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Abstract: Graph-based semi-supervised multi-view clustering has demonstrated promising perfor-
mance and gained significant attention due to its capability to handle sample spaces with arbitrary
shapes. Nevertheless, the ordinary graph employed by most existing semi-supervised multi-view
clustering methods only captures the pairwise relationships between samples, and cannot fully
explore the higher-order information and complex structure among multiple sample points. Addi-
tionally, most existing methods do not make full use of the complementary information and spatial
structure contained in multi-view data, which is crucial to clustering results. We propose a novel
hypergraph learning-based semi-supervised multi-view spectral clustering approach to overcome
these limitations. Specifically, the proposed method fully considers the relationship between multiple
sample points and utilizes hypergraph-induced hyper-Laplacian matrices to preserve the high-order
geometrical structure in data. Based on the principle of complementarity and consistency between
views, this method simultaneously learns indicator matrices of all views and harnesses the tensor
Schatten p-norm to extract both complementary information and low-rank spatial structure within
these views. Furthermore, we introduce an auto-weighted strategy to address the discrepancy
between singular values, enhancing the robustness and stability of the algorithm. Detailed experi-
mental results on various datasets demonstrate that our approach surpasses existing state-of-the-art
semi-supervised multi-view clustering methods.

Keywords: semi-supervised learning; multi-view clustering; hypergraph learning

1. Introduction

Clustering is a fundamental task in machine learning and pattern recognition [1] that
aims to partition given samples into several meaningful groups. With the rapid advance-
ment of computer technology and the proliferation of various digital devices, a vast amount
of multi-view data has emerged. Multi-view data generally refers to diverse information
distinguished by attributes, sources, and characteristics of objects. Clustering methods
that utilize multi-view data [2,3] can take advantage of the consistent and complementary
information present in the data, resulting in learning outcomes that are more effective and
accurate compared to using a single view of the data.

Multi-view clustering has become a major topic in artificial intelligence and pattern
recognition over the past two decades, with numerous related methods being developed.
For instance, Yang and Hussain [4] extended unsupervised k-means (UKM) clustering to
a multi-view k-means clustering, called unsupervised multi-view k-means (U-MV-KM).
The proposed U-MV-KM algorithm can automatically find an optimal number of clusters
without any initialization for clustering multi-view data. Xia et al. [5] presented a robust
multi-view spectral clustering scheme (RMSC) for mining valid information within graphs.
This method considers potential noise in the input data and employs low-rank and sparse
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decomposition to determine the shared transfer probability matrix. After that, a standard
Markov chain model is applied to the learned transfer probability matrix for clustering.
In the work of Nie et al. [6], an auto-weighted multiple graph learning (AMGL) method
was proposed which automatically and without human intervention assigns reasonable
weights to each graph. Peng et al. [7] developed a cross-view matching clustering (COMIC)
method for multi-view clustering that automatically learns almost all parameters. This
approach eliminates heterogeneous gaps between multiple views and learns view-specific
representations, thereby improving the clustering process. Furthermore, it has been found
that algorithms can achieve impressive performance by incorporating deep metric learning
networks into multi-view clustering [8,9]. Considering the scalability and generalization
of the spectral embedding, Shaham et al. introduced a deep learning approach to spectral
clustering and proposed a network called SpectralNet [10], which learns a map that embeds
input data points into the eigenspace of their associated graph Laplacian matrix and
subsequently clusters them.

Although the abovementioned studies have achieved satisfactory results, they have
all been unsupervised. In reality, complex data structures, data noise, or data corruption
can significantly impact the performance of unsupervised clustering methods. Moreover,
due to different user preferences, there may be more than one reasonable clustering result
for the same dataset. Consequently, it is crucial to incorporate a small amount of label
information into multi-view clustering.

However, labeled samples are often scarce in practical applications, and only a limited
amount of label information can be used to address clustering problems. As a result,
semi-supervised clustering methods have emerged. Semi-supervised clustering aims to
incorporate limited prior information into clustering algorithms to satisfy user preferences
and enhance data partitioning accuracy. Through the persistent efforts of researchers,
semi-supervised multi-view clustering methods [11,12] have made significant progress
in both theoretical research and practical applications, with a continuous stream of novel
related algorithms being proposed. For instance, Liang et al. [13] introduced a method
called graph-regularized partially shared non-negative matrix factorization (GPSNMF),
which preserves the inherent geometric structure of the data while leveraging the available
label information. Bai et al. [14] improved the label propagation algorithm to utilize label
information and pairwise constraints simultaneously. Their proposed method addresses the
misalignment problem of label propagation, manages pairwise constraints, and effectively
explores and mines various types of prior knowledge.

Although existing semi-supervised multi-view clustering methods have achieved
satisfactory results, there are several limitations that need to be addressed:

(1) Certain methods, such as AMGL [6], depend heavily on predefined graphs of
different views. Clustering performance can be significantly compromised when the
quality of the graphs is poor. Moreover, the ordinary graphs used by most methods only
consider pairwise relationships, inevitably leading to information loss when dealing with
practical problems involving complex data structures.

(2) Each view in the multi-view data contains specific attribute information, and dif-
ferent views exhibit consistency and complementarity. Only by comprehensively utilizing
these diverse data can the essence of the subjects be fully reflected. However, certain
clustering algorithms assume that all views have identical indicator matrices, and may not
fully consider the differences among different views. This lack of consideration can lead to
underfitting in practical applications.

(3) Several existing methods fail to fully exploit the spatial structure and complemen-
tary information contained in the indicator matrices of multiple views, even though this
information is essential for improving the accuracy of multi-view clustering.

We present an efficient hypergraph learning-based semi-supervised multi-view spec-
tral clustering approach to address the aforementioned challenges. A hypergraph is a
generalization of a graph in which an edge can connect more than two vertices. Compared
with ordinary graphs, hypergraphs can offer more accurate representation of the relation-
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ships between objects exhibiting multiple associations. Our method combines hypergraph
learning and semi-supervised multi-view spectral clustering into a cohesive framework that
effectively preserves complementary information and higher-order structures by construct-
ing hypergraph-induced hyper-Laplacian matrices on view-specific graphs and applying
the tensor Schatten p-norm to the tensor formed from the indicator matrix. We outline our
key contributions as follows:

• Our proposed method adaptively learns the graph for each view to avoid overdepen-
dence of clustering performance on predefined graphs. Furthermore, this approach
considers the relationships between multiple sample points in the graph to prevent the
loss of valuable information, preserving higher-order geometric structures through
hypergraph-induced hyper-Laplacian matrices.

• The proposed method concurrently learns the indicator matrices of all views. It em-
ploys the tensor Schatten p-norm to extract these views’ complementary information
and low-rank spatial structures. As a result, the learned common indicator matrix
offers an effective representation of the clustering structure.

• In our proposed method, we design a straightforward auto-weighted scheme for the
tensor Schatten p-norm which adaptively determines the ideal weighted vector to
handle differences between singular values. This enhances the flexibility and stability
of the algorithm in practical applications. Comprehensive experiments on a wide
range of datasets demonstrate the superiority of our proposed approach.

2. Related Works

Clustering methods are mainly divided into subspace-based methods, matrix decom-
position based methods, and graph-based methods, as shown in Figure 1. As one of the
most extensively researched multi-view clustering techniques, graph-based clustering has
exceptionally characterized sample relationships and elucidated intricate data structures.
At the heart of graph-based clustering [15,16] lies the construction of high-quality graphs,
which has been the focus of numerous studies.

Subspace-based Methods Graph-based Methods

Clustering Methods

Matrix decomposition-

based Methods

Ordinary graph-based 

Methods

Hypergraph-based 

Methods
Sparse-based 

Methods

Low rank-

based Methods
Other Methods

Figure 1. The taxonomy of clustering methods.

Currently, numerous graph-oriented multi-view clustering methods have been proposed.
Recognizing that different views have consistent clustering structures, Kumar et al. [17] de-
veloped a co-regularized multi-view spectral clustering method. The indicator matrices
of all views were jointly optimized to achieve consistent clustering results by applying
co-regularization while following the performance of standard spectral clustering for each
view. Considering the impact of similarity matrix construction and weighting strategy
design on multi-view clustering, Cheng et al. [18] fused multiple graphs to obtain a more
meaningful similarity matrix and leveraged known information to set corresponding
weights for each view. Their method fully accounts for the differences between each view,
enhancing the algorithm’s stability and providing a supplementary direction for various
graph-based clustering methods. Cai et al. [19] developed a multi-modal spectral clus-
tering algorithm (MMSC) which combines diverse features to generate a common graph
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Laplacian matrix. In addition, they introduced non-negative relaxation in the objective
function to directly obtain the discrete cluster indicator matrix and ensure the algorithm’s
convergence. To properly integrate multiple data representations to achieve the optimal
linear combination, Karasuyama et al. [20] proposed a sparse multiple graph integration
algorithm (SMGI). This method effectively avoids the impact of noisy graphs on clustering
reliability by computing sparsity weights. To improve algorithmic flexibility, Cai et al. [21]
presented an adaptive multi-modality semi-supervised clustering algorithm (AMMSS)
that automatically assigns appropriate weights to different modalities and learns a com-
mon indicator matrix representing the class of unlabeled samples. To enhance clustering
performance through reliable graphs, Zhan et al. [22] introduced a multi-view clustering
algorithm for graph learning (MVGL). This algorithm reflects clustering results by ensur-
ing that the global graph integrated from each view has an explicit number of connected
components through a rank constraint on the Laplacian matrix. Nie et al. [23] proposed a
multi-view learning method with an adaptive neighbor (MLAN), which can automatically
assign the optimal weight to each view without requiring additional parameters or human
intervention. This method directly divides the learned ideal graph into specific clusters
through reasonable rank constraints, improving the algorithm’s effectiveness. To achieve
a breakthrough in efficiency, Zhang et al. developed a fast multi-view semi-supervised
learning method (FMSSL) [24]. By combining anchor-based graphs with multi-view semi-
supervised learning strategies, FMSSL reduces the computational complexity of clustering
and enhances algorithm effectiveness by exploiting feature and label information.

As is evident from the literature, graph-oriented methods have been extensively in-
vestigated and demonstrate promising performance thanks to their ability to uncover
hidden structures within data. However, the aforementioned clustering approaches are
all based on ordinary graphs. Many real-world problems involve highly complex data
structures, and ordinary graphs, which focus solely on relationships between two sample
points, often fail to provide sufficient information. Hypergraphs possess powerful charac-
terization ability, allowing them to effectively model various networks, systems, and data
structures with intricate interlocking relationships. Consequently, several methods attempt
to incorporate hypergraph learning into clustering research to overcome the limitations of
ordinary graphs.

Aiming to explore relationships among multiple sample points, Zhou et al. [25] ex-
tended spectral clustering techniques typically employed on ordinary graphs to hyper-
graphs. They further designed transductive inference and hypergraph embedding methods
based on the hypergraph Laplacian. Gao et al. [26] integrated sparse coding and hypergraph
learning within a unified framework, taking full advantage of hypergraphs’ higher-order
structure and significantly enhancing the robustness of the coding results. Yin et al. [27]
incorporated hypergraph Laplacian regularization into low-rank representation to obtain a
global low-dimensional representation matrix while accounting for the nonlinear geometric
structure of the data. Xie et al. [28] proposed a hyper-Laplacian regularized multilinear
multi-view to improve the clustering performance of a multi-view nonlinear feature sub-
space self-representation algorithm (HLR-M2VS). This algorithm employs tensor low-rank
and hyper-Laplacian regularization to preserve the global consensus and local high-order
geometrical structure.

3. Notation and Background
3.1. Notation

This section lays out the notation and definitions utilized throughout the paper. Bold
calligraphy, bold uppercase, bold lowercase, and lowercase letters are used to indicate
tensors, matrices, vectors, and elements, respectively. For example, F ∈ Rn1×n2×n3 denotes
three-order tensors, F ∈ Rn1×n2 is a matrix, f ∈ Rn1 is an n1-dimensional vector, and fijk

represents the entries of F . Moreover, F(i) denotes the i-th frontal slice of F . We obtain
F by taking the discrete Fast Fourier transform (FFT) of the tensor F along the third
dimension, that is, F = f f t(F , [], 3). Obviously, the inverse FFT of F along the third
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dimension can be represented as F = i f f t(F , [], 3). The Frobenius norm of tensor F is

specified by ‖F‖F =

√
∑i,j,k

∣∣∣ fijk

∣∣∣2. The trace of matrix F is represented by tr(F), and I is

an identity matrix.

Definition 1 (t-product [29]). Suppose that X ∈ Rn1×m×n3 and Y ∈ Rm×n2×n3 ; then, the
t-product X ∗ Y ∈ Rn1×n2×n3 is defined as

X ∗ Y = i f f t(bdiag(XY), [], 3), (1)

where we use X = bdiag(X ) to denote the block diagonal matrix with blocks that are frontal slices
of X .

By using the t-product, we have the following new product decompositions of tensors
(to save space, the definitions of the orthogonal tensor, f-diagonal tensor, and tensor
transpose are omitted, though see [29]).

Definition 2 (t-SVD [29]). The tensor Singular Value Decomposition (t-SVD) of F ∈ Rn1×n2×n3

is provided by F = U ∗ S ∗ VT, where U and V are orthogonal tensors of size n1 × n1 × n3
and n2 × n2 × n3, respectively, S is an f-diagonal tensor of size n1 × n2 × n3, and ∗ denotes the
t-product.

3.2. Hypergraph Preliminaries

Graphs can be used to illustrate the pairwise relationship between research objects.
Nevertheless, real-world problems are often described by extremely elaborate relationships
between data. In [25,28], it has been shown that compressing the elaborate relationships
between data into simple pairwise relationships undoubtedly results in lost information
that could be useful for clustering tasks. One way to remedy the problem of information
loss occurring in ordinary graphs is to represent the data in hypergraph form. It is worth
noting that a hypergraph can consider the relationship between multiple vertices, allowing
the high-order information and complex relationship of the data to be explored. For a given
hypergraph Z = (V, E, W), V = {vi}n

i=1 represents the set of n vertices in the hypergraph,
and E =

{
ej
}t

j=1 denotes the set of hyperedges, each of edge ej of which can be connected
to any number of vertices. Values can be assigned to each hyperedge to build a weighted
hypergraph based on a specific problem. In general, hyperedge ej is assigned a non-negative
number w(ej), which is the j-th diagonal element of the weight matrix W ∈ Rt×t. The
incidence matrix H ∈ Rn×t clearly and concisely represents the interrelationship between
hyperedges and vertices, and is made up of the following entries:

h(vi, ej) =

{
1 , i f vi ∈ ej
0 , otherwise

(2)

Figure 2 displays a hypergraph structure comprised of 3 hyperedges and 8 vertices.
As can be seen from Figure 2a, hyperedge e1 connects a set of vertices {v2, v4, v8}, hyper-
edge e2 connects vertices {v3, v5, v7}, and hyperedge e3 connects three vertices {v1, v6, v7}.
The incidence matrix H in Figure 2b corresponds to the hypergraph of Figure 2a, which
succinctly represents the connectivity of vertices and hyperedges.

Following the above definitions, we can calculate the unnormalized hyper-Laplacian
matrix [25] as follows:

Lh = DV −HWD−1
E HT (3)

where DE and DV indicate the degree matrices, the diagonal elements of which respectively
correspond to the degree of each hyperedge ej and the degree of each vertex vi. Based on the
discussion presented above, it is evident that an edge in a hypergraph can connect to more
than two vertices. An ordinary graph is a specialized form of a hypergraph in which each
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edge contains only two vertices. Unlike ordinary graphs, hypergraphs offer more accurate
representation of the relationships between objects exhibiting multiple associations.

v1

v5

v2

v3

v4

v7

v6

v8

e2

e1
e3

(a) hypergraph (b) incidence matrix H

Figure 2. Example of (a) the structure of a hypergraph and (b) its corresponding incidence matrix H.

4. Methodology
4.1. Auto-Weighted Multiple Graph Learning (AMGL)

Before presenting our method, it is worth reviewing the AMGL [6], which is one of
the most influential semi-supervised multi-view clustering methods that facilitate multiple
graph learning. Let X(v) ∈ Rdv×n(v = 1, 2, . . . m) represent the multi-view data matrix with
m views, where dv denotes the dimensionality of the v-th view and n indicates the number
of samples in dataset. Here, X(v) contains l tagged data and u untagged data that can be
divided into c categories. Suppose that G(v) =

{
g(v)ij

}
∈ Rn×n is the adjacency matrix

of the v-th view and the corresponding Laplacian matrix is LG(v) = DG(v) − ((G(v))T +

G(v))/2, where DG(v) ∈ Rn×n represents the degree matrix with ∑j (g(v)ij + g(v)ji )/2 as the
i-th diagonal element. Assume that F = [f1; f2; . . . ; fn] ∈ Rn×c is the cluster indicator
matrix, where c denotes the number of classes. Thus, the objective function of AMGL can
be represented by

min
F∈Rn×c

m
∑

v=1

√
tr(FTLG(v)F)

s.t. fi = yi ∀i = 1, 2, . . . , l
(4)

The label matrix Yl=[y1; y2; ...; yl ], where yi ∈ R1×c denotes the label vector of the i-th
data point. If the i-th sample falls under the j-th class, its element is represented by yij = 1;
otherwise, it is represented by yij = 0.

Although AMGL achieves promising results, it has a number of deficiencies: (1) it can-
not model unpaired relationships effectively in complex scenes, and its performance heavily
relies on predefined graphs, limiting its practical applications. (2) AMGL requires the same
indicator matrix F for different views, which is too strict and may lead to underfitting.
This constraint can reduce clustering accuracy, especially for datasets with pronounced
differences between views. (3) AMGL ignores the spatial structure and complementary
information in the indicator matrices for multiple views, which is imperative when seeking
to strengthen clustering capability.

4.2. Problem Formulation and Objective Determination

In this paper, we propose a semi-supervised multi-view clustering model that ad-
dresses the aforementioned problems. To be more precise, the proposed method is inspired
by the tensor Schatten p-norm (TSP) [30,31] and combines the insights mentioned above. It
simultaneously learns the indicator matrix F(v) ∈ Rn×c of all views and leverages the TSP
regularizer on the tensor F ∈ Rn×m×c to encode the main spatial structure and comple-
mentary information contained in multiple views. The three-mode tensor F is constructed
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by merging a different matrix F(v) and then rotating its dimensionality to n×m× c (see
Figure 3). For the constructed tensor F , its m-th frontal slice ∆(m) describes the similarity
between n sample points and the m-th cluster in different views. The idea indicator matrix
F(v) should ensure that the relationship between the n data points and the m-th cluster
is consistent in different views. Because different views usually show different cluster
structures, we impose a tensor Schatten p-norm minimization constraint on tensor F ,
ensuring that each ∆(m) has low-rank spatial structure. Thus, ∆(m) well encodes discrimi-
native information and utilizes the complementary information embedded in inter-views,
which helps to improve the clustering results. For all data points, we need to randomly
select l points as the labeled samples, while the remaining u points correspond to the
unlabeled samples. For greater convenience of derivation and description, we rearrange all
the data points such that the first l points are labeled samples and the subsequent u points
correspond to unlabeled samples. This processing ensures the randomness of data point
selection and while not affecting the result. Thus, F(v) is split into two parts, F(v)

l and F(v)
u ,

i.e., F(v) =
[
F(v)

l ; F(v)
u

]
, F(v)

l ∈ Rl×c, F(v)
u ∈ Ru×c, and l + u = n. On this basis, we rewrite

(4) as

min
F
(v)
l =Yl

α
m

∑
v=1

√
tr((F(v))

TLG(v)F(v)) + ‖F‖p
ω, Sp© (5)

where α is the balance parameter and ‖F‖ω, Sp© denotes the weighted tensor Schatten p-
norm [32] of the tensor F , which can be defined as

‖F‖ω, Sp© =

(
c

∑
i=1

∥∥∥F(i)
∥∥∥p

ω, Sp©

) 1
p

=

(
c

∑
i=1

min(n,m)

∑
j=1

ωj ∗ σj

(
F(i)
)p
) 1

p

(6)

where σj(F
(i)
) is the j-th largest singular value of F(i) and ωj is the j-th element of the

weighted vector ω. We can take advantage of the power processing scheme to bring the
rank of the learned consensus indicator matrix as close to the target rank as possible by
considering 0 < p ≤ 1 as the power parameter.

Construct
n

F(m)

F(2)

F(1)

m

c

Rotate

(m)

F(2)

F(1)(1)

(m)

(1)

(m)

m

n

F(m)

F(2)

F(1)

m

(m)(m)

c

c
m

F(m) … F(2) F(1)

(m)(m)(m)(m)

n

Figure 3. Tensor F construction.

In (5), it is necessary to consider the difference between singular values to fully explore
the higher-order tensorial structure and set a reasonable weighted vector ω. However, due
to the complexity and unpredictability of the data distribution, predefining the weighted
vector ω manually is not easy or circumscribed. Therefore, an adaptive weighting strategy
is introduced to solve this problem. The relevant lemma is as follows.

Lemma 1. For minimization of the weighted tensor Schatten p-norm, a closed-form global mini-
mizer can be acquired if the singular values are in non-increasing order and the weighted values are
in non-decreasing order [32,33].

There are significant differences between the singular values of a tensor. Because large
singular values can usually describe the main structure of the data, these values should
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shrink less. Based on the above insights and Lemma 1, an effective automatic weighting
strategy is designed to improve the algorithm’s flexibility. Specifically, the j-th element of
the weighted vector ω is defined as

ωj =

√
n×m

σj + ψ
, (7)

where
√

n×m is an empirical value, n and m respectively represent the number of samples
and the number of views, σj denotes the j-th singular value, and ψ is a very small value
which is set to 10−6 in the experiment. It is worth noting that the weighted value ωj indicates
the degree to which the j-th singular value shrinks, that is, the larger singular value should
shrink less and the smaller singular value should shrink more. As can be seen from Figure 4,
if the singular values are in non-increasing order, the corresponding weighted values ωj
are in non-decreasing order. In other words, this strategy can automatically calculate a
reasonably weighted vector ω for different datasets, improving the flexibility and stability
of the algorithm.

(a) the singular value (b) the weighted values

Figure 4. Illustration of the singular values and weighted values.

In terms of (5), the Lagrangian function can be expressed as follows:

α
m

∑
v=1

√
tr((F(v))

TLG(v)F(v)) + ‖F‖p
ω, Sp© + ζ(Υ,F ) (8)

where the formalized term ζ(Υ,F ) derives from the constraints and Υ represents the
Lagrange multipliers. Setting the derivative concerning F(v) to zero provides us with

α
m

∑
v=1

λ(v) ∂tr((F(v))
T

LG(v)F(v))

∂F(v)
+

∂‖F‖p
ω, Sp©

∂F(v)
+

∂ζ(Υ,F )

∂F(v)
= 0, (9)

where
λ(v) =

1

2
√

tr((F(v))
TLG(v)F(v))

(10)

It is worth noting that in (10) there is a dependency of λ(v) on F(v); therefore, (9) is
inconvenient to solve directly. Inspired by previous multi-view clustering approaches [6,34],
if λ(v) is set to be stationary, then (9) can be regarded as the solution to (11) provided below:

min
F
(v)
l =Yl

α
m

∑
v=1

λ(v)tr((F(v))
T

LG(v)F(v)) + ‖F‖p
ω, Sp© (11)
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For (11), it is challenging to manually obtain a suitable graph to represent the correla-
tion between samples due to the complexity of the data distribution and the differences
between the views. Moreover, if the predefined graph is not adequate, the performance
of the clustering algorithm may become severely degraded. In order to overcome this
limitation, we introduce adaptive learning graphs to our model, which can enhance its
stability by avoiding dependency on a fixed graph.

Furthermore, we adopt the hypergraph learning approach and use hypergraph-
induced hyper-Laplacian matrices in our method to reveal the higher-order geometric
structure of the data. This strategy can effectively capture the relationship between multi-
ple sample points, preserve essential information from the data, and improve the stability
and flexibility of the clustering method. Therefore, we formulate our objective function
as follows:

min
F
(v)
l =Yl

m

∑
v=1

1
τ(v)
‖G(v) − S(v)‖2

F + β‖F‖p
ω, Sp©

+ α
m

∑
v=1

λ(v)tr((F(v))
T

L(v)
h F(v))

s.t. S(v) ≥ 0, S(v)1 = 1, τ(v) ≥ 0, ∑m
v=1 τ(v) = 1

(12)

where S(v) ∈ Rn×n is the learned graph for the v-th view, which represents the affinities
among all the samples. For the sake of avoiding the negative effects of scale, we impose the
non-negative normalization constraint 0 ≤ S(v) ≤ 1, S(v)1 = 1, to maintain a unified range
of values for the affinities of all sample points via regression. Here, β represents a trade-off
parameter and τ(v) describes the magnitude of the non-negative normalized weight for the
v-th view.

In Formula (12), L(v)
h represents the hyper-Laplacian matrix of the v-th view con-

structed from the affinity matrix S(v). Because S(v) is adaptively learned, hypergraphs
constructed based on the affinity matrix S(v) do not depend on fixed predefined graphs; in
this way, the relationship between data points can be better described. When L(v)

h in the
model is replaced by LS(v) , it becomes an ordinary Laplacian matrix constructed based on
S(v), and the corresponding hyper-Laplacian regularization is simplified into the traditional
graph Laplacian constraint that can only capture the pair relationship between samples.

To be more specific, in the process of building the hyper-Laplacian matrix L(v)
h we

regard each sample in the multi-view dataset as a vertex in the hypergraph, take each
vertex p(v)i as the centroid vertex, and construct the corresponding hyperedge e(v)j using
the k-nearest neighbor method; that is to say, the hypergraph constructed for each view
is composed of n hyperedges and each hyperedge contains k vertices. Accordingly, the
view-specific incidence matrix H(v) ∈ Rn×n can be obtained according to Formula (2),
that is, in the v-th view, we have h(v)ij = 1 if vertex p(v)i belongs to hyperedge e(v)j and

h(v)ij = 0 otherwise. Because the affinity matrix S(v) of each view is adaptively learned

in Formula (12), a weight w(e(v)j ) can be assigned to each hyperedge e(v)j on each view
according to the following formula:

w(e(v)j ) = ∑
p(v)i ∈e(v)j

S(v)
ij (13)

The corresponding weight matrix W(v) ∈ Rn×n is a diagonal matrix with w(e(v)j ) as its

diagonal element, i.e., W(v) = diag
(

w(e(v)1 ), w(e(v)2 ), . . . , w(e(v)n )
)

. Based on this, the edge
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degree D(v)
E and the vertex degree D(v)

P corresponding to the v-th view can be calculated
according to the following formula:

d(e(v)j ) =
n
∑

i=1
h(p(v)i , e(v)j )

d(p(v)i ) =
n
∑

j=1
w(e(v)j )h(p(v)i , e(v)j )

(14)

where D(v)
E and D(v)

P are diagonal matrices with diagonal elements that correspond to the

degrees of each hyperedge e(v)j and the degrees of each vertex p(v)i , respectively.

Finally, the view-specific hyper-Laplacian matrix L(v)
h built on the affinity matrix S(v)

can be formulated as follows:

L(v)
h = D(v)

P −H(v)W(v)D(v)
E

−1
H(v)T (15)

To sum up, each vertex in the hypergraph constructed in this paper is connected with
at least one hyperedge, and each hyperedge is associated with a weight. The proposed
model first adaptively learns the affinity matrix S(v) of each view, then fully considers
the relationship between multiple sample points, constructs the hypergraph using the
acquired affinity matrix, and preserves the higher-order geometric structure through the
hypergraph-induced hyper-Laplacian matrix L(v)

h . In this way, the model realizes the
effective exploration of the higher-order information and complex structure in the data
while avoiding dependence on predefined graphs.

4.3. Optimization

It is infeasible to solve (12) directly due to the presence of multiple variables. The Aug-
mented Lagrange Multiplier (ALM) method is an efficient solver for the above model (12).
In order to solve optimization problems with separable structures, the Alternating Direction
Method of Multipliers (ADMM) is proposed, which is used to obtain the solution of the
global problem by coordinating the solutions of the subproblems. To adopt an alternating
direction minimization strategy with the model, we first introduce auxiliary variables J
and K(v) to replace F and S(v), respectively, that is to say, F = J and S(v) = K(v). Then,
we substitute F and S(v) into (12); by simple algebraic operations, we can then rewrite (12)
as the following augmented Lagrangian function:

min
F
(v)
l =Yl

α
m

∑
v=1

λ(v)tr((F(v))
T

L(v)
h F(v)) + β‖J ‖p

ω, Sp©

+
µ

2
‖F −J +

Q
µ
‖2

F +
m

∑
v=1

1
τ(v)
‖G(v) −K(v)‖2

F

+
m

∑
v=1

γ

2
‖S(v) −K(v) +

T(v)

γ
‖2

F

s.t. S(v) ≥ 0, S(v)1 = 1, τ(v) ≥ 0, ∑m
v=1 τ(v) = 1

(16)

where Q and T(v) are used to indicate Lagrange multiplier while µ > 0 and γ > 0 denote
the penalty factor. We use an alternate optimization strategy to solve (16), which involves
the following subproblems.

• Solving K(v) with fixed S(v), T(v), and 1
τ(v)

. Now, the optimization problem with

respect to K(v) in (16) can be simplified as

min
K(v)

m
∑

v=1

1
τ(v)
‖G(v) −K(v)‖2

F +
m
∑

v=1

γ
2 ‖S(v) −K(v) + T(v)

γ ‖2
F (17)
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Because {K(v)}m
v=1 are independent, we can solve each K(v) independently. Setting

the derivative to zero with respect to K(v), we obtain

− 2
τ(v)

G(v) + (γI +
2

τ(v)
I) K(v) − γ(S(v) +

T(v)

γ
) = 0 (18)

By simple algebra, the optimal solution for K(v) is provided by

K(v) =
γS(v) + T(v) + 2

τ(v)
G(v)

γ + 2
τ(v)

(19)

• Solving S(v) with fixed K(v) and T(v). According to (16), the solution to this subprob-
lem can be calculated as follows:

min
S(v)

m
∑

v=1

γ
2 ‖S(v) − γK(v)−T(v)

γ ‖2
F

s.t. S(v) ≥ 0, S(v)1 = 1
(20)

It should be noted that there is no dependence between all S(v)(v = 1, . . . , m) in (20).

The closed-form solution S(v)∗ of each S(v) is provided by S(v)∗(i, :) = (B(v)(i,:)
γ +$1)+

[35], where B(v) = γK(v) − T(v) and $ is the Lagrangian multiplier.
• Solving F(v) with fixed J , Q, L(v)

h , and λ(v) . At this point, the optimization problem
in (16) with respect to F(v) can be formulated as

min
F
(v)
l =Yl

α
m

∑
v=1

λ(v)tr((F(v))
T

L(v)
h F(v)) +

µ

2
‖F −J +

Q
µ
‖2

F (21)

We denote F(v) =
[
Yl ; F(v)

u

]
, J(v) =

[
J(v)l ; J(v)u

]
, Q(v) =

[
Q(v)

l ; Q(v)
u

]
, and

L(v)
h =

[
L(v)

ll L(v)
lu

L(v)
ul L(v)

uu

]
, then substitute them into (21). Moreover, the fact that {F(v)}m

v=1

are independent allows each F(v) to be solved independently. Therefore, by simple
algebra, (21) becomes

min
F(v)

αλ(v)tr(

[
Yl

F(v)
u

]T[
L(v)

ll
L(v)

ul

L(v)
lu

L(v)
uu

][
Yl

F(v)
u

]
)

+
µ

2

∥∥∥∥∥
[

Yl

F(v)
u

]
−
[

J(v)l
J(v)u

]
+

1
µ

[
Q(v)

l
Q(v)

u

]∥∥∥∥∥
2

F

= Const + 2αλ(v)tr((F(v)
u )TL(v)

ul Yl)+ αλ(v)tr((F(v)
u )TL(v)

uu F(v)
u )

+
µ

2
tr((F(v)

u )TF(v)
u )− µtr((F(v)

u )T(J(v)u −
Q(v)

u
µ

))

(22)

Setting the derivative to zero with respect to F(v)
u , we obtain the v-th class indicator

F(v)
u for the unlabeled data as follows:

F(v)
u
∗
= (αλ(v)L(v)

uu +
µ

2
I)−1(

µ

2
(J(v)u −

Q(v)
u
µ

)− αλ(v)L(v)
ul Yl) (23)
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• Solving J with fixed F and Q. In this case, the solution to this subproblem can be
simplified as follows:

min
J

β‖J ‖p
ω, Sp© +

µ

2

∥∥∥∥F −J +
Q
µ

∥∥∥∥2

F
(24)

To solve (24), we need the following theorem.

Theorem 1 ([32]). For A ∈ Rn1×n2×n3 , h = min(n1, n2), which has t-SVD A = U ∗ S ∗
VT, the optimal solution of (25) is

arg min
X

1
2
‖X −A‖2

F + ε‖X ‖p
ω, Sp© (25)

which can be written as

X ∗ = Γε∗ω(A) = U ∗ i f f t(Pε∗ω(Ā)) ∗VT (26)

where Pε∗ω(A) ∈ Rh×h×n3 is an f-diagonal tensor with diagonal elements that can be found
using the GST algorithm introduced in Lemma 1 of [32] and A = i f f t(A, [ ], 3).

According to the above two theorems, the solution of (24) is

J ∗ = Γ β
µ ∗ω

(F +
Q
µ
). (27)

• Solving τ(v) with other fixed variables. According to (16), this subproblem can be
solved by

min
τ(v)

m

∑
v=1

‖G(v) − S(v)‖2
F

τ(v)
, s.t.

m

∑
v=1

τ(v) = 1, τ(v) ≥ 0 (28)

In the case of e(v) = ‖G(v) − S(v)‖F, (28) can be expressed as

min
τ(v)

m

∑
v=1

e(v)
2

τ(v)
, s.t.

m

∑
v=1

τ(v) = 1, τ(v) ≥ 0 (29)

Considering that ∑m
v=1 τ(v) = 1, based on the Cauchy-Schwartz inequality, we can find

the following:

m

∑
v=1

e(v)
2

τ(v)
=

(
m

∑
v=1

e(v)
2

τ(v)

)(
m

∑
v=1

τ(v)

)
>

(
m

∑
v=1

e(v)
)2

(30)

Equation (30) only holds if
√

τ(v) ∝ e(v)√
τ(v)

. Because the right-hand side of (30) is the

constant, the optimal solution for τ(v) (v = 1, 2, . . . , m) can be deduced as follows:

τ(v) = e(v)/
m

∑
i=1

e(i) (31)

• Solving λ(v) with fixed F(v). Similar to λ(v) in (11), λ(v) in (16) can be updated by

λ(v) =
1

2
√

tr
((

F(v)
)TL(v)

h F(v)
) (32)
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• Update T(v), Q, γ, and µ. Below are the formulas for updating these variables:

T(v) = T(v) + γ(S(v) −K(v)) (33)

Q = Q+ µ(F −J ) (34)

γ= min(ργ, γmax) (35)

µ= min(ρµ, µmax) (36)

where µmax, γmax, and ρ are constants.
After obtaining F(v)

u , we can obtain discrete labels for unlabeled data using

li = arg max
j∈{1,2,...,c}

Fu(i, j), ∀i = 1, 2, . . . , u (37)

where Fu(i, j) refers to the i-th row and j-th column item of Fu = (
m
∑

v=1
λ(v)F(v)

u )/m.

We denote the discrete label matrix Yu=[y1; y2; ...; yu], with elements yij = 1 if li = j
(j = 1, 2, . . . c) and yij = 0 otherwise.

Presented in Algorithm 1 is the complete pseudocode needed to solve (12).

Algorithm 1 Hypergraph Learning-Based Semi-Supervised Multiview Spectral Clustering

Input: Graph G(v) for m views, label matrix Yl , the cluster number c, parameter α, β and p.
Output: Label information for unlabeled samples.

1: Initialize K(v) = T(v) = 0, S(v) = G(v), λ(v) = 1
m , τ(v) = 1

m (v = 1, 2, . . . , m). Q = J =

0, µ = γ = 0.1, ρ = 2, µmax = γmax = 1010.
2: while not converge do
3: Construct hyper-Laplacian matrices {L(v)

h }
m
v=1 based on {S(v)}m

v=1 by (15);
4: Update {K(v)}m

v=1 by using (19);
5: Update {S(v)}m

v=1 by solving (20);

6: Update {F(v)
u }m

v=1 by using (23);
7: Update J according to (27);
8: Update τ(v) by solving (31);
9: Update λ(v) by calculating (32);

10: Update {T(v)}m
v=1 and Q according to (33) and (34), respectively;

11: Update γ and µ according to (35) and (36), respectively;
12: end while
13: Return the indicator matrix F.
14: Calculate label matrix Yu by (37).

5. Experiment
5.1. Experimental Setting

Dataset. A comprehensive set of experiments was conducted to verify the validity and
stability of the proposed model on four different datasets, including the following.

Yale dataset (http://vision.ucsd.edu/content/yale-face-database (accessed on 15 May
2023)). This dataset, created by Yale University, contains 165 face images of fifteen indi-
viduals. Each individual is represented by eleven grayscale images with varying postures,
facial expressions, and lighting conditions. In the experiment, we chose 4096-dimensional
(D) intensity features, 3304-D LBP features, and 6750-D Gabor features as three distinct
types of views.

http://vision.ucsd.edu/content/yale-face-database
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Caltech-101 dataset [36] This dataset comprises 8677 images divided into 101 classes,
each containing 40 to 800 image files. For our experiment, we selected 1474 images belong-
ing to seven categories: Snoopy, Windsor-Chair, Stop-sign, Face, Garfield, Dollar-Bill, and
Motorbikes. We considered three types of features as distinct views, including 1160-D LBP
features, 620-D HOG features, and 2560-D SIFT features.

ORL dataset (http://www.uk.research.att.com/facedatabase.html (accessed on 15
May 2023)). The ORL dataset includes 400 facial photographs of forty individuals, some
taken at different times, resulting in variations in facial expressions, facial details, and
lighting angles. We selected 6750-D Gabor features, 4096-D intensity features, and 3304-D
LBP features as different views.

MSRC dataset [37] This dataset consists of 240 images in eight categories. We chose
seven categories for our experiments: tree, building, cow, face, plane, car, and bicycle. We
employed five visual features to construct multiple views, including 24-D CM features,
254-D Centrist features, 256-D LBP features, 512-D GIST features, and 576-D HOG features.

Comparison algorithms. In this paper, we evaluated the performance of the proposed
clustering algorithm by comparing it with seven other clustering algorithms, namely, Adap-
tive Semi-Supervised Learning Approach for Multiple Feature Modalities (AMMSS) [21],
i.e., the semi-supervised learning strategy for integration of multiple graphs based on sparse
weights under label propagation (SMGI) [20], Multiple Graph Clustering Framework based
on Automatic Weighting Strategy (AMGL) [6], Semi-Supervised Image Classification using
Multiple-Modal Curriculum Learning (MMCL) [38], Multi-View Clustering with Adaptive
Neighbors (MLAN) [23], Hyper-Laplacian Regularization-based Semi-Supervised Cluster-
ing with Multiple Views (HLR-M2VS) [28], and Fast Multi-View Semi-Supervised Learning
(FMSSL) [24].

Evaluation Metrics. To comprehensively evaluate clustering performance, we em-
ployed three fundamental metrics in our experiments: accuracy (ACC) [39], purity [40],
and normalized mutual information (NMI) [41]. For each of these metrics, a higher value
signifies better clustering capability.

Parameter Settings. Our proposed model incorporates three trade-off parameters (α, β,
and p) that affect the final results. To obtain optimal performance, we adjusted α within the
range of [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5], β within the range of [0.001, 0.005, 0.01, 0.05, 0.1,
0.5, 1], and the power parameter p within the range of (0, 1] with an interval of 0.1. For
the other comparison algorithms, we followed the experimental settings described in the
respective studies or adjusted the parameters for optimal results.

5.2. Experimental Results

Results Analysis. To discover more valid information about the unlabelled data
from the limited labeled data, we randomly selected between 10% and 60% of the labeled
samples to be used in semi-supervised learning. Without loss of generality, the outcome is
the average value obtained after repeating each experiment 10 times. Figures 5–8 report the
experimental results of the eight clustering algorithms under different label proportions
on the four datasets. According to these clustering results, the following observations can
be drawn.
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Figure 5. Semi-supervised clustering results on Caltech-101 dataset.

http://www.uk.research.att.com/facedatabase.html
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Figure 6. Semi-supervised clustering results on Yale dataset.
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Figure 7. Semi-supervised clustering results on ORL dataset.

Label Percentages

0.5

0.6

0.7

0.8

0.9

1

C
lu

s
te

ri
n

g
 p

e
rf

o
rm

a
n

c
e

AMMSS

SMGI

AMGL

MMCL

MLAN

HLR-M2VS

FMSSL

Our

(a) ACC

Label Percentages

0.5

0.6

0.7

0.8

0.9

1

C
lu

s
te

ri
n

g
 p

e
rf

o
rm

a
n

c
e

AMMSS

SMGI

AMGL

MMCL

MLAN

HLR-M2VS

FMSSL

Our

(b) NMI

Label Percentages

0.5

0.6

0.7

0.8

0.9

1

C
lu

s
te

ri
n

g
 p

e
rf

o
rm

a
n

c
e

AMMSS

SMGI

AMGL

MMCL

MLAN

HLR-M2VS

FMSSL

Our

(c) Purity

Figure 8. Semi-supervised clustering results on MSRC dataset.

(1) The overall performance of our algorithm and the HLR-M2VS algorithm is superior
to that of the other six algorithms. This is because the other algorithms only consider
pairwise relationships in the graph, resulting in the loss of effective information. Our
work and the HLR-M2VS algorithm both focus on relationships between multiple sample
points and employ hypergraph-induced hyper-Laplacian matrix to preserve higher-order
geometric structures. In addition, both our work and the HLR-M2VS algorithm are based
on the tensor, which can unearth the complementary information and spatial structure
hidden in multi-view data. The other algorithms do not consider this factor. Despite
this, it is apparent from the figures that the HLR-M2VS algorithm is less accurate and
stable than ours. For example, on the Caltech-101 dataset the accuracy of the HLR-M2VS
algorithm is 7.02% lower than ours for the case containing 10% of the labeled samples.
The reason for this is that the HLR-M2VS algorithm assumes that all views have the
same indicator matrix. It adopts the tensor nuclear norm instead of the tensor Schatten
p-norm as the global constraint to ensure the consistency principle without considering the
significant differences of all views and different singular values, resulting in poor algorithm
performance in practical application.

(2) Overall, our method is significantly superior to the other seven methods on all four
datasets. For example, on the Yale dataset, our method shows a remarkable increase in
comparison to the MMCL of around 10.48%, 11.83%, and 10.48% in terms of ACC, NMI,
and purity, respectively, for 40% labeled samples. On the MSRC dataset, for 20% labeled
samples, our method shows a relative improvement of 2.38%, 5.08%, and 2.38% in terms of
the ACC, NMI, and purity compared to the second-best method, HLR-M2VS. Our method
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emphasizes each view’s role in clustering by adaptively allocating appropriate weights
for different views, thereby improving the algorithm’s flexibility. Moreover, our method
integrates hypergraph learning and semi-supervised multi-view spectral clustering into a
unified framework, and leverages the tensor Schatten p-norm to encode the complementary
information and low-rank spatial structure. Thus, the learned indicator matrix is well
able to characterize the clustering structure, and the clustering results accurately represent
the categories of samples. It is worth noting that the clustering results on databases with
different dimensions show that the dimension of the data affects the clustering results, and
our method is sensitive to the data complexity.

(3) For the same dataset, the clustering performance of most algorithms improves
with an increasing number of labeled samples. For example, as the proportion of labeled
samples in the Caltech-101 dataset increases from 10% to 60%, the clustering accuracy of the
AMMSS algorithm correspondingly increases from 60.90% to 73.63%, an improvement of
12.73%. Similarly, the clustering accuracy of our algorithm increases from 90.48% to 97.25%,
an increase of 6.77%. This shows that semi-supervised clustering can use limited labeled
data to mine hidden information in unlabeled data for better clustering performance. In
addition, a large amount of prior information can enhance the ability to infer unknown
labels, further improving the clustering accuracy of the algorithm.

Parameters analysis. In (12), the β parameter is utilized to balance the proportion of
the tensor Schatten p-norm, while the α parameter represents the impact of the spectral
clustering term on the model. To analyze the influence of these two parameters on the
clustering performance of our model, we present a 3D histogram in Figure 9 that visualizes
the clustering accuracy obtained with different parameter settings on the Caltech-101, Yale,
ORL, and MSRC datasets.

(a) Caltech-101 (b) Yale

(c) ORL (d) MSRC

Figure 9. Parameter tuning (α and β) regarding ACC and NMI on the MSRC, ORL, and Yale datasets.
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Specifically, in order to determine the most favorable results, all of our experiments
were conducted with the α parameter in the range of [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5]
and the β parameter in the range of [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1]. Based on the data
in Figure 9, the clustering performance fluctuates significantly with varying α and β. Our
approach achieves optimal clustering performance on the Yale dataset when α = 0.5 and
β = 1, and the case is similar for the Caltech-101, ORL, and MSRC datasets.

The experimental results are relatively stable within a specific range. When α > 0.05,
the clustering performance of our model substantially improves. This improvement may
be attributed to the spectral clustering term preserving higher-order geometric structures
using the hypergraph-induced hyper-Laplacian matrix, which helps the model to perform
better. Furthermore, the tensor Schatten p-norm explores the complementary content
between different views. Therefore, selecting a reasonable value for β after determining the
value of α contributes to higher model accuracy.

Convergence analysis. Research suggests that demonstrating the convergence of inex-
act ALM with three or more block variables remains an open question [42]. Consequently,
it is not easy to demonstrate the convergence of Algorithm 1 theoretically. To facilitate

further analysis, we recorded
m
∑

v=1

∥∥∥F(v)
(t+1) − J(v)

(t+1)

∥∥∥
∞

for each iteration on the four databases

presented in Figure 10. Note that F(v)
(t+1) and J(v)

(t+1) respectively represent the F(v) and J(v)

matrices obtained by the (t + 1)-th iteration. The x-axis represents the number of iterations
for each sub-plot, while the y-axis corresponds to the variable error. Figure 10 illustrates
that the variable error drops rapidly within relatively few iterations and stabilizes as the
number of iterations increases, indicating that our model converges sufficiently.
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Figure 10. Convergence curves on the ORL and MSRC datasets.

Complexity Analysis. Our method consists of two stages, namely, construction of
hypergraphs and optimization by iteratively solving Equation (16). The cost of constructing
the initial k-nearest neighbors graph is O1(mn2d + mn2log(n)). Then, we mainly focus on
the optimization of four variables, i.e., F(v), J , S(v), and K(v). For the F(v) subproblem, it
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takes O2(mu3 + mucn) in each iteration. For the J subproblem, calculating the 3D FFT
and 3D inverse FFT of an n×m× c tensor and c SVDs of n×m matrices in the Fourier
domain dominates the main computation. Because we have n � m in the multi-view
setting, the computation at each iteration takes O3(mnclog(mn) + m2cn). In terms of the
S(v) subproblem, it takesO4(mn2log(n)) in each iteration. For the K(v) subproblem, it takes
O5(mn2) in each iteration. Therefore, the main computational complexity of our proposed
method in each iteration is O = O1 +O2 +O3 +O4 ++O5.

6. Conclusions

In this paper, we propose a hypergraph learning-based semi-supervised multi-view
spectral clustering method. This method first adaptively learns the affinity matrix of each
view, then fully considers the relationship between multiple sample points. It uses the
learned affinity matrix to construct hypergraphs while preserving the higher-order geomet-
ric structure through the hypergraph-induced hyper-Laplacian. This technique effectively
explores higher-order information and complex structures in the data while avoiding de-
pendence on predefined graphs. Moreover, the proposed method simultaneously learns
the indicator matrix for all views, and employs the tensor Schatten p-norm to uncover the
low-rank spatial structure and complementary content hidden in these views. As a result,
the learned common indicator matrix can more effectively reflect the cluster structure. We
additionally design a simple auto-weighted scheme for the tensor Schatten p-norm which
adaptively determines the ideal weighted vector to accommodate differences between
singular values, thereby enhancing the algorithm’s flexibility and stability in practical
applications. Experiments on four real datasets demonstrate that our method outperforms
cutting-edge competitors regarding overall effectiveness.

The hypergraph learning approach and automatic weighting strategy proposed in this
paper can serve as valuable references for researchers in other fields. In future work, we in-
tend to continue to investigate more effective methods for mining higher-order information
and complex structures in data. In semi-supervised learning, we intend to study the ratio
between labeled and total samples in order to identify the optimal proportion, enabling
the algorithm to achieve the best possible clustering performance with minimal labeled
data as support. The research work in this paper focuses on the construction of multiple
complex relationships between data while ignoring the generalization and scalability of
the algorithm. Due to its high computational complexity, the proposed algorithm is not
suitable for large-scale data. In future studies, the proposed method could be improved
based on the relevant theory of anchors to make it more applicable to large-scale data. On
the other hand, thanks to the powerful nonlinear mapping ability and feature extraction
ability of deep learning, it has become a research trend to flexibly apply deep learning to
different fields. Therefore, in forthcoming research another possibility is to use the tradi-
tional clustering model with deep learning or to effectively integrate traditional methods
with deep networks as a means of effectively improving clustering performance.
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