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Abstract: Federated learning (FL) has been broadly adopted in both academia and industry in recent
years. As a bridge to connect the so-called “data islands”, FL has contributed greatly to promoting
data utilization. In particular, FL enables disjoint entities to cooperatively train a shared model, while
protecting each participant’s data privacy. However, current FL frameworks cannot offer privacy
protection and reduce the computation overhead at the same time. Therefore, its implementation
in practical scenarios, such as edge computing, is limited. In this paper, we propose a novel FL
framework with spiking neuron models and differential privacy, which simultaneously provides
theoretically guaranteed privacy protection and achieves low energy consumption. We model the
local forward propagation process in a discrete way similar to nerve signal travel in the human brain.
Since neurons only fire when the accumulated membrane potential exceeds a threshold, spiking
neuron models require significantly lower energy compared to traditional neural networks. In
addition, to protect sensitive information in model gradients, we add differently private noise in both
the local training phase and server aggregation phase. Empirical evaluation results show that our
proposal can effectively reduce the accuracy of membership inference attacks and property inference
attacks, while maintaining a relatively low energy cost. blueFor example, the attack accuracy of a
membership inference attack drops to 43% in some scenarios. As a result, our proposed FL framework
can work well in large-scale cross-device learning scenarios.

Keywords: federated learning; privacy protection; spiking neural networks

1. Introduction

Multiparty machine learning paradigms are gaining increasing attention recently, as
they power many data-driven applications while preserving data privacy [1–4]. Among
the many algorithms, a widely adopted paradigm is FL, where multiple participants (or
clients) jointly train a shared global model under the coordination of a central server. Since
training datasets from each client never leave their holders, a privacy guarantee can be
provided in FL. To date, instead of traditional centralized training methods, FL has been
broadly implemented in a range of fields, including automatic driving, speech recognition,
intelligent medical diagnoses, etc.

However, there remain several challenges to be addressed in FL [5–9]. In this paper,
we tackle the problem of privacy protection and computing the energy cost. Many recent
works have proven that FL is vulnerable to various kinds of privacy attacks [10,11]. For
example, given the local update gradients (or local models), a malicious server can infer
whether a specific data point belongs to the training set of a particular client [12]. Moreover,
an attacker in the open public environment can precisely reconstruct small batches of
training samples [13–15], if the updated gradients are intercepted and the local model
architectures are known. Such attacks pose a server privacy threat to FL systems. As a
response, many defense methods have been proposed, such as leveraging cryptographic
techniques [16,17] or adding differential noise to model gradients [18].
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Although these solutions provide effective or provable defenses to FL, they cannot be
widely adopted in resource-constrained training scenarios, especially in large-scale and
highly distributed FL, e.g., edge computing with massive amounts of unreliable devices.
Since current privacy protection techniques incur extra computing overheads and affect
model performance [19], data service providers as well as individual users are reluctant to
adopt these techniques to ensure data privacy. On the other hand, energy consumption has
also become one of the major bottlenecks in promoting FL in Internet of Things (IOT) [20].
Nevertheless, current researchers merely focus on constructing new training protocols to
limit resource usage and hardly extend their attention to modifying local models in an
energy-efficient manner.

To this end, in this paper, we propose a novel FL framework that offers both the-
oretically guaranteed privacy protection and low energy consumption. Our proposed
framework models the local training in a discrete manner, which is similar to how nerve
signals travel in the human brain. Specifically, we leverage spiking neural networks, also
known as the third-generation neural network, and differential privacy, a promising tech-
nique to protect data privacy, to construct a new local training and server aggregation
algorithm. The crux of our framework design lies in how to properly inject differentially
private noise into the discontinuous forward propagation process, while maintaining the
availability of gradients produced by backpropagation. Our evaluation results demon-
strate that our proposal can effectively defend against two common privacy attacks, i.e.,
membership inference attacks and property inference attacks.

The contributions made in this paper can be summarized as follows.

• We leverage an SNN to tackle the conflict between privacy and efficiency in FL. blue
In particular, SNNs enjoy naturally high computing efficiency, with a mathematically
traceable computing process. Hence, differential private noise can be added to the training
process, while maintaining acceptable model accuracy. Compared to previous works,
our proposed framework significantly lowers the hardware requirements for clients.

• To the best of our knowledge, we propose the first FL framework that enjoys both low
energy consumption and theoretically guaranteed privacy protection. Our framework
protects both the local model and global model by injecting DP noise into the training
and transmission process.

• We conduct extensive experiments to evaluate our proposed framework. Empirical
evaluation results show that our proposal can effectively defend against common
privacy attacks. Moreover, our training scheme can be implemented in large-scale
cross-device training, and it does not incur a notable accuracy drop compared to
typical FL paradigms with privacy protection.

This paper is organized as follows: Section 2 presents the preliminaries and back-
ground of our work, Section 3 formalizes the problem and threat models, Section 4 describes
our proposed method, Section 5 shows our empirical evaluation results, Section 6 discusses
previous works related to ours, and Section 7 concludes our work.

2. Preliminaries and Background

In this section, we introduce the related preliminaries and background of our work.

2.1. Federated Learning

FL [21] allows multiple participants to cooperatively train a shared global model,
while maintaining the confidentiality of their privately held local datasets. Assume that
each participant in FL ci ∈ C privately holds a dataset Di ∈ D. Take surprised learning, for
example: local dataset Di consists of multiple data points di, which are characterized by a
sample xi and its corresponding label yi, i.e., {xi, yi} = di. In the canonical FL paradigm,
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each client locally trains a local model Fi(.) on Di via minimizing a loss function L(.). This
optimization process is typically achieved by gradient decent algorithms. Mathematically,

θ
p+1
i ←

∂ L(Di|θ
p
i )

∂ θ
p
i

, (1)

where p and θ denote the training epoch (or communication round in FL) and weights of
local models, respectively. The loss function L(.) could be predefined before training or
dynamically adjusted in the training process, based on practical training goals.

After each client finishes their local training, the central server collects local models
from them. A new global model for the next training epoch F (.) is then created by
averaging each local model, i.e.,

F p+1(.)← 1
I ∑

ci

θ
p
ci . (2)

The new global model would be broadcasted to all clients, on which the next local
training is based. The local model of each client could be a classical machine learning model
or neural network. In this paper, we propose using spiking neuron models, also known as
spiking neural networks (SNN), as local models of each client. The authors in [21] have
explored the possibility of implementing SNNs in federated learning.

2.2. Spiking Neuron Models

Neuromorphic computing has gained considerable attention in recent years, as it
requires lower energy compared to traditional neural networks. A basic model in neu-
romorphic computing is a spiking neural network (SNN), which is inspired by certain
biological principles of the human brain. Different from current artificial neural networks
(ANNs), SNNs model the forward propagation process in a discrete manner and are con-
sidered to be the third-generation neural network. Specifically, each neuron in the SNN
accumulates the incoming spikes and generates a spike when its membrane potential
exceeds a threshold. After firing, the membrane potential would be reset to the resting
potential. Mathematically, at each time step t, for the i-th neuron, such a process can be
modeled as

ut
i = λut−1

i + ∑
j∈N

wijot−1
j s.t. ot−1

j =

{
1 i f ut−1

i > v,
0 otherwise,

(3)

where u, o, and wij denote its membrane potential, the output of the previous neuron, and
a weight between the i-th and j-th neurons, respectively. λ < 1 is a constant, indicating the
reduction in membrane potential at every time step.

An SNN is typically converted from a well-trained ANN. However, such conver-
sion is time-consuming and the model accuracy cannot be properly persevered. Recent
research [22] has proposed Batch Normalization Through Time (BNTT), a novel training
method that associates a local learning parameter with each time step. As a result, it is
possible to train an SNN without an auxiliary fully trained ANN model. In particular, after
the BNTT layer is applied, the forward propagation is modeled as

ut
i = λut−1

i + BNTTγt
i

(
∑
j∈N

wijot
j

)
= λut−1

i + γt
i

∑j N wijot
j − µt

i√(
σt

i
)2

+ τ

, (4)

where u and σ denote the mean and variance from a batch of samples, and τ is a small constant
to ensure numerical stability. A parameter γ can therefore be learnt using backpropagation.
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2.3. Differential Privacy

Differential privacy (DP) offers theoretically guaranteed privacy protection to con-
fidential data, while not incurring a significant additional computing cost. The DP-SGD
algorithm [23] is the first solution to implement DP in machine learning paradigms, which
adds perturbing noise to the stochastic gradient descent. DP-SGD only modifies the train-
ing algorithm, not adding noise the dataset itself. As a result, the gradient in the model
update (in the case of FL, local models) can be published without privacy leakages. In
particular, we have the following definitions.

Definition 1 ([24]). A randomized mechanismM with domain D and range R satisfies (ε, δ)-
differential privacy if, for any two adjacent inputs d ∈ D, and for any subset of outputs S ∈ R, it
holds that

Pr[M(d) ∈ S] ≤ eε Pr
[
M
(
d′
)
∈ S
]
. (5)

Under this definition, each output of DP algorithmM is equally likely on two adjacent
databases. The privacy budget, ε, controls the amount of the difference between d and d′.
A smaller ε can provide a stronger privacy guarantee ofM. To make the effectiveness of
DP measurable, we introduce Renyi Differential Privacy as follows.

Definition 2 ([25]). A randomized mechanism M(d) is said to be (α, ε)-Renyi differentially
private if its distribution over two adjacent inputs d and d′ satisfies

Dα

(
M(d)‖M

(
d′
))
≤ ε, (6)

where α tunes the amount of concern placed on unlikely large values of c(o;M, d, d′) versus the
average value of c(o;M, d, d′). Here, c(o;M, d, d′) denotes the the privacy loss at an outcome o,
which is defined as

c
(
o;M, d, d′

)
= log

Pr[M(d) = o]
Pr[M(d′) = o]

. (7)

3. Problem Statement and Threat Model

In this paper, our objective is to protect the confidentiality of each participant’s local
training data. In particular, we consider the following two types of data leakages.

• Membership Leakage. Membership privacy [26,27] concerns indicating whether a
specific training sample was involved in the training set. In a membership inference
attack (MIA) [28], an attacker manages to obtain black-box access to the target model
and query multiple times with its local samples D′ to infer which part of D′ belongs to
the confidential training set. MIA is critical in FL, since each participant as well as the
central server can access the shared global model. Moreover, recent researchers [12,28]
have proposed more effective MIA pipelines for FL, which significantly increases the
risk of privacy leakage.

• Class Leakage. Class leakage exists when the attacker manages to obtain the class
distribution of the target dataset. For example, a property inference attack (PIA) [29,30]
infers the properties of the training data that are irrelevant to the learning objective.
Such properties typically include the proportion of each type of sample in the training
set. Similar to MIA, in FL, the shared global model would also cause severe class
leakage problems. In particular, with the assistance of a data poisoning attack, an
existing attack [30] achieved high accuracy in inferring the general properties of each
participant’s confidential training dataset.

In FL, since each entity (including the central server) could potentially become com-
promised, we mainly presume participants to be honest-but-couriers. In other words, each
entity would strictly follow the predefined protocol, while trying to infer secret informa-
tion as much as possible. Therefore, our proposal provides a privacy guarantee in the FL
scenario where one or all of the following unexpected conditions are applied.
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• (T1) The central server becomes malicious and actively infers confidential information
from the received local models. Since the central server has full visibility to all local
models, this is the most threatening scenario. Moreover, in order to further extract
secret information, the central server could send carefully designed fake global models
to a victim participant and infer secret information from their responses.

• (T2) A third party manages to intercept but cannot tamper with the communication
between the central server and participants. Likewise, they could actively infer
confidential information from updated local models. Different from the malicious
central server, the global model is dependable.

• (T3) A number of participants become compromised and cooperatively infer a training
set that they do not possess from each training round’s global model.

To eliminate these privacy threats, our proposal leverages DP in both local training
and server aggregation. Both local models and global models are protected by DP noise,
which makes a compromised entity less able to infer sensitive information from the local
models and global models.

4. Proposed Method

In this section, we describe our proposed privacy-preserving federated learning by
spiking neuron models. A federated learning scheme can generally be divided into
two iterative phases: (1) a local search by each participant, denoted by S(.), and (2)
server aggregation, denoted by A(.). In a communication round, each client firstly per-
forms a local search on their private dataset D, i.e., Fi(.) ← S(D). The trained model
F (.) would be uploaded to a central server, where model aggregation is performed, i.e.,
F (.)← A(F1(.) . . . ,Fi(.), . . . ,Fc(.)). In this paper, we design novel local search and server
aggregation algorithms for SNNs that provide a privacy guarantee. Figure 1illustrates our
proposal at a high level. In the following paragraph, we separately describe our proposed
two algorithms.

Figure 1. Our proposed training framework at a high level.

4.1. Local Search

In a local search, each client updates their local model by minimizing a loss function
L(.). A widely used loss function is the cross-entropy loss, defined as

L(.) = −∑
i

PA(xi)log(PB(xi)), (8)

where PA and PB denote two probability distributions. From the accumulated membrane
potential, the cross-entropy loss for SNNs can be defined as
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L(.) = −∑
i

yi log

(
euT

i

∑k euT
k

)
. (9)

After modeling the discrete propagation process in a continuous manner, i.e., applying
surrogate gradient, do

du = e2(u−uth)
2
, gradient descent can be adopted to compute the model

updates at each time step. According to the chain rule, the gradient of the corresponding
time and layer can be computed as

∇wL(.) =
T

∑
t=1

∂L
∂ot

i

∂ot
i

∂ut
i

∂ut
i

∂wij
. (10)

To protect training data privacy, we add Gaussian noise N (.) to the gradients com-
puted at each training epoch p. As a result, differentially private gradients can be obtained,
which makes the attacker less able to extract sensitive information. We provide a privacy
guarantee under the framework of GDP theory [31]. In particular, distinguishing between
two adjacent datasets D and D′ is harder than distinguishing between two Gaussian distri-
butions N (0, 1) and N (κ, 1). Therefore, even if a malicious party intercepts the local update
gradient or global model, they cannot directly infer or reconstruct the corresponding training
set. Mathematically, in the p-th training epoch, the local model for client c is updated by

wp+1
c ← wp

c − η
1
B

((
N
(

0, κ2C2I
)

+ ∇wLp
c (.)/ max

1,

∥∥∥∇wLp
c (.)

∥∥∥
2

C

−∇wLp
c (.)

, (11)

where η is the learning rate, C is the gradient norm bound, κ is the noise scale, B is the
batch size, and N (0, κ2C2I) is a normal Gaussian distribution. To avoid privacy leakage,
participants usually upload the gradients of each training epoch, instead of uploading the
full local model, i.e., ∆wp+1

c = ∆wp+1
c − wp

c . This is equal to uploading the full local model,
as the central server can directly compute the average on such received gradients.

4.2. Server Aggregation

The central server aggregates all received local updates and forms a new global model.
To ensure that all local models have a sufficient impact on the global model, the central
server would usually select a subset S ∈ C from all participants. The selection algorithm,
for example, could be solving the following maximization problem [32]:

max
S
|S| s.t. Tround ≥ Tcs + Td

S + Θ|S| + Tagg, (12)

where S is the selected client set, Tround is the deadline for each round, Tcs is the time
required for the client selection step, Tagg is the time required for the aggregation steps, Td

S
is the time required for global model distribution, and Θ|S| is the time for participants in S
required to update and upload the local models.

After client selection, the central server initiates the aggregation process. Denoting the
count of non-zero elements of a set by |.|, Equation (2) can be expanded as follows:

F p+1(.)← F p(.) +
1

∑c∈S

∣∣∣Dp+1
ci

∣∣∣ ∑
c∈S

∣∣∣Dp+1
ci

∣∣∣∆wp+1
ci . (13)

Here, participants with more data samples are given more weight in aggregation,
which helps the global model to converge faster. To enhance the privacy of the global
model, i.e., defend against third parties intercepting the broadcasted global model, DP
noise can be added before it is published:

F p+1(.)← F p+1(.) +N
(

0, κ′2C′2I
)

. (14)
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In particular, to limit the performance penalty incurred by adding DP noise, noise is only
applicable to model weights that do not change significantly compared to the last training
round. The central server also selects some particular training terminal conditions, which
indicate when the FL ends. This also helps to reduce the overfitting of the model. The
detailed algorithm of our proposed training scheme is shown in Algorithm 1.

Algorithm 1: Privacy-Preserving Federated Neuromorphic Learning
Input : Total communication round P , client set C, local learning rate η,

training terminal conditions φ, local training batch size B, client
selection algorithm Fs(.),

Initialize : Model parameter of local models w0
i .

1 for p = 1 : P do
2 S← Fs(C)
3 for each ci ∈ S do in parallel
4 wp+1

ci ← Equation (11)

5 ∆wp+1
ci = ∆wp+1

ci − wp
ci

6 upload ∆wp+1
ci to central server

7 F p+1(.)← F p(.) + 1
∑c∈S

∣∣∣Dp+1
ci

∣∣∣ ∑c∈S

∣∣∣Dp+1
ci

∣∣∣∆wp+1
ci

8 F p+1(.)← F p+1(.) +N
(
0, κ′2C′2I

)
9 if training terminal conditions φ are matched then

10 return F p+1(.)

11 return F p+1(.)

5. Experiments

In this section, we present the empirical evaluation results of our proposal. We test the
final accuracy of the well-trained global model, as well as its ability in defending different
privacy attacks.

5.1. Settings

Our evaluation is conducted on the PyTorch Framework 3.8. All experiments are
conducted 5 times, and the average results are reported. Detailed settings are described as
follows.

Dataset and Learning Scale. We conduct experiments to evaluate the performance of
our FL framework on the MNIST and CIFAR-10 datasets. MNIST consists of 60,000 training
samples and 10,000 test samples, which are 28 × 28 grayscale images. CIFAR-10 consists of
60,000 training samples and 10,000 test samples, which are 32 × 32 RGB images. To simulate
three practical learning scenarios [33] (cross-silo FL and cross-device FL), the datasets are
split according to the following.

1. cross-silo FL: Participants are different organizations (e.g., hospitals or banks) or geo-
distributed data centers. Typically, there are 2–100 participants in this scenario, and all
of them are reliable, i.e., no failure or drop out. Our simulation of this scenario splits
the dataset with the following settings: (1) CS_1: 6 clients, with 10,000 training samples
each, (2) CS_2: 20 clients, with 2000–5000 samples each, and (3) CS_3: 50 clients, with
1000–2000 samples each. All local gradients would aggregated by the central server,
i.e., client selection is disabled.

2. cross-device FL: Participants are a very large number of massively parallel mobile
or IoT devices, typically up to 105. During training, only a small of participants are
available at any one time, i.e., some of the participants would have a probability not
responding to the central server. Our simulation of this scenario splits the dataset with
the following settings: (1) CD_1: 200 clients, each with 500 training samples randomly
selected from the training set, and (2) CD_2: 1000 clients, each with 250 training
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samples. randomly selected from the training set. The central server only selects
30 local models for aggregation according to its selection protocol.

Model Architectures. We implement two local model architectures: (1) M1, a
lightweight fully connected neural network with 5 hidden layers; and (2) M2, VGG13,
which consists of 10 convolutional filters 3 × 3 and two fully connected layers with pooling.
As a comparison, both architectures would be implemented as an ANN and SNN. The
training batch size B for each participant is 32, and the learning rate η is 0.005. In VGG16,
we also use a momentum of 0.9 to avoid falling into local optima. The activation function
in ANNs is set with Sigmoid. In each communication round, the local model is trained by
10 epochs before updating the gradients on the central server. The DP noise added in the
local training phase and aggregation phase is N (0, 0.01) and N (0, 0.005), respectively.

5.2. Training Accuracy

We report the training accuracy of the well-trained global model, as well as the
communication rounds needed under different settings, in Table 1 (MNIST) and Table 2
(CIFAR-10). In general, the global model can converge well under both FedAvg and our
method. Please note that our method provides privacy protection, which would cause a
performance penalty. We will present the evaluation results in defending against privacy
attacks in the next subsection.

Table 1. The converged global model accuracy (Acc) and communication rounds (CR) in different
settings for the MNIST dataset.

FedAvg M1 FedAvg M2 Ours M1 Ours M2

Acc CR Acc CR Acc CR Acc CR

CS_1 SNN 98.9% 126 99.1% 178 97.1% 152 97.2% 219
ANN 99.2% 97 99.6% 169 97.4% 128 97.8% 143

CS_2 SNN 98.8% 134 98.9% 189 97.0% 180 97.4% 269
ANN 99.2% 106 99.3% 170 97.2% 144 97.6% 178

CS_3 SNN 98.3% 150 98.5% 195 96.3% 208 96.8% 285
ANN 99.0% 111 99.3% 182 96.8% 160 97.1% 197

CD_1 SNN 96.5% 213 96.9% 245 94.2% 323 94.8% 329
ANN 97.8% 178 98.0% 190 94.9% 219 95.5% 230

CD_2 SNN 95.7% 256 95.8% 281 93.8% 348 94.4% 367
ANN 97.1% 220 97.5% 243 94.0% 245 95.2% 277

Table 2. The converged global model accuracy (Acc) and communication rounds (CR) in different
settings for the CIFAR-10 dataset.

FedAvg M1 FedAvg M2 Ours M1 Ours M2

Acc CR Acc CR Acc CR Acc CR

CS_1 SNN 96.2% 186 96.8% 240 95.7% 187 95.9% 199
ANN 96.6% 170 97.6% 226 96.1% 165 96.3% 186

CS_2 SNN 95.9% 193 96.3% 258 95.2% 196 95.6% 215
ANN 96.5% 179 97.0% 239 95.5% 173 95.5% 194

CS_3 SNN 95.1% 205 95.9% 262 94.6% 228 94.9% 254
ANN 95.7% 186 96.5% 245 94.8% 212 94.3% 210

CD_1 SNN 93.2% 240 94.3% 280 94.2% 347 94.6% 363
ANN 94.1% 210 94.7% 255 93.6% 236 94.7% 274

CD_2 SNN 92.6% 269 93.8% 293 93.3% 366 94.0% 370
ANN 93.4% 238 94.2% 276 93.4% 250 93.3% 280

From both tables, we can observe that, in both simple and complex network architec-
tures (M1 and M2), our proposed FL scheme can provide a global SNN model with testing
accuracy similar to the ANN. In both network architectures, the number of communication
rounds for the SNN is 1.5 times more than for the ANN on average, especially in large
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training scenarios. Moreover, the decrease in model accuracy compared to the ANN does
not vary with the learning scale. It can be estimated that, in even larger learning scenarios
with more uncertainties, our proposal can achieve a global model that is similar to an ANN
in terms of accuracy, while enjoying the unique benefits of SNNs, e.g., low computing
energy cost. From Table 2, we can see that the SNN also performs well on RGB images.
Next, we report how the global model accuracy increases with the communication rounds
in Figure 2. The tested global model accuracies under the setting of M2 CIFAR-10 are shown.
For cross-silo training, the global model accuracy increases faster than for cross-device
training.

Figure 2. Change in global model accuracy with the increase in communication rounds (CIFAR-
10, M2).

5.3. Defense against Privacy Attacks

In this subsection, we present the evaluation results in terms of defending against
privacy attacks. As mentioned in Section 3, we mainly consider membership inference
attacks and property inference attacks. We posit that (1) the central server or (2) some of the
clients are malicious. The MIA follows the implementation of [34], and the attack accuracy
is reported in Table 3. The PIA follows the implementation of [35], and the attack accuracy
is reported in Table 4. We use the same metric for attack accuracy as in [35].

The MIA accuracy in Table 3 is computed by

MAA = 2P[ FA(Yt | aux ) = ε ]− 1, (15)

where aux denotes the information available to the attacker (i.e., attacker’s advantage), and
FA is the chosen attack algorithm. Since a randomly initialized attack algorithm achieves
50% accuracy (random guess), this measurement of the performance of MIA would be more
rational. From Table 3, we can observe that our proposed FL framework can effectively
prevent MIA in different learning scenarios. The attack accuracy drops significantly (65%
in average) in simple and complex datasets. In large models, our proposal can provide
even better privacy protection.

As for defense against PIA, our training scheme also achieves similar defense per-
formance compared to the results in MIA. From Table 4, we can observe that the attack
accuracy decreases considerably with our training scheme. In different settings, the distri-
bution of only a small portion of confidential data can be inferred by the attacker. From
all tables, we can conclude that our proposed training scheme can provide strong privacy
protection in different threat models, while only causing a slight drop in model performance
and convergence speed.
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Table 3. MIA accuracy under FedAvg and our proposed training scheme in MNIST (D1) and
CIFAR-10 (D2).

MIA FedAvg M1 Ours M1 FedAvg M2 Ours M2

D1 D2 D1 D2 D1 D2 D1 D2

CS_1 67.3% 61.1% 23.0% 26.6% 69.9% 63.5% 23.5% 25.9%
CS_2 65.9% 61.0% 21.9% 26.3% 68.1% 62.9% 23.2% 25.3%
CS_3 65.1% 60.4% 20.8% 29.5% 67.5% 62.3% 22.7% 24.8%
CD_1 52.1% 48.2% 19.6% 18.6% 59.1% 51.2% 17.6% 20.2%
CD_2 49.3% 42.1% 18.5% 17.9% 58.3% 47.0% 17.1% 19.6%

Table 4. PIA accuracy under FedAvg and our proposed training scheme in MNIST (D1) and
CIFAR-10 (D2).

PIA FedAvg M1 Ours M1 FedAvg M2 Ours M2

D1 D2 D1 D2 D1 D2 D1 D2

CS_1 78.6% 75.0% 30.3% 28.7% 73.9% 71.8% 27.4% 25.7%
CS_2 77.2% 74.2% 29.4% 26.6% 73.1% 70.9% 26.7% 25.0%
CS_3 76.4% 73.7% 28.7% 26.0% 72.0% 70.1% 26.1% 24.6%
CD_1 72.1% 71.0% 26.9% 24.9% 67.5% 65.7% 24.0% 22.4%
CD_2 71.2% 69.5% 26.1% 24.0% 64.3% 63.1% 22.9% 21.8%

5.4. Ablation Study

We also conduct an ablation study to further verify the effectiveness of our proposal.
We test the defense performance when (1) the scale of added noise is changed, and (2) we
only enable DP in local training or server aggregation. We select the most challenging
scenario in the cross-silo and cross-device context, respectively, i.e., CS_3 and CD_2. The
results are reported in Tables 5 and 6, respectively.

In Table 5, we further show the distribution of DP noise added in local training. We
evaluate N (0,0.02) and N (0,0.005), and the global model accuracy (Acc), communication
rounds (CR), and privacy attack accuracy (PA) are reported. PA reflects the model’s general
ability in defending against privacy attacks and is computed from the average attack
accuracy of MIA and PIA. Generally speaking, adding DP noise with a wider range would
cause a penalty in both model accuracy and convergence speed, but provide more powerful
privacy protection. In practical training, participants can choose the appropriate scale
of noise.

Table 5. Results showing how the scale of added noise in local training impacts global model accuracy
(Acc), communication rounds (CR), and privacy attack accuracy (PA). PA equals the average attack
accuracy of MIA and PIA.

CS_3 M1 CD_2 M1 CS_3 M2 CD_2 M2

D1 D2 D1 D2 D1 D2 D1 D2

N (0,0.01)
Acc 96.3% 94.6% 93.8% 93.3% 96.8% 94.9% 94.4% 94.0%
CR 208 228 348 366 285 254 367 370
PA 24.8% 27.8% 22.3% 21.0% 24.4% 24.7% 20.0% 20.7%

N (0,0.02)
Acc 95.6% 93.3% 92.9% 92.0% 95.1% 93.7% 92.6% 91.3%
CR 213 237 365 378 298 265 388 386
PA 23.6% 25.7% 20.9% 19.8% 19.7% 18.9% 16.5% 16.0%

N (0,0.005)
Acc 97.0% 95.6% 94.4% 94.6% 97.2% 95.8% 95.7% 95.2%
CR 196 207 328 332 250 239 354 348
PA 27.5% 26.7% 23.9% 23.6% 29.8% 30.6% 28.6% 29.5%
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Table 6. Results when only applying DP noise in local training phase or server aggregation phase.

CS_3 M1 CD_2 M1 CS_3 M2 CD_2 M2

D1 D2 D1 D2 D1 D2 D1 D2

Acc 95.1% 93.8% 93.2% 93.0% 95.7% 94.4% 93.9% 93.5%
CR 187 198 306 328 246 289 345 356DP in local

training (PA 34.9% 36.6% 31.7% 32.8% 30.9% 31.7% 30.1% 32.6%

Acc 95.3% 94.5% 93.9% 93.4% 95.7% 95.2% 95.0% 93.7%
CR 181 196 294 310 239 265 310 327DP in server

aggregation PA 32.7% 31.9% 31.3% 31.0% 31.8% 32.0% 31.7% 32.2%

Next, we investigate the model’s defense capability when only adding DP noise in local
training or server aggregation. In Tables 1 and 6, we can observe that applying DP noise in only
the local training phase or server aggregation phase can allow resistance to privacy attacks.
However, such privacy protection is weaker than when injecting noise in both phases.

6. Related Work

Our work mainly follows two lines of research: federated learning and spiking neuron
models. The following paragraph briefly introduces recent advances in these two areas.

6.1. Federated Learning

Federated learning has quickly become one of the gold standards in privacy-preserving
machine learning solutions since it was first introduced by Google in 2016 [19]. The
pioneering work in FL typically simply considers all clients to be honest to each other,
which makes directly aggregating local gradients possible [36]. However, the existence of
malicious clients has prompted the proposal of more secure and robust FL frameworks [18].

Specifically, a number of works have designed different kinds of attacks to manipulate
the training process or infer privacy data in FL. Zhu et al. proved that an attacker is able to
reconstruct the actual training set of each participant if the local update gradient can be
accessed [13]. Similarly, a malicious subset of the participants has been proven to be able
to poison the global model by sending model updates derived from mislabeled data [37].
Moreover, FL can also easily be backdoored if the attacker manages to continuously send
corrupted gradients to the aggregation server [38].

Nevertheless, in regard to these attacks, a wide range of researchers have provided
many defense solutions. For example, Moriai et al. consider using homomorphic encryption
to ensure the confidentiality of the whole training process [39]. In order to prevent different
kinds of data inference attacks, adding differential noise to the training process has also
been considered in a number of secure training schemes [10].

6.2. Spiking Neuron Models

The recent increasing need for the autonomy of machines in the real world has pro-
moted the application of SNNs [40,41]. Inspired by biological neural networks, SNNs
leverage plasticity and backpropagation as the main training methods [42]. Despite great
advantages in energy consumption and learnability, SNNs are still difficult to train in many
cases, since there exist complex dynamics of neurons, and the spike operations are naturally
non-differentiable. Recent studies of SNNs can broadly be divided into the following
streams.

Research stream 1: Investigating and advancing the connection between neural net-
works and SNNs. For example, Jason K. et al. explored the delicate interplay between
encoding data as spikes and the learning process and investigated how deep learning
might move towards biologically plausible online learning [43]. Yufei et al. designed an
information maximization loss that aims at maximizing the information flow in the SNN,
which ensures sufficient model updates at the beginning and accurate gradients at the end
of the training [44].
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Research stream 2: Boosting the convergence of SNNs. For example, Fang et al.
proposed the spike-element-wise (SEW) ResNet to realize residual learning in deep SNNs,
which overcomes the vanishing/exploding gradient problems of spiking ResNet [45]. To
overcome the challenge of discrete spikes prohibiting gradient calculation, Yuhang et al.
proposed a surrogate gradient approach that serves as continuous relaxation [46]. By
encoding the spike trains into a spike representation using (weighted) firing rate coding,
Qingyan et al. proposed the differentiation on spike representation method, which provides
competitive accuracy to ANNs yet with low latency [47].

Research stream 3: Promoting the practical application of SNNs. For example, Xie et
al. designed a novel network structure for SNNs based on neuron receptive fields, which
extract information from the pixel and spatial dimensions of traffic signs [48]. Moreover,
Viale et al. used an SNN connected to an event-based camera to tackle the classification
problem between cars and other objects [49].

7. Conclusions and Future Work

In this paper, we propose the first privacy-preserving FL framework with SNNs.
Our proposal can simultaneously provide theoretically guaranteed privacy protection and
achieve low energy consumption. Our framework injects DP noise into the training and
transmission process. We conducted extensive experiments to evaluate our proposed frame-
work. Empirical evaluation results have shown that our proposal can effectively defend
against common privacy attacks. blueFor example, the attack accuracy of membership
inference attacks drops to 43% in some scenarios. Moreover, our training scheme can
be implemented in large-scale cross-device training, and it does not incur a significant
accuracy drop compared to typical FL paradigms with privacy protection.
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