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Abstract: Underwater object detection, as the principal means of underwater environmental sensing,
plays a significant part in the marine economic, military, and ecological fields. Due to the degradation
problems of underwater images caused by color cast, blurring, and low contrast, we proposed
a model for underwater object detection based on YOLO v7. In the presented detection model,
an enhanced image branch was constructed to expand the feature extraction branch of YOLOv7,
which could mitigate the feature degradation issues existing in the original underwater images. The
contextual transfer block was introduced to the enhanced image branch, following the underwater
image enhancement module, which could extract the domain features of the enhanced image, and
the features of the original images and the enhanced images were fused before being fed into the
detector. Focal EIOU was adopted as a new model bounding box regression loss, aiming to alleviate
the performance degradation caused by mutual occlusion and overlapping of underwater objects.
Taking URPC2020 and UTDAC2020 (Underwater Target Detection Algorithm Competition 2020)
datasets as experimental datasets, the performance of our proposed model was compared against
with other models, including YOLOF, YOLOv6 v3.0, DETR, Swin Transformer, and InternImage. The
results show that our proposed model presents a competitive performance, achieving 80.71% and
86.32% in mAP@0.5 on URPC2020 and UTDAC2020, respectively. Comprehensively, the proposed
model is capable of effectively mitigating the problems encountered in the task of object detection in
underwater images with degraded features and exhibits great advancement.

Keywords: underwater image; deep learning; object detection; YOLOv7

1. Introduction

Object detection in underwater images is of importance for marine resource explo-
ration, benthic monitoring, seafloor geomorphology observation, and deep-sea archaeology.
Differing from generic images accessed in airspace, underwater images universally suffer
from severe degradation problems caused by color cast, blurring, and low contrast, which
could cause challenges for object detection in underwater images [1]. Therefore, an auto-
matic underwater detection model is of crucial significance and practice, to enhance the
accuracy and reduce the time-consuming nature of underwater object observation.

Underwater image enhancement could mitigate the degradation issues of underwater
images and attracted extensive attention in past research, especially in the fields of computer
vision and digital image processing [2]. Underwater image enhancement method aims
to correct the blurred, color-distorted images to enhance their visual quality [3,4], which
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can be generally summarized into four classes: optical-principles-based method, physical-
degradation-model-based method, non-physical-models-based method, and deep-learning-
based method.

An optical-principles-based method utilizes the imaging properties of underwater
images. An example of this is through the construction of Stokes vectors containing
polarization information to characterize the transmission of light under water. Hu et al. [5]
proposed an improved method of correcting the transmittance based on the underwater
polarization imaging model to alleviate the incorrectly calculated object irradiance due to
the effect of polarization.

A physical-degradation-model-based method needs to estimate unknown parameters
based on the constructed physical model with the help of certain a priori knowledge,
in order to inversely deduce the attenuation factor of the affected optical component
containing information about the object. The dark channel prior (DCP) algorithm was
proposed by He et al. [6] as early as 2011, and was based on a priori fact that the intensity
of the dark channel tends to be zero in fog-free images, which is based on the foggy sky
imaging model and estimates the light transmission map to remove foggy blur in the
image. UDCP [7,8] for underwater images, abandons the unreliable red channel, and only
considers the use of values in green channel and blue channel to estimate the transmission
rate of underwater light accurately.

A non-physical-model-based method resorts to changing the color distribution and
radiation intensity of an image in a certain color space by stretching the gray values
to achieve the color balance of the image. One such method is based on the Retinex
model, which decomposes the image into components containing detailed features of the
object itself and the ambient luminance component, and is able to dynamically adjust
the edge details, contrast, and color simultaneously due to its nonlinear computation.
Fu et al. [9] proposed a Retinex-model-based method that can decompose the image in
the illumination and reflectance components, which carries detail information about the
object and introduces a new shrinkage factor to assist in the estimation of two unknown
components. Zhang et al. [10] proposed a method that maps the image color to the HSV
color space after color correcting the original image and gamma-corrects the decomposed
components with the Retinex model in order to restore the image’s true appearance.

Deep-learning-based methods faces severe challenges in building large-scale datasets,
and it is difficult to acquire degraded images and corresponding clear reference images of
the same scene [11]. Li proposed twin adversarial contrastive learning [12], which intends
to learn a mapping that reflects the relationship between underwater and airborne domain
images with both self-supervised and unsupervised processing to alleviate the limitation
of the dataset.

The above underwater image enhancement methods enhance the quality of the un-
derwater images, but usually they require a large amount of time due to the complex
processing flow, which represents a higher time complexity of processing a single image.
Therefore, meeting the requirements of end-to-end detection tasks when combining with
deep-learning-based object detection models is challenging.

Deep learning has advanced considerably in the last decade, and some representa-
tive generic deep-learning-based object detection models have been developed. Roughly,
the deep-learning-based object detection models could be categorized into anchor-based
methods and anchor-free methods. Anchor-based methods include Cascade R-CNN [13],
YOLOv2 [14], YOLOv3 [15], RetinaNet [16], etc. Such methods assign predefined anchor
frames to the detection layer to effectively reduce the search range of the objects and sim-
plify the positive and negative sample matching problem. Anchor-free methods include
FCOS [17], CenterNet [18], CornerNet [19], FSAF [20], YOLOX [21], etc., which only need
to calculate the center point of the bounding box and position coordinates compared to the
pre-set anchor scale and aspect ratio.

On this basis, deep-learning-based object detection models for underwater images
face more challenges. In underwater scenes, the water body selectively absorbs different
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wavelengths of light with depth, i.e., the less energetic red light is absorbed firstly, which
makes the underwater images or video data often present a bluish or greenish color cast.
At the same time, the scattering of light by suspended or particulate impurities in water
can cause the image to appear foggy and blurred, resulting in a lower contrast. Therefore,
existing deep-learning-based object detection models often exhibit enormous limitations
when applied directly to object detection in underwater images.

For the object detection in underwater images, some researchers have turned their
efforts to construct models that contain both an enhancement part and a detection part, in
order to seek the intrinsic connection between the enhanced output results and the input of
the detection process. The framework proposed by Liu et al. [22] guides the image features
input to the detector by calculating the similarity between the enhanced image feature maps
and the original degraded image feature maps. The general underwater object detector
(GUOD) [23] incorporates a domain-invariant module in the YOLOv3-based detector with
an adversarial training approach to take full advantage of the semantic information of
images in different kinds of underwater circumstance, enabling it to exhibit favorable
generalizability in different datasets. Joint training of an image enhancement network and
a feature extraction network can effectively mitigate the inconsistency of goals between the
enhancement tasks and detection tasks. A lightweight network is proposed by Yeh et al. [24],
containing a color correction network and an object detection network to simultaneously
compute the total loss of both during backpropagation to achieve the unification of the
objectives. Fu et al. [25] are devoted to constructing a trainable residual feature transference
module to learn mappings between detector-friendly images with heavy degradation and
other generic images. Considering the limitation of mining only the features contained
in the spectral properties of the underwater images, a 3D convolution was introduced
to extract the spatial properties of images as the means of estimating depth [26]. Zhou
et al. [27] introduced efficient channel attention (ECA) modules and deep hyperparametric
convolution (DO-Conv) as the backbone network to extract semantic information from
deep-sea images in their proposed YOLOTrashCan, and designed a convolution module
with multi-scale dilation rate in the feature fusion stage to adapt to objects of different sizes.

Most of the existing underwater image object detection models consider the consis-
tency of the image enhancement task and the object detection task [28]. However, the joint
training of image enhancement part and feature extraction part leads to enormous parame-
ter computation and resource consumption, which is a great challenge for industrialized
applications. At the same time, the intensive distribution and mutual overlapping of un-
derwater objects are unavoidable [29]. This raises challenges for the model’s performance.

To resolve the issues above, we proposed an underwater image detection model based
on YOLOv7 [30] that fuses enhanced image features.

2. Underwater Object Detection Model

Figure 1 shows the network structure of the proposed underwater object detection
model, including an enhanced image branch and a feature extraction branch. The enhanced
image branch was constructed to strengthen the feature extraction capability of YOLOv7. In
the enhanced image branch, the features of the original underwater images were enhanced
by an underwater image enhancement module (as shown in Figure 1 (a)). After that, the
features of the enhanced underwater images (output of the underwater image enhancement
module) were learned and extracted by the contextual transfer block (CoT) [31] (as shown
in Figure 1 (b)). Then all features extracted by the enhanced image branch and the feature
extraction branch were fused and fed into the detector of YOLOv7. Aiming to alleviate the
reduction in performance due to mutual occlusion and overlapping of underwater objects,
the loss function was optimized by focal EIOU [32], which was considered as a new model
bounding box regression loss (as shown in Figure 1 (c)).
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Figure 1. Network structure of the proposed underwater object detection model. (a) Underwater
image enhancement module; (b) Contextual transfer block; (c) Focal EIOU.

2.1. Underwater Image Enhancement Module

Due to the submarine physical environment, underwater images undergo severe
feature degradation on account of absorption and scattering of light by the water, and
exhibit serious color cast, blurring, and low contrast issues. For the solution of the feature
degradation issues of underwater images, the underwater image enhancement module was
added in the enhanced image branch, which could enhance the degraded image features.

The underwater image enhancement module is designed by deep learning and image
formation model [33], represented as

J(χ) = (I(x)− A)eλJ d + Ae(λJ−λA)d, (1)

where J(x) is the radiant intensity of the object itself, which is the energy representation
after filtering out the environmental effects. x represents the pixel point at each location of
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the image. d represents energy attenuation distance, which is the distance between object
and imaging equipment. λJ and λA represent the attenuation coefficients of the object
radiant intensity and the ambient radiation, respectively. The image formation model is
defined as

I(x) = J(x)t(x) + A(1− t(x)), (2)

where t(x) represents the transmission rate of the energy transmission medium, which is
expressed as

t(x) = e−λd(x), (3)

where λ denotes the attenuation coefficient, and A(1− t(x)) denotes the back scattering
effect of the water body.

Since the underwater image enhancement module is not involved in the training
process, it could decrease the number of parameters involved in the training process and
reduce the time required for the model inference. The output tensor of the underwater
image enhancement module is received by the contextual transformer block.

2.2. Contextual Transformer Block

Based on the enhanced images, the contextual transformer block (CoT) is utilized to
extract domain features, which could compensate for the detail and texture information.

The output tensor of the underwater image enhancement module, as shallow features,
contains more pixel point information, such as edge and arris features. Due to the small
receptive field of the shallow feature map, it is hard to fuse with the high-dimensional
features extracted by the feature extraction branch, which contains more semantic informa-
tion. While the CoT is taken as an intermediate stage of enhanced image feature extraction,
the feature distribution of the CoT output tensor has a moderate difference with the high-
dimensional features, which could compensate for the lost information of the degraded
image features effectively.

Figure 2 shows the structure of the contextual transfer block (CoT); an extra convolu-
tional layer is added to this module. The extra convolutional layer could fully utilize the
enhanced features for extracting.

Figure 2. Structure of the contextual transfer block (CoT). × refers to the Hadamard product.

The output tensor of the underwater image enhancement module passes through
the extra convolutional layer without activation function, and then is transformed into
appropriate dimensions and received by the CoT. The output of the extra convolutional
layer is represented as X.

The CoT utilizes a 4× 4 group convolution operation to extract the key domain feature
mapping at the 4 × 4 positions of X, while the output of group convolutional operation
is represented by D. A concatenation operation is applied to X and D. Then, the result
of concatenation operation is fed into the next two consecutive convolutional layers for
smoothing of features and the output is represented by M. X is multiplied by M after a
convolution layer to obtain F. The final output of the CoT is the result of adding F and D.
The final output of the CoT can be expressed by

O = F + (X ∗ K), (4)
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where X denotes the output of the extra convolutional layer, K is the convolutional layers,
k and F can be expressed by

F = [(X ∗ K, X) ∗ c1 ∗ c2]× (X ∗ c3), (5)

where c1, c2, and c3 are the convolutional layers c1, c2, and c3 respectively, and × represents
the Hadamard product.

2.3. Focal EIOU

CIOU loss, the loss function of YOLOv7, provides a comprehensive review on the
model’s prediction results in three aspects, including the accuracy of the bounding box
regression, the prediction results of the positive samples’ categories, and the confidence of
the positive samples’ objectiveness. CIOU is used to calculate bounding box regression
loss, describing the difference between the calculated bounding box by the model and the
ground truth in the overlap region, coordinates of the center point, and aspect ratio. CIOU
is represented as

LCIOU = 1− CIOU, (6)

where CIOU is defined as

CIOU = IOU −
(

ρ2(b, bgt
)

c2 + αv

)
, (7)

where v denotes the deviation among the predicted bounding box and the ground truth
in terms of aspect ratio. However, v neglects the exact consistency of widths and heights
among the predicted bounding box and ground truth.

In underwater images, there is a wide distribution of intensive, mutually obscuring
objects in the same category. However, objects in the same category exhibit similar shapes
to each other and have similar aspect ratios. Thus, the exact size difference between objects
needs to be taken into account rather than the difference in aspect ratio.

To resolve this issue, CIOU loss is optimized by EIOU loss, which could address
the accuracy of the model’s predicted bounding box and is able to more effectively and
rationally characterize the specific location, scale, and width–height consistency between
the regression bounding box and the ground truth. While there are many low-quality
boxes in underwater images, the predictions by the low-quality boxes could feed back more
gradient information [34], which would introduce some bias to the training results. Thus,
the focal loss is utilized and is expected to better balance the positive and negative samples
of EIOU loss further.

Thus, the loss function of the proposed underwater detection model can be repre-
sented as

Ltotal = λ1LFocalEIOU + λ2LBCEcls + λ3LBCEobj, (8)

where λ1, λ2, and λ3 represent weight coefficients of these three loss functions and are
set to 0.05, 0.125, and 0.1, respectively. LFocalEIOU denotes further calculations in terms of
focal loss on the basis of EIOU loss and is expected to focus more on positive samples with
higher accuracy and keep the model sensitive to them, which can be defined as

LFocalEIOU = IOUγLEIOU , (9)

where γ is set as 0.5 to balance the numbers of positive and negative samples. LEIOU
represents the optimized loss function with EIOU. The EIOU loss is represented as

LEIOU = 1− IOU +
ρ2(b, bgt

)
(wc)

2 + (hc)
2 +

ρ2(w, wgt
)

(wc)
2 +

ρ2(h, hgt
)

(hc)
2 , (10)
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where wc and hc indicate the width and height of the smallest rectangle enclosing the two
boxes, respectively. b and bgt represent the coordinates of the center point of the prediction
and the ground truth. w and h denote the width and height of the prediction, while wgt
and hgt are the ground truth width and height information.

3. Datasets and Experiment Setup
3.1. Datasets

Experimental datasets employed in the current study included 1200 underwater
images, selected from the UCPR2020 dataset [35]. In the experimental images, there were
several species of benthos, such as echinus, starfish, holothurian, and scallop. As shown in
Figure 3, these images had serious quality problems, including color deviation, blurring,
low contrast, and overlapped objects. Another dataset used for experiments is UTDAC2020
from the underwater target detection algorithm competition in 2020, which contains a total
of 6461 images in the same four categories as UCPR2020.

Figure 3. Samples selected from UCPR2020 dataset.

3.2. Experiment Setup

The hardware configuration used for the experiment is shown below: Ubuntu 20.04, a
GPU NVIDIA RTX 2080ti, which includes 11 GB memory. Software environment was deep
learning framework Pytorch 2.0.0 and Python 3.8. The data used for the ablation experiment
and comparison experiment consisted of 1200 randomly selected underwater degradation
images from UCPR2020, of which 80% (960 images) were randomly selected as the training
set, 10% (120 images) as the validation set, and the remaining 10% (120 images) as the test
set. A total of 5168 images from the UTDAC2020 dataset were set as the training set, 693 as
the validation set, and 600 as the test set. Comparison experiments were implemented on
both the UCPR2020 dataset and the UTDAC2020 dataset in order to obtain a comprehensive
set of results.

3.3. Evaluation Metrics

Five metrics were calculated to estimate the performance of the underwater detection
model: precision, recall, F1 score, mean average precision (mAP) [36], and GFLPOs [37].
Precision is defined as the ratio of true positive to the sum of true positive and false
positive detected objects. Recall measures the proportion of positive detected objects by the
model out of all positive objects. F1 score combines precision and recall to evaluate model
performance in a more encompassing dimension.

Precision =
TP

TP + FP
, (11)

Recall =
TP

TP + FN
, (12)

F1_score =
2× Precision× Recall

Precision + Recall
, (13)

where TP, FP, and FN denote the true positive detected objects, false positive detected
objects, and false negative detected objects, respectively.
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For multiple categories of detection tasks, the mean average precision is defined as

mAP =
1
N ∑N

i=1 APi, (14)

where N is the total number of categories in the dataset and APi refers to the average
precision of category i. The metrics mAP@0.5 describes the mAP under the condition that
a positive sample is computed when the intersection and concatenation ratio is greater
than 0.5.

Giga floating point operations (GFLOPs) were calculated to measure the computational
effort of models, denoting the computational complexity of the model.

4. Experiment

To evaluate the performance of the underwater object detection model, two compara-
tive experiments were performed. Experiment one was an ablation experiment. Experiment
two was a comparative experiment, where the detection performance of the proposed
model was compared against other models, including YOLOF [38], YOLOv6 v3.0 [39],
DETR [40], Swin Transformer [41], and InternImage [42].

4.1. Ablation Experiment

The proposed model was compared against baseline with different settings, including
baseline with enhanced image fusion, baseline with enhanced image fusion and CoT,
baseline with enhanced image fusion, CoT, and focal EIOU, where the baseline was set to
YOLOv7. Table 1 shows the results of evaluation metrics for the baseline with different
settings on the UCPR2020 dataset. For baseline, direct processing of degraded scene images
does not fully utilize the model performance. There is a significant improvement in the
detection accuracy of the model after incorporating the enhanced image features. mAP
@0.5 increases from 62.48% to 75.52%, which is an improvement of 13.04%, and after adding
CoT following the enhanced image, the model performance has a slight improvement, with
an increase of 2.24% (from 75.52% to 77.76%). Compared to the original bounding box
regression loss, after using focal EIOU as the optimized bounding box loss function, the
mAP@0.5 increases from 77.76% to 80.71%, which is an improvement of 2.95%. With the
incorporation of a different module, the computational complexity of the model increases
slightly compared to before its use.

Table 1. Evaluation results between of YOLOv7 with different settings on UCPR2020 dataset.
√

indicates that the module was used in the experiment.

Model
Precision Recall F1 Score mAP@0.5 GFLOPs

Baseline Enhanced Image Fusion CoT Focal EIOU
√

73.42% 55.63% 0.63 62.48% 110.35√ √
80.55% 68.83% 0.74 75.52% 121.47√ √ √
83.04% 71.64% 0.77 77.76% 180.51√ √ √ √
84.31% 74.92% 0.79 80.71% 282.05

4.2. Comparison Experiment

To evaluate the performance of underwater object detection, the proposed model was
compared with other models, including YOLOF, YOLOv6 v3.0, DETR, Swin Transformer,
and InternImage. Tables 2 and 3 show the comparison of underwater object detection
evaluation metrics among different models, and Figure 4 shows the detection results by
different models.
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Table 2. Comparison with other models on UCPR2020 dataset.

Model Precision Recall F1 Score mAP@0.5 GFLOPs

YOLOF 69.89% 54.34% 0.61 55.72% 98.73
YOLOv6 v3.0 74.33% 71.78% 0.73 62.81% 269.84

DETR 74.28% 60.09% 0.66 60.34% 188.72
Swin Transformer 71.13% 65.50% 0.68 62.45% 351.85

InternImage 73.26% 61.42% 0.67 61.93% 216.37
Ours 84.31% 74.92% 0.79 80.71% 282.05

Table 3. Comparison with other models on UTDAC2020 dataset.

Model Precision Recall F1 Score mAP@0.5 GFLOPs

YOLOF 71.03% 60.14% 0.65 56.54% 98.73
YOLOv6 v3.0 74.88% 69.37% 0.72 75.94% 269.84

DETR 78.96% 72.70% 0.76 76.13% 188.72
Swin Transformer 81.70% 73.29% 0.77 77.50% 351.85

InternImage 79.44% 70.16% 0.75 76.02% 216.37
Ours 82.71% 80.74% 0.82 86.32% 282.05

Figure 4. Detection results of different methods on the UCPR2020 dataset. The yellow, red, blue,
and white rectangles denote the predicted object categories of echinus, starfish, holothurian, and
scallop respectively.
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As shown in Figure 4 and Tables 2 and 3, object detection results of our proposed
model are close to the ground truth. Some objects that are more similar to the background
are more likely to be mis-detected, especially for YOLOv6 v3.0. For Swin Transformer and
InternImage, there are more background objects detected falsely as the positive objects.
For YOLOF and DETR, there both are missed detections of difficult samples and false
detection of background objects. The proposed model achieves the best performance in
mAP@0.5. The computational complexity of the proposed model is higher than YOLOF,
DETR, InternImage, and YOLOv6 v3.0, while being lower than Swin Transformer.

5. Discussion and Conclusions

Underwater object detection is of great significance for underwater biological resources
assessment and ecological environment detection. With the rapid development of moni-
toring equipment, underwater images have become the main data source for monitoring
underwater objects. Considering the limitations of feature degradation in underwater
images, this paper proposed an underwater object detection model based on YOLOv7.
Firstly, an enhanced image branch was constructed to enhance the feature extract ability of
YOLOv7, which consisted of an underwater image enhancement module and a contextual
transfer block, while focal EIOU was adopted as a new model bounding box regression
loss to alleviate the degradation problem.

URPC2020 and UTDAC2020 were taken as experimental datasets, and the proposed
underwater object detection model was compared against with other models, including
YOLOF, YOLOv6 v3.0, DETR, Swin Transformer, and Intern Image. The results show the
proposed model achieves automatic and higher accuracy detection results in underwa-
ter images.

However, the proposed model does not guarantee to enhance the original degraded
image in a detector-friendly style because the constructed image enhancement module
is not involved in the training, which sacrifices the consistency of the enhancement task
and the detection task to some extent. In addition, the inference speed of the model still
finds it difficult to cope with complex video data, and further optimization of the model’s
scale and the amount of parameter computation also need to be considered. Besides this,
underwater object detection also faces several other challenges. The number of underwater
object categories is much larger than that of terrestrial plants and animals, and some of the
objects of different categories show similar features, so how to accurately grasp the feature
differences between similar objects is a potential problem. Meanwhile, the establishment of
a large-scale and sufficient sample set containing different categories to fully exploit the
potentialities of deep-learning-based models of underwater object detection needs to be
further researched. Moreover, the optimization for underwater object detection models
focuses more on solving the problem of the feature extraction process, and the improvement
of the inference speed of the model is usually neglected.
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