the learning objective that predicts difficulty with cross-entropy (CE) loss rather
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than the MSE loss presented earlier, we observed that performance actually decreased. In
the representation enrichment part, the model with the question difficulty feature and the
representation enhancement improved by 0.2%p in AUC and 0.11%p in ACC, indicating
that enriching the representation by considering the sequential characteristic of the users’
learning history data leads to performance improvement.

In previous KT studies, the SAKT model [23], which introduced self-attention into
the KT task, achieved a 0.25%p improvement in AUC from 76.38 to 76.63 and a 0.13%p
improvement in ACC from 70.60 to 70.73, compared to the initial deep learning-based KT
model [22]. Therefore, this study can interpret the AUC score improvement in the main
results by integrating the difficulty factor in the same self-attentive model structure as
significant.

5. Discussion
5.1. Efficacy based on Training Time and Model Dimension

In this section, we verify whether training a self-attentive model considering the
difficulty factor ensures consistent performance improvement, regardless of the increase in
training time and model dimensions, and Figure 3 illustrates the performance comparison
(the table with detailed experimental results is provided in Appendix A). In detail, we
experimented by varying the number of epochs from 10 to 20 and the model dimension
from 128 to 256. The baseline, SAINT+ [25] with a model dimension of 128, was trained for
ten epochs. Both increasing the model dimension and the number of epochs contributed to
performance improvement, but the increase in epochs had a more significant impact. In
other words, it was observed that performance improved as the training time for students’
interaction records lengthened, and also, the performance continuously increased in each
epoch until the 20th epoch.

Figure 3. Performance comparison according to the number of training epochs and the model
dimension for the EdNet-KT1 dataset. ∗ indicates our re-implementation version. ? models set with
the model dimension as 256 and the number of epochs as 10. ? models set with the model dimension
as 128 and the number of epochs as 20.

In particular, the model with the Question Diff. + LSTM methods, which showed the
most substantial improvement in the main results (Table 2) by 0.2%p of AUC, showed an
improvement of 0.32%p of AUC compared to the SAINT+ model, which was trained for
20 epochs, showing a more significant increase than in the main experiment. Thus, this
larger performance gap indicates that providing a difficulty factor positively impacts KT
task, regardless of training hyperparameters such as training time.

5.2. Comparative Results on the Composition of Difficulty Values

Since the main focus of this study is the appropriate integration of difficulty into deep
learning models, how to finely adjust the value of the initially estimated difficulty factor is
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a significant issue. Therefore, this section analyzes the results of experiments, providing
variants for these values.

Variations on constructing the question difficulty vector as distributional information
or rank information were provided to the model. Rank information is provided after being
converted in a sorted order according to the size of the estimated distribution value. Distri-
bution information estimated based on response correctness (Equation (2) in Section 3.2)
consists of two cases. One is to express the difficulty level with a higher number as it is
more difficult in the real world, and the other is to indicate that the higher the number, the
easier it is (i.e., inverse).

According to the results in Table 3, when the difficulty information was given similarly
to reality, where the value is larger when a specific question is harder (dist. inverse), the
performance of 0.11%p of AUC and 0.07%p of ACC improved. Additionally, in the case
of the dist. round method, which consists of rounding the computed difficulty level to
the first decimal place, the score slightly decreased. In particular, we observed that when
we gave the difficulty vector for questions as a rank, the performance dropped by a large
margin, implying that how one adjusts the value of the difficulty factor is also significant.

Table 3. Performance comparison according to the difficulty value types. ∗ indicates our re-
implementation version.

Difficulty Type AUC ACC

SAINT+ ∗ [25] 79.23 73.78

+ Question Diff. (dist.) 79.33 (+0.10) 73.84 (+0.07)

+ Question Diff. (dist. inverse) 79.34 (+0.11) 73.85 (+0.08)
+ Question Diff. (dist. round) 79.16 (−0.07) 73.74 (−0.04)
+ Question Diff. (rank) 75.87 (−3.36) 71.41 (−2.37)

6. Conclusions

In English language learning assessment, accounting for difficulty is pivotal to under-
standing human learning trajectories. However, prior work in the KT task domain has often
incorporated difficulty factors through intricate model architectures without delving into
broader applications. Such methods sometimes grapple with integrating new information
effectively while preserving an already successful general-purpose model architecture.

In this paper, we foreground a nuanced approach to incorporate difficulty metrics
derived from users’ historical interactions. We systematically investigate three strategies:
(i) input feature diversification, wherein difficulty is treated as a variant of input features,
(ii) difficulty prediction, which tasks the model with predicting item difficulty via a multi-
task learning (MTL) framework, and (iii) representation enrichment, aiming to augment
the latent space.

Our empirical findings indicate that embedding difficulty as a training feature offers
tangible performance gains. While the MTL strategy’s impact remains subtle, the strategy
involving representation enrichment using an additional LSTM layer emerges as the most
effective. Our supplemental analyses concerning training duration and model dimensions
further corroborate these findings. Notably, as training time and model dimensions increase,
the performance benefits of integrating the difficulty factor become more pronounced,
suggesting its positive influence on model training dynamics. In addition, according to the
analysis of KT performance changes depending on the difficulty factor’s value, a positive
performance difference can be observed when selecting an appropriate value type, such as
providing reverse order distribution knowledge.

Limitations and Future Works

The question difficulty is calculated based on the users’ past interactions, so there are
still challenges regarding the natural language information of questions. In real-world
learning and assessment procedures, humans utilize textual information, namely natural
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language information, within problem statements, to gauge the difficulty of questions.
However, in the KT field, there have yet to be publicly available datasets containing natural
language information as a form of textual data, which is a significant obstacle to the higher
quality of difficulty estimation. Some studies with exercise-aware methods utilize natural
language information from questions [36]. However, these are conducted using proprietary
corporate data and remain publicly inaccessible.

In the computer education domain, based on code examples written by users, there
has recently been a study that generated codes that can be implemented according to the
user’s knowledge level [37]. Nonetheless, within the realm of education, the uniqueness of
each learning domain—spanning subjects such as English, computer science, mathematics,
and even secondary languages like Spanish—requires sufficient domain-specific data.

In particular, in English language assessment, only a few companies possessing com-
mercial assessment systems hold valuable data, and natural language information is still
not easily used by individual researchers. Therefore, we plan to adopt the natural language
information released as a form of non-textual data of accessible benchmarks. For example,
among the available KT datasets, the EEDI dataset [38] provides some samples of learning
questions in the form of images. We may exploit the natural language information in the
images through optical character recognition techniques in order to improve the difficulty
representation capability.
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Appendix A. Experimental Details

Appendix A.1. Hyperparameters

We defaulted the hyperparameters to the same as the SAINT+ model [25]. The learning
rate was 0.001, batch size was 512, dropout was 0.1, the number of epochs was 10, sequence
length was 100, and the Noam scheduler [39] and Adam optimizer [40] were employed.
The ratios for joint loss with multitask learning were λ1 and λ2, respectively, and the λ2 for
the difficulty prediction task Ldi f f was set as 0.3 or 0.5.

https://github.com/riiid/ednet
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Appendix A.2. Detailed Results

Table A1. Performance comparison according to the number of training epochs and the model di-
mension for EdNet-KT1 dataset. ∗ indicates our re-implementation version. The highest performance
is bolded.

Method Model dim. Epoch AUC ACC

SAINT+ ∗ 128 10 79.23 73.78

SAINT+ ∗ 256 10 79.40 73.90
128 20 79.50 73.93

+ Question Diff.
256 10 79.52 73.98
128 20 79.58 74.00

+ Diff. Prediction (0.5)
256 10 79.49 73.94
128 20 79.57 74.00

+ Diff. Prediction (0.3)
256 10 79.52 73.96
128 20 79.60 74.01

+ Question Diff. + LSTM
256 10 79.51 73.93
128 20 79.82 74.13

References
1. Corbett, A.T.; Anderson, J.R. Knowledge tracing: Modeling the acquisition of procedural knowledge. User Model.-User-Adapt.

Interact. 1994, 4, 253–278. [CrossRef]
2. Shen, S.; Liu, Q.; Chen, E.; Huang, Z.; Huang, W.; Yin, Y.; Su, Y.; Wang, S. Learning process-consistent knowledge tracing.

In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Virtual, 14–18 August 2021;
pp. 1452–1460.

3. Ritter, S.; Anderson, J.R.; Koedinger, K.R.; Corbett, A. Cognitive Tutor: Applied research in mathematics education. Psychon. Bull.
Rev. 2007, 14, 249–255. [CrossRef] [PubMed]

4. Abdelrahman, G.; Wang, Q.; Nunes, B. Knowledge tracing: A survey. ACM Comput. Surv. 2023, 55, 1–37.
5. Doignon, J.P.; Falmagne, J.C. Knowledge Spaces; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.
6. Shen, S.; Huang, Z.; Liu, Q.; Su, Y.; Wang, S.; Chen, E. Assessing Student’s Dynamic Knowledge State by Exploring the Question

Difficulty Effect. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information
Retrieval, Madrid, Spain, 11–15 June 2022; pp. 427–437.

7. Lee, W.; Chun, J.; Lee, Y.; Park, K.; Park, S. Contrastive learning for knowledge tracing. In Proceedings of the ACM Web
Conference 2022, Lyon, France, 25–29 April 2022; pp. 2330–2338.

8. Maatuk, A.M.; Elberkawi, E.K.; Aljawarneh, S.; Rashaideh, H.; Alharbi, H. The COVID-19 pandemic and E-learning: Challenges
and opportunities from the perspective of students and instructors. J. Comput. High. Educ. 2022, 34, 21–38. [CrossRef] [PubMed]

9. Al-Fraihat, D.; Joy, M.; Sinclair, J. Identifying success factors for e-learning in higher education. In Proceedings of the International
Conference on e-Learning. Academic Conferences International Limited, Orlando, FL, USA, 1–2 June 2017; pp. 247–255.

10. Romero, C.; Ventura, S. Educational data mining: A review of the state of the art. IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev.
2010, 40, 601–618.

11. Nguyen, T. The effectiveness of online learning: Beyond no significant difference and future horizons. MERLOT J. Online Learn.
Teach. 2015, 11, 309–319.

12. Frank, H.; Meder, B.S. Einführung in die Kybernetische Pädagogik; Dt. Taschenbuch Verlag: Munich, Germany, 1971.
13. Cube, F.V. Kybernetische Grundlagen des Lernens und Lehrens, 4th ed.; Klett-Cotta: Stuttgart, Germany, 1982.
14. Frank, H. Bildungskybernetik/Klerigkibernetiko. Bratislava und Nitra: Esprima und SAIS; Oxford University Press: Oxford, UK, 1996.
15. Aberšek, B.; Dolenc, K.; Aberšek, M.K.; Pisano, R. Reflections on the relationship between cybernetic pedagogy, cognitive science

& language. Pedagogika 2014, 115, 70–87.
16. Al-Fraihat, D.; Joy, M.; Sinclair, J. Evaluating E-learning systems success: An empirical study. Comput. Hum. Behav. 2020,

102, 67–86.
17. Liaw, S.S.; Huang, H.M.; Chen, G.D. Surveying instructor and learner attitudes toward e-learning. Comput. Educ. 2007,

49, 1066–1080. [CrossRef]
18. Cheng, Y.M. Antecedents and consequences of e-learning acceptance. Inf. Syst. J. 2011, 21, 269–299.
19. Khajah, M.; Lindsey, R.V.; Mozer, M.C. How deep is knowledge tracing? arXiv 2016, arXiv:1604.02416.
20. Zhang, J.; Shi, X.; King, I.; Yeung, D.Y. Dynamic key-value memory networks for knowledge tracing. In Proceedings of the 26th

international conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 765–774.
21. Ghosh, A.; Heffernan, N.; Lan, A.S. Context-aware attentive knowledge tracing. In Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, Virtual, 6–10 July 2020; pp. 2330–2339.

http://doi.org/10.1007/BF01099821
http://dx.doi.org/10.3758/BF03194060
http://www.ncbi.nlm.nih.gov/pubmed/17694909
http://dx.doi.org/10.1007/s12528-021-09274-2
http://www.ncbi.nlm.nih.gov/pubmed/33967563
http://dx.doi.org/10.1016/j.compedu.2006.01.001


Electronics 2023, 12, 4171 13 of 13

22. Piech, C.; Bassen, J.; Huang, J.; Ganguli, S.; Sahami, M.; Guibas, L.J.; Sohl-Dickstein, J. Deep knowledge tracing. Adv. Neural Inf.
Process. Syst. 2015, 28, 1–9.

23. Pandey, S.; Karypis, G. A self-attentive model for knowledge tracing. In Proceedings of the 12th International Conference on
Educational Data Mining, EDM 2019, International Educational Data Mining Society, Montreal, QC, Canada, 2–5 July 2019;
pp. 384–389.

24. Somepalli, G.; Goldblum, M.; Schwarzschild, A.; Bruss, C.B.; Goldstein, T. Saint: Improved neural networks for tabular data via
row attention and contrastive pre-training. arXiv 2021, arXiv:2106.01342.

25. Shin, D.; Shim, Y.; Yu, H.; Lee, S.; Kim, B.; Choi, Y. Saint+: Integrating temporal features for ednet correctness prediction. In
Proceedings of the LAK21: 11th International Learning Analytics and Knowledge Conference, Irvine, CA, USA, 12–16 April 2021;
pp. 490–496.

26. Fang, J.; Zhao, W.; Jia, D. Exercise difficulty prediction in online education systems. In Proceedings of the 2019 International
Conference on Data Mining Workshops (ICDMW), Beijing, China, 8–11 November 2019; IEEE: Piscataway, NJ, USA, 2019;
pp. 311–317.

27. Zhou, Y.; Tao, C. Multi-task BERT for problem difficulty prediction. In Proceedings of the 2020 International Conference
on Communications, Information System and Computer Engineering (CISCE), Kuala Lumpur, Malaysia, 3–5 July 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 213–216.

28. Benedetto, L.; Cremonesi, P.; Caines, A.; Buttery, P.; Cappelli, A.; Giussani, A.; Turrin, R. A survey on recent approaches to
question difficulty estimation from text. ACM Comput. Surv. 2023, 55, 1–37. [CrossRef]

29. Brassil, C.E.; Couch, B.A. Multiple-true-false questions reveal more thoroughly the complexity of student thinking than
multiple-choice questions: A Bayesian item response model comparison. Int. J. STEM Educ. 2019, 6, 1–17. [CrossRef]

30. Malikin, D.; Kyrychenko, I. Research of Methods for Practical Educational Tasks Generation Based on Various Difficulty Levels.
In Proceedings of the CEUR Workshop Proceedings, Gilwice, Poland, 12–13 May 2022; Volume 3171, pp. 1030–1042.

31. Beck, L. Flow: The psychology of optimal experience. Mihalyi Csikszentmihalyi. J. Leis. Res. 1992, 24, 93. [CrossRef]
32. Bengio, Y.; Louradour, J.; Collobert, R.; Weston, J. Curriculum learning. In Proceedings of the 26th Annual International

Conference on Machine Learning Montreal, QC, Canada, 14–18 June 2009; pp. 41–48.
33. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
34. Choi, Y.; Lee, Y.; Shin, D.; Cho, J.; Park, S.; Lee, S.; Baek, J.; Bae, C.; Kim, B.; Heo, J. Ednet: A large-scale hierarchical dataset in

education. In Proceedings of the Artificial Intelligence in Education: 21st International Conference, AIED 2020, Ifrane, Morocco,
6–10 July 2020; Proceedings, Part II 21; Springer: Berlin/Heidelberg, Germany, 2020; pp. 69–73.

35. Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316.
[CrossRef]

36. Liu, Q.; Huang, Z.; Yin, Y.; Chen, E.; Xiong, H.; Su, Y.; Hu, G. Ekt: Exercise-aware knowledge tracing for student performance
prediction. IEEE Trans. Knowl. Data Eng. 2019, 33, 100–115. [CrossRef]

37. Liu, N.; Wang, Z.; Baraniuk, R.; Lan, A. Open-ended knowledge tracing for computer science education. In Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, United Arab Emirates, 7–1 December 2022;
pp. 3849–3862.

38. Wang, Z.; Lamb, A.; Saveliev, E.; Cameron, P.; Zaykov, Y.; Hernández-Lobato, J.M.; Turner, R.E.; Baraniuk, R.G.; Barton, C.; Jones,
S.P.; et al. Diagnostic questions: The neurips 2020 education challenge. arXiv 2020, arXiv:2007.12061.

39. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017.

40. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3556538
http://dx.doi.org/10.1186/s40594-019-0169-0
http://dx.doi.org/10.1080/00222216.1992.11969876
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1097/JTO.0b013e3181ec173d
http://dx.doi.org/10.1109/TKDE.2019.2924374

	Introduction
	Related Works
	E-learning and Cybernetic Pedagogy
	Various Branches in Knowledge Tracing
	Question Difficulty in Knowledge Tracing

	Materials and Methods
	Notations and KT Task Statement
	Input Features Diversification
	Question Difficulty 
	Part Difficulty
	Question Difficulty Weighted by Part

	Difficulty Prediction
	Representation Enrichment

	Experiments
	Experimental Setup
	Dataset
	Metrics

	Experimental Results

	Discussion
	Efficacy based on Training Time and Model Dimension
	Comparative Results on the Composition of Difficulty Values

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	References

