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Abstract: Road instance segmentation is vital for autonomous driving, yet the current algorithms
struggle in complex city environments, with issues like poor small object segmentation, low-quality
mask edge contours, slow processing, and limited model adaptability. This paper introduces an
enhanced instance segmentation method based on SOLOv2. It integrates the Bottleneck Transformer
(BoT) module into VoVNetV2, replacing the standard convolutions with ghost convolutions. Addi-
tionally, it replaces ResNet with an improved VoVNetV2 backbone to enhance the feature extraction
and segmentation speed. Furthermore, the algorithm employs Feature Pyramid Grids (FPGs) in-
stead of Feature Pyramid Networks (FPNs) to introduce multi-directional lateral connections for
better feature fusion. Lastly, it incorporates a convolutional Block Attention Module (CBAM) into
the detection head for refined features by considering the attention weight coefficients in both the
channel and spatial dimensions. The experimental results demonstrate the algorithm’s effectiveness,
achieving a 27.6% mAP on Cityscapes, a 4.2% improvement over SOLOv2. It also attains a segmen-
tation speed of 8.9 FPS, a 1.7 FPS increase over SOLOv2, confirming its practicality for real-world
engineering applications.
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1. Introduction

In today’s society, with the accelerated pace of urbanization and the continuous
growth in transportation demands, road scene segmentation has become a technology
of paramount significance. Road scene segmentation involves the precise separation
and identification of various objects on roads within digital images or videos from their
surrounding environments. This technology holds extensive prospects in fields such
as autonomous driving, traffic monitoring, and intelligent transportation systems. The
objective of road scene segmentation is to achieve a comprehensive understanding and
perception of the traffic environment by accurately segmenting elements like vehicles,
pedestrians, and traffic signs on the road. By effectively separating all objects on the road,
road scene segmentation provides autonomous vehicles with the essential environmental
awareness to ensure safe driving. Simultaneously, in traffic monitoring systems, road scene
segmentation can be employed to monitor the traffic flow in real time, detect violations, and
optimize the traffic signal control, thereby enhancing the road safety and traffic efficiency.
However, due to the complexity and diversity of road scenes, road scene segmentation
tasks encounter a series of challenges. For instance, the variations in the lighting conditions,
the influence of weather conditions, vehicle obstructions, and overlapping factors all impact
the accuracy and stability of scene segmentation. Therefore, effectively addressing these
challenges and enhancing the precision and robustness of road scene segmentation have
become the current focus and hotspots of research.

To address these challenges, researchers have continuously advanced the research
and development of road scene segmentation using techniques such as threshold-based
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methods, edge detection, and deep learning. The threshold-based methods like histogram-
based and Otsu’s thresholding [1] primarily consider the grayscale values of individual
pixels, making them sensitive to noise. Moreover, when dealing with images containing
complex backgrounds and numerous objects, a single threshold often fails to extract com-
prehensive features, resulting in a poor mask quality. On the other hand, the edge-based
segmentation algorithms aim to solve segmentation issues by detecting edges within the
regions of interest. However, due to the often-dramatic grayscale variations at different
edges, these algorithms may fail to ensure that the extracted contours possess continuity
and closure, limiting their effectiveness. In response to these limitations, researchers have
turned to deep learning approaches to overcome these challenges and improve the accuracy
and robustness of road scene segmentation. The deep learning methods leverage neural
networks to learn complex features from the data, allowing for more accurate and adaptable
segmentation, even in the presence of noise and complex backgrounds.

Diverging from the traditional image segmentation algorithms based on thresholds
and edge detection, the deep learning-based image segmentation methods exhibit sig-
nificant advantages. Full Convolutional Networks (FCNs) [2], for example, replace fully
connected layers with a defined number of convolutional and pooling layers, facilitating the
neural network’s transition from object detection to object segmentation. As deep learning
has evolved, segmentation has been further refined into semantic and instance segmen-
tation. Semantic segmentation involves labeling each pixel in an image with class labels,
assigning the same label to all detected objects of the same class. Consequently, semantic
segmentation can only distinguish between the different types of objects and not between
individual instances of the same type [3]. In contrast, instance segmentation predicts labels
for each pixel belonging to an object, providing distinct labels for the different individuals
within the same class. It simultaneously addresses both the object detection and semantic
segmentation challenges. In busy traffic scenarios, the mutual occlusion between vehicles
or pedestrians is common. When two vehicles partially overlap or are in close proximity,
semantic segmentation networks struggle to separate their individual parts. In contrast,
the instance segmentation techniques excel at achieving precise separation of such vehicles,
offering more detailed road scene information.

Instance segmentation is a computer vision task that closely mirrors human visual
perception, representing a deep understanding of image scenes. Applying the instance
segmentation techniques to road scene segmentation holds immense practical value in
the field of autonomous driving. However, the existing road scene instance segmentation
algorithms exhibit shortcomings such as poor segmentation of small objects, low-quality
mask edge contour delineation, slow processing speeds, and limited model generalization
capabilities. In light of these challenges, this paper introduces a novel instance segmentation
algorithm based on SOLOv2 [4], aiming to achieve real-time and precise segmentation of
road scenes. Our primary contributions are outlined as follows:

(1) A new feature extraction network is proposed. Insert the Bottleneck Transformer (BoT)
block [5] into VoVNetV2 [6], and replace the traditional convolution in VoVNetV2 with
Ghost Conv (Ghost Convolution) [7]. The BoT block obtains the global dependency of
the image by aggregating the local interaction information of the image, allowing the
network to obtain long sequences of associated features. Ghost Conv can significantly
reduce the network computing costs and memory usage by replacing some traditional
convolutions with cheap linear operations. The improved backbone network not
only enhances the feature extraction capabilities of the model, but also reduces the
calculation amount and parameter amount of the model.

(2) Use Feature Pyramid Grids (FPG) [8] to replace the Neck part of the original network.
FPG is a deep multi-path feature pyramid that fuses the feature in multiple directions
in multi-scale space to obtain fine-resolution features with semantic information.

(3) Add Convolutional Block Attention Module (CBAM) [9] to the Head part of the
original network. The CBAM attention mechanism first learns feature information
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from the two main dimensions of the space and channel, and then fuses it to obtain
the refined feature information.

2. Related Work

Currently, the deep learning-based instance segmentation methods can be broadly
categorized into two-stage and one-stage approaches. The two-stage instance segmentation
methods can be further divided into top-down and bottom-up approaches. The top-down
methods involve object detection to locate the boxes containing each instance, followed by
semantic segmentation within these boxes. The bottom-up methods, on the other hand,
begin with semantic segmentation to identify pixels and then use clustering or other metric
learning methods to distinguish the instances of the same class. The one-stage instance
segmentation methods can generally be classified into two categories: those based on global
image information and those based on local image information. The global image-based
methods do not require cropping or ROI alignment processes. Instead, they initially form a
feature map for the entire instance and then use various operations to combine features to
obtain the final mask for each instance. The local region-based methods directly output
instance segmentation results based on local information. In a sense, the bounding box
serves as a rough mask, approximating the contour of the mask by using the smallest
bounding rectangle.

2.1. Two-Stage

SDS [10] was one of the earliest instance segmentation algorithms, obtaining the
segmentation results through recommendation generation, feature extraction, region clas-
sification, and region refinement. However, due to relying solely on CNN technology
for feature extraction, it resulted in masks with coarse details and imprecise positional
information. DeepMask [11] approached the image segmentation as an extensive binary
classification problem, while SharpMask [12] enhanced the output of DeepMask, producing
higher fidelity masks that accurately delineated the object boundaries. Fast RCNN [13] per-
formed global feature extraction on the entire image, replacing the final max-pooling layer
with RoI (Region of Interest) pooling. It also incorporated parallel different fully connected
layers at the end of the network. Faster RCNN introduced the Region Proposal Network
(RPN) to replace the selective search algorithm used in Fast RCNN, significantly improving
network efficiency. Mask RCNN [14] extended Faster RCNN by adding a semantic seg-
mentation branch, achieving better segmentation results. However, it heavily relied on the
accuracy of the bounding boxes and exhibited a poorer performance in detecting small-scale
objects. SCNet [15] leverages the global context information to reinforce the relationships
between the classification, detection, and segmentation subtasks. FASA [16] dynamically
generates virtual features, providing more positive samples for rare categories, and em-
ploys loss-guided adaptive strategies to prevent overfitting. RefineMask [17] and ISTR [18]
combine the fine-grained features in the segmentation process, yielding high-quality masks
for both large and small objects, although they come at a slower processing speed.

2.2. One-Stage

YOLACT [19] introduced a mask branch into the single-stage object detection models,
achieving instance segmentation through two parallel branch tasks. However, it strug-
gled to suppress the external noise outside the RoIs, leading to potential mask leakage.
YOLACT++ addressed these issues by introducing deformable convolutional networks
(DCN) into the model’s backbone network, optimizing the prediction heads, and adding a
Mask R-scoring network branch to enhance mask prediction quality. ContrastMask [20]
made effective use of the training data, allowing data from new categories to contribute
to the segmentation model’s optimization process. It achieved this by transferring the
segmentation ability of base categories to new ones through a unified pixel-level contrastive
learning framework. However, it couldn’t guarantee the correctness of the foreground
and background partitioning for new categories. PolarMask [21] reformulated the in-
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stance segmentation problem by predicting the instance contours through center-based
classification and dense distance regression in polar coordinates. This greatly simplified
the model training process. SOLO [22] defined instance segmentation as a dual problem
involving the category-aware predictions and instance-aware mask generation. It predicted
the instance categories through the Category Branch and obtained corresponding instance
masks through the Mask Branch. SOLOv2, an improvement over SOLO, enhanced the
Mask Branch by dividing it into the mask kernel prediction and mask feature learning
components. These components were responsible for predicting the convolutional kernels
and feature masks, respectively, and introduced the concept of Matrix Non-Maximum
Suppression (Matrix NMS). While SOLOv2 addressed the issues of mask inefficiency, low
resolution, and imprecise mask prediction, it still faced challenges in segmenting small-
scale objects and achieving faster processing speeds. Tensormask [23] leveraged structured
4D tensors to represent the masks in spatial and elevation dimensions. BlendMask [24], a
fusion of Mask RCNN and YOLACT, incorporated not only the object detection results but
also the information from the FPN (Feature Pyramid Network). The PointRend method [25]
by the team led by He K optimized the image segmentation at the object edges, improving
the performance in challenging edge areas. E2ec [26], proposed by Zhang T and colleagues,
is a multi-stage, efficient end-to-end contour-based instance segmentation model suitable
for high-quality instance segmentation.

While two-stage instance segmentation methods offer a high segmentation accuracy,
they struggle with poor real-time performance. Conversely, the single-stage instance seg-
mentation methods have greatly improved the real-time capabilities but often struggle with
segmenting small objects effectively. Therefore, the focus of this work is to enhance the mask
representation of small objects and improve the network’s accuracy in segmenting them.

3. Materials and Methods

To balance the accuracy and real-time performance of multi-object instance segmenta-
tion in complex backgrounds, this paper builds upon the single-stage instance segmentation
network SOLOv2. We enhance the feature extraction capabilities of the backbone network,
addressing the issue of information loss caused by the FPN’s direct fusion of the high and
low-level information. This strengthens both the spatial and channel features in the feature
map, resulting in a more comprehensive and improved instance segmentation algorithm.
The overall structure of the improved algorithm is as shown in Figure 1.
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The input image is first divided into S× S grids, and the features are extracted through
the backbone network. The Neck part fuses the features and then enters the Head module
to predict the instance categories and masks, respectively. Each grid in the Category Branch
is responsible for predicting an instance. For the instance located at grid (i, j), the k-th
channel represents its category probability, k = i ∗ S + j. In order to reduce the amount of
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network parameters and calculations, the Mask Branch is decoupled into the Kernel Branch
and the Feature Branch, which are respectively responsible for generating the convolution
kernel G and the feature map F that requires convolution. After convolution, the instance
mask is obtained. For an instance located at grid (i, j), its mask is as shown in Equation (1).

Mi,j = Gi,j ∗ F (1)

3.1. Backbone

VoVNetV2 is an efficient lightweight backbone network. It first consists of three 3× 3
convolutional layers to form a stem block to complete the downsampling operation. Then
it goes through a four-stage One-Shot Aggregation (OSA) module. It is composed of convo-
lutional layers, and the subsequent feature maps are immediately aggregated, fused with
the Effective Squeeze-Excitation (eSE) module, and then the residual connections are added
to obtain the final output. The eSE module aims at the problem of channel information loss
due to size reduction in the Squeeze-and-Excitation (SE) attention mechanism. It uses two
Full Connection (FC) layers that do not reduce the channel size to retain channel informa-
tion, and improves the interaction between the feature map channels. The dependencies
are explicitly modeled to enhance the representation ability of feature maps. The addition
of the eSE module improves the network’s ability to interact with information between
image channels, but it lacks the impact of global information on the features. Therefore,
this article adds a BoT block to the original OSA module to obtain global dependencies by
aggregating the local interactions.

The BoT block moves self-attention into computer vision tasks, adding 1 × 1 con-
volutions before and after the Multi-Head Self-Attention (MHSA) structure. It has been
confirmed in the literature [5] that BoT block greatly improves the small object detection.
The OSA module that adds the BoT structure not only focuses on the aggregation of the
local information, but also improves the network’s attention to the global information,
effectively combining the local information and global information, making the features of
small objects in the image more prominent. The MHSA structure used in the BoT block is
as shown in Figure 2.
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In order to process the two-dimensional images, the PatchEmebd module is used
to adjust the spatial dimension of the two-dimensional image x ∈ RH×W×C to a one-
dimensional sequence xp ∈ RN×(P·C), where (H, W) is the resolution of the input image, C
is the number of channels, (P, P) is the resolution of each image block, and N = HW/P2

is the number of image blocks, which is the effective input sequence length of the MHSA
module [27]. In order to enable the MHSA module to utilize the sequence order information,
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the position information about the sequence is added to the feature sequence, and three
identical feature matrices Q, K, and V are generated. The feature matrix is projected h
times to the Cq, Ck and Cv dimensions through linear projection to calculate the dot product
attention in parallel [28]. Its calculation is as shown in Equation (2).

Attention(Q, K, V) = so f tmax(
QKT
√

Ck
)V (2)

Since the addition of the BoT block will inevitably lead to an increase in the model
parameters and calculation amount, in order to solve this problem, this article uses Ghost
Conv to replace the traditional convolution to reduce the model parameters and calculation
amount. Ghost Conv is a method of compressing models that can generate more feature
maps with fewer parameters, reducing the network parameters and calculation volume
while ensuring the network accuracy. In order to reduce the amount of network calculations,
Ghost Conv divides the traditional convolution into two steps as shown in Figure 3. First,
a feature map with a smaller channel is generated through the traditional convolution,
and then based on the obtained feature map, a cheap linear transformation operation is
performed (depthwise conv) to generate a new feature map, and finally the two sets of
feature maps are spliced together to obtain the final output feature map.
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Where c, h, and w respectively represent the channel, height, and width of the input
image, m, h′, and w′ respectively represent the channel, height, and width of the intrinsic
feature maps obtained after traditional convolution, n represents the final output feature
map channel, the traditional convolution kernel size is k, Φ represents the depthwise conv,
the depthwise convolution kernel size is d, after s transformations, the speed up ratio (rs)
between the calculation amount of the traditional convolution and the calculation amount
of Ghost Conv is as shown in Equation (3).

rs =
n ∗ h′∗w′ ∗ c ∗ k ∗ k

m ∗ h′ ∗ w′ ∗ c ∗ k ∗ k+(s−1) ∗ m ∗ h′ ∗ w′ ∗ d ∗ d
= c ∗ k ∗ k

1
s ∗ c ∗ k ∗ k+ s−1

s ∗ d ∗ d
≈ s ∗ c

s+c−1 ≈ s
(3)

After s transformations, the compression ratio (rc) between the parameter amount of
the traditional convolution kernel and the parameter amount of the Ghost Conv convolution
kernel is as shown in Equation (4).

rs =
n ∗ c ∗ k ∗ k

m ∗ c ∗ k ∗ k + (s− 1) ∗m ∗ d ∗ d
≈ s ∗ c

s + c− 1
≈ s (4)

Since n is the number of channels of the final output feature map n = m ∗ s, m = n
s ,

s− 1 is because the identify part does not need to be calculated. It can be seen from the
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above calculation formula that compared with the traditional convolution, Ghost Conv can
reduce the calculation amount and parameter amount of the model and achieve a faster
calculation speed.

3.2. Neck

After SOLOv2 uses the backbone network to extract the image features, it obtains
feature maps of different sizes at all levels through the Feature Pyramid Network (FPN)
type Neck. Each level of the feature map enters the prediction head to predict the semantic
categories and instance masks. In the feature map output of each size of the feature
pyramid network, the small-size feature map has a larger receptive field and rich semantic
information, but the resolution of the image is lower, the target position is rough, and the
small target information is missing; while the large-size feature map has a large receptive
field and rich semantic information. The size feature map has a high resolution and accurate
target location, but the receptive field is small and lacks semantic information. In order to
solve this problem, this paper builds fine resolution features by using an FPG instead of
an FPN.

An FPG is a deep multi-path feature pyramid. The structure is as shown in Figure 4.
The feature scale space is represented as a regular grid of parallel bottom-up paths and
fused by multi-directional lateral connections. Different from an FPN, all independent
pathways of an FPG are built from the bottom up, similar to the backbone pathway from
the input image to the predicted output. To achieve information exchange at all levels of
the image, an FPG interweaves the pyramid paths across scales and within scales with
various lateral connections to form a deep network of feature pyramids.
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In Figure 4, the green arrow realizes feature fusion in the adjacent channels, the blue
arrow shortens the path from the low-level features to the high-level features, the purple
arrow fuses the upsampling features and downsampling features together, and the red
arrow directly connects and shortens the network training time.

3.3. Head

A CBAM is an efficient lightweight attention module. Its structure is as shown in
Figure 5. It obtains the image feature weights from two dimensions: channel and space,
and then refines the feature map to enhance the representation ability of the feature map.
The feature map undergoes global max pooling and global average pooling, respectively, to
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obtain two weight vectors and let the weight vectors enter the same Multilayer Perceptron
(MLP), respectively. The mapping weights output by the MLP are added at the pixel level
and then activated by sigmoid to output the channel. Attention characteristics MC, the
calculation is as shown in Equation (5).

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))

= σ
(

W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
) (5)

where σ is the sigmoid function, W0 and W1 are the MLP shared weights, and W0 follows
the ReLU activation function. Channel-multiply MC and the input feature map to obtain
F′, and use it as the input of the Spatial Attention Module (SAM).
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In the SAM module, the global max pooling and global average pooling are first
performed based on the channel to obtain two feature maps with a channel number of 1.
After channel splicing, a 7 × 7 convolution operation is performed to reduce the channel
to 1. After sigmoid obtains the spatial attention feature MS(F′), and the calculation is as
shown in Equation (6).

Ms
(

F′
)
= σ

(
f 7×7([AvgPool

(
F′
)
; MaxPool

(
F′
)]))

= σ
(

f 7×7
([

F′savg; F′smax

]))
(6)

where σ is the sigmoid function, f 7×7 represents 7× 7 convolution. Multiply MS(F′) and
F′ to get the final output.

4. Results
4.1. Dataset

This article uses the Cityscapes data set for the experiments. The Cityscapes dataset
is a road scene object segmentation dataset that focuses on providing the training and
performance testing for autonomous driving environment perception models. The images
in this dataset come from video sequences of different road scenes in 50 cities in Germany
and its neighboring countries, covering different street scenes, road scenes, and seasons.
There are a total of 5000 finely annotated images and 2000 roughly annotated images. Since
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instance segmentation requires a high level of data annotation, this experiment only uses
finely annotated images, including 2975 finely annotated images for training, 1525 images
for testing, and 500 images for validation. This article studies the instance segmentation
algorithm in road scenes, so we selected the eight most common categories of road scenes
in the Cityscapes dataset that contain instance segmentation labels, namely, person, rider,
car, truck, bus, train, motorcycle, and bicycle. The number of images and instances for each
category is shown in Table 1.

Table 1. The number of images and instances of each category in the dataset.

Categories Number of Images Number of Instances

Person 2343 18,406
Rider 1023 1762
Car 2832 27,963

Truck 359 482
Bus 274 379

Train 142 168
Motorcycle 513 743

Bicycle 1646 4157

4.2. Experimental Environment Configuration

The experimental environment for this experiment is shown in Table 2. Hyperparame-
ter setting: Optimizer, AdamW; Weight decay, 0.0001; Learning rate (Lr), 0.0001; Epoch,
300; Batchsize, 4; Lr is adjusted at 20th, 30th, 40th epochs; Image scale is randomly sampled
from 1024–2048.

Table 2. Experimental environment configuration.

Software and Hardware Version and Model

CPU Intel(R) Xeon(R) Silver 4214R CPU @ 2.40 GHz
GPU Nvidia GeForce RTX 3080Ti

Operating System Ubuntu18.04
Frame Pytorch1.13.0, CUDA11.7

4.3. Experimental Evaluation Indicators

As this article is based on SOLOv2 for improvement, we will continue to use the
original evaluation indicators of SOLOv2, that is, using the mean average precision (mAP)
and mean average recall (mAR) to comprehensively evaluate the algorithm. The calculation
is as shown in Equations (7) and (8).

mAP =
1
C ∑

c

(
1
|T|∑t

TP(t)
TP(t) + FP(t)

)
(7)

mAR =
1
C ∑

c

(
1
|T|∑t

TP(t)
TP(t) + FN(t)

)
(8)

Among them, C represents the total number of categories, c represents the current
category, T represents the threshold, t represents the current threshold, true positive (TP)
represents a positive sample that is correctly predicted as a positive sample by the model;
false positive (FP) represents a positive sample that is incorrectly predicted by the model.
Negative samples of positive samples; false negative (FN) represents positive samples that
are incorrectly predicted as negative samples by the model.

The segmentation speed of the algorithm was evaluated using Frames Per Second
(FPS).
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4.4. Comparison of Different Algorithms

In order to verify the effectiveness of the algorithm proposed in this article, it is
compared with the Mask RCNN, YOLACT, PolarMask, SOLO, and SOLOv2 algorithms.
The experimental results are shown in the Table 3. Compared with Mask RCNN, the mAP,
APS, APM, and APL of the algorithm proposed in this article decreased by 3.2%, 8.4%, 3.1%,
and 0.5%, respectively, but the FPS increased by 5.1; compared with YOLACT, the mAP of
the algorithm proposed in this article, the APS, APM, and APL increased by 13.3%, 3.5%,
15%, and 19%, respectively, and FPS also increased by 2.4; compared with PolarMask, the
mAP, APS, APM and APL of the algorithm proposed in this article increased by 8.9%, 2.6%,
9.7%, and 11.4%, respectively. FPS decreased by 0.6; compared with SOLO, the mAP, APS,
APM, and APL of the algorithm proposed in this article increased by 6.8%, 2.7%, 9.6%, and
5.2%, respectively, and FPS increased by 3; Compared with SOLOv2, the mAP, APS, APM,
and APL of the algorithm proposed in this article have increased by 4.2%, 2.6%, 6.9%, and
2.5%, respectively, and the FPS has increased by 1.7. It can be seen that, except for the
two-stage instance segmentation algorithm Mask RCNN, which has a higher segmentation
accuracy than the algorithm proposed in this article, the segmentation accuracy of the other
single-stage instance segmentation algorithms is lower than the algorithm proposed in this
article, especially in the segmentation of small objects. In terms of the segmentation speed,
the FPS of the algorithm proposed in this article is higher than the other algorithms except
PolarMask.

Table 3. Comparison of performance of different algorithms.

Model mAP APS APM APL FPS

Mask
RCNN_r50 30.8 12.5 28.3 50.6 3.8

YOLACT_r50 14.3 0.6 10.2 31.1 6.5
PolarMask_r50 18.7 1.5 15.5 38.7 9.5

SOLO_r50 20.8 1.4 15.6 44.9 5.9
SOLOv2_r50 23.4 1.5 18.3 47.6 7.2

Our 27.6 4.1 25.2 50.1 8.9

This article also compares the segmentation accuracy between the data set classes
between the proposed algorithm and the original algorithm. The results are shown in the
Figure 6. Among the eight categories, the algorithm proposed in this article improved by
9.9%, 9.9%, 2.3%, 8.1%, and 7.5%, respectively, compared with the original algorithm in the
five categories of person, rider, truck, motorcycle, and bicycle. In the three categories of car,
bus, and train, there is a slight decrease compared with the original algorithm.
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4.5. Ablation Experiment

In order to further verify the effectiveness of the proposed structure, it is compared
with the detection effect of the original module, and the results are shown in Table 4. After
replacing the backbone network with VoVNetV2, the mAP dropped by 2.9% compared with
the original model, but FPS increased by 2.9. Although the addition of VoVNetV2 reduced
the model segmentation accuracy, it accelerated the model’s processing speed. When the
FPN is replaced by an FPG, the model’s mAP increases by 1.9% and the FPS decreases by
0.3. After adding the BoT module, the mAP of the model increased by 2.2%, but the FPS
decreased by 1.4. When the convolution is replaced by Ghost Conv, although the mAP
value of the model only increases by 0.2%, the FPS increases by 1.1. Finally, after adding the
CBAM module, the mAP increased by 4.2% and the FPS increased by 1.7 compared with the
original model, which verified the effectiveness of the algorithm proposed in this article.

Table 4. Ablation Experiment Performance Comparison.

Model
Backbone Neck Modules

mAP mAR FPS
Res50 VoVNetV2 FPN FPG BoT Ghost Conv CBAM

SOLOv2
√ √

23.4 27.6 7.2
SOLOv2-V

√ √
20.5 25.2 10.1

SOLOv2-VG
√ √

22.4 26.7 9.8
SOLOv2-VGB

√ √ √
24.6 27.2 8.4

SOLOv2-VGBG
√ √ √ √

24.8 28.0 9.5
SOLOv2-VGBGC

√ √ √ √ √
27.6 30.3 8.9

To provide a more intuitive depiction of the improved algorithm’s effectiveness, we
conducted a visual comparison between the segmentation results of the improved algorithm
and the original SOLOv2 algorithm, as illustrated in Figure 7. In Figure 7, from top to
bottom, you can observe the original image, the SOLOv2 segmentation result image, and
the improved segmentation result image. The red boxes indicate areas where SOLOv2
failed to detect or achieved incomplete segmentation compared to the improved algorithm.
It’s evident that, when compared to the original algorithm, the improved algorithm excels
in terms of the segmentation accuracy and mask quality. Particularly with respect to smaller
objects, the original algorithm often exhibits missed detections and incorrect segmentations
in such cases.
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5. Conclusions and Future Work

This paper proposes a new instance segmentation algorithm based on SOLOv2. The
BoT module is added to the backbone network VoVNetV2 and the traditional convolution
is replaced by Ghost Conv. The improved backbone network is used to replace the ResNet
network to solve the problem of the poor edge contour segmentation quality of the model
mask, and the problem of slow segmentation speed. A PFG is used to replace the FPN
in the Neck part of the algorithm to solve the problem of the poor segmentation of small
objects. The CBAM module is added to the Head part to obtain more detailed feature
maps to improve the quality of the mask. The experimental results show that the improved
algorithm has a mAP of 27.6% in the eight common road scene categories of the Cityscapes
dataset, especially in the five categories with a relatively large number of small targets:
person, rider, truck, motorcycle, and bicycle. The mAP improvement is particularly obvious,
which is better than the current mainstream single-stage instance segmentation algorithm
and only slightly weaker than the two-stage instance segmentation algorithm, but the
segmentation speed is much faster than the two-stage instance segmentation algorithm. In
the next step, we will use knowledge distillation, channel pruning and other methods to
reduce the size of the algorithm while ensuring the accuracy of the algorithm, and fully
integrate it into the embedded devices. At the same time, we will also consider how to
effectively integrate various sensor data (such as RGB images, LiDAR, infrared images,
etc.) into instance segmentation tasks to improve the understanding of complex scenes
and the accuracy of object detection. This will help to better cope with various complex
road scenarios.
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