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Abstract: As a typical visual positioning system, monocular ranging is widely used in various fields.
However, when the distance increases, there is a greater error. YOLOv8 network has the advantages
of fast recognition speed and high accuracy. This paper proposes a method by combining YOLOv8
network recognition with a monocular ranging method to achieve target localization and grasping
for the NAO robots. By establishing a visual distance error compensation model and applying it
to correct the estimation results of the monocular distance measurement model, the accuracy of
the NAO robot’s long-distance monocular visual positioning is improved. Additionally, a grasping
control strategy based on pose interpolation is proposed. Throughout, the proposed method’s
advantage in measurement accuracy was confirmed via experiments, and the grasping strategy has
been implemented to accurately grasp the target object.

Keywords: intelligent robots; object recognition; YOLOv8; visual odometry; error compensation;
pose estimation

1. Introduction

With the rapid development of robotics technology, robots have been widely used
in various fields such as transportation, welding, and assembly [1]. However, the precise
positioning and grasping of robots are key technologies and prerequisites for them to carry
out a variety of tasks. Zhang L. et al. proposed a robotic grasping method that uses the
deep learning method YOLOv3 and the auxiliary signs to obtain the target location [2]. The
method can control the movement of the robot and plan the grasping trajectory based on
visual feedback information. However, the detection accuracy of this method is relatively
low since target detection in the robot’s image is complicated by a complex background and
target occlusion. Huang M. et al. proposed a multi-category SAR image object detection
model based on YOLOv5s to address the issues caused by complex scenes [3]. Tan L.et
al. adopted the hollow convolution to resample the feature image to improve the feature
extraction and target detection performance [4]. The improved YOLOv4 algorithm has
been adopted by numerous studies to facilitate target detection in robotic vision, aiming to
enhance detection accuracy [5,6]. The improved algorithm has improved both detection
speed and accuracy. Sun Y.et al. constructed the error compensation model based on
Gaussian process regression (GPR), effectively improving the accuracy of positioning and
grasping for large-sized objects [7]. This study focuses on the target localization and
grasping of the NAO robot [8,9]. The target object is recognized through YOLOv8 network
training [10]. Then, a monocular ranging model is established for the NAO robot to achieve
the initial positioning of the target. Then, we establish a visual distance error compensation
model to improve the monocular range. Furthermore, we utilize multi-point measurement
compensation technology to estimate the target’s position and pose and ultimately achieve
grasping the target.
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The main contributions include: (1) Combining the YOLOv8 network with the Nao
robot’s monocular ranging to realize the target recognition and localization and improving
the issue of targets being unable to be accurately segmented in complex environments;
(2) Due to the issue of greater errors with longer distances in the monocular distance mea-
surement model, we propose a visual distance error compensation model using Gaussian
process regression to improve the Nao robot’s distance ranging error within 2 cm; (3) The
multi-point measurement compensation technology is proposed to estimate the target’s
position and pose, and ultimately achieve grasping the target.

This paper is organized as follows: In Section 2, relevant target recognition and
Localization technology is reviewed. In Section 3, the visual distance error compensation
model is established to improve the long-distance monocular visual positioning accuracy of
the Nao robot. In Section 4, a grasp control strategy based on pose interpolation is proposed
to realize the pose estimation and smooth grasping and further verify the results of target
recognition and localization. The experiment and results analysis are given in Section 5.
Finally, the discussions are drawn in Section 6.

2. Target Recognition and Localization Technology

Target recognition based on traditional color segmentation has high requirements for
the environment in which the target object is situated. In contrast, the YOLOv8 network
has the advantages of fast speed, high accuracy, and strong scalability. Through training,
the latter can extract feature points from the target to achieve target recognition [11]. The
Nao robot operates using a single camera. Hence, this study employs the monocular vision
localization techniques [12,13]. A monocular vision system is a typical visual positioning
system [14]. But, most of the present research faces the problem that the farther the distance
is, the greater the error is, and the attitude of the target object is not considered. First, the
position coordinates of the target center under the image coordinate system are obtained
through target detection using the YOLOv8 network. Then, the relationship between the
location coordinates and image coordinates was determined using the monocular vision
positioning model. Finally, it is possible to obtain the location coordinates of the target
under the NAO robot coordinate system and to acquire the pose of the target object by
measuring the endpoint and the center point of the target object, thereby ensuring that the
NAO robot can accurately grasp the object.

The principle of monocular ranging based on the YOLOv8 algorithm is shown in
Figure 1. The system mainly consists of three components: target detection, internal and
external parameter acquisition, and monocular ranging. In the target detection phase,
the detection frame is mainly obtained by the YOLOv8. Then, the internal and external
parameters of the camera are obtained through the calibration. Finally, according to the
principle of similar triangle ranging, the center point of the frame output in the target
detection phase is used as the mapping point and combined with the internal and external
parameters of the camera to achieve target positioning.
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2.1. Target Recognition Based on YOLOv8 Network

YOLOv8 is a deep neural network architecture used for target detection tasks, as shown
in Figure 2. Compared to YOLOv5 and YOLOv7, it provides a new SOTA model and a
YOLACT-based instance segmentation model [11]. It is built as a unified framework for
training object detection, instance segmentation, and image classification models. And the
model can run on both CPU and GPU. The network consists of four main components: the
input, the backbone, the loss calculation, and the regression branch. The input layer primarily
focuses on data enhancement techniques, such as Mosaic [11], to carry out adaptive detection
frame calculation and filling of grayscale values. The backbone network is responsible for
feature extraction. The loss calculation process comprises two branches, namely classification
and regression, to achieve accurate and efficient target detection [15–17].
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2.2. Modeling of Monocular Ranging

Based on the NAO robot, a monocular ranging model is employed, utilizing the
pinhole perspective principle as depicted in Figure 3. The relationship between the camera
coordinate system, and the image coordinate system X−Y in the camera imaging model is
represented below. With the optical center position Oc of the camera lens as the origin point,
a camera coordinate system XC −YC − ZC is established parallel to the X−Y coordinate
plane. The ZC axis is perpendicular to the X−Y coordinate plane. The line segment OCO1
represents the camera’s focal length. The point M of coordinates (XC, YC, ZC), corresponds
to the point m in the image coordinate system, with coordinates (X, Y). The relationship
between image coordinates and actual spatial coordinates is depicted by Equation (1).

X
Y
1

 =
1

Zc

 f 0 0 0
0 f 0 0
0 0 1 0




Xc
Yc
Zc
1

 (1)

where f is the camera focal length.
Hence, after obtaining the coordinates of the center point and endpoint of the target

image, the image coordinates can be converted into actual spatial coordinates. Subsequently,
the pose of the target object in the robot coordinate system can be determined.



Electronics 2023, 12, 3981 4 of 17

To determine the position of the target point in the image coordinate system, the center
point (u0, v0) of the image pixel is taken as the origin of the image coordinate system. The
transformation relationship is depicted in Equation (2).{

x = (u− u0)dx
y = (v− v0)dy

(2)

where dx and dy represent the size of each pixel, and u and v correspond to the pixel
coordinates of the target point.
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Figure 3. The pinhole imaging model.

Figure 4 shows the monocular ranging model established for the NAO robot. The robot
is positioned at the origin OW within the coordinate system OW XWYW ZW . Point O serves
as the camera position, and xO1y represents the image coordinate system. The endpoints
Q1, Q2 of the target rod correspond to q1, q2 in the image coordinate system, respectively.
Taking point Q1 as an example, based on the principles of triangle similarity, the corre-
sponding relationships of various angles can be obtained as shown in Equations (3)–(6).

fy =
f

dy
(3)

β1 = α + γ1 (4)

γ1 = arctan
(

y
fy

)
(5)

XW =
H

tanβ1
(6)

Among them, α denotes the pitch angle of the NAO robot’s head, H represents the
height of the camera above the ground, f is the camera focal length, and fy denotes the
component of f in the image coordinate system. The value of f has been calibrated to be
470 pixels.

By utilizing Equations (2)–(6), the X-coordinate PX1 of point Q1 can be derived, as
depicted in Equation (7).

PX1 =
H

tan
(

α + arctan
(

v−v0
fy

)) (7)

The monocular ranging model for the NAO robot can be simplified into a perspective
view, as shown in Figure 5. There, θ1 represents the angle between point Q1 and the principal
optical axis in the horizontal direction. As a result, the distance between the target point and
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the robot in the Y-axis direction can be obtained. This is formulated in Equations (8)–(10),
where ϕ denotes the angle of the NAO robot’s head in the horizontal direction.

fx =
f

dx
(8)

θ1 = arctan
(

x
fx

)
(9)

PY1 = Y1 = PX1 × tan(θ1 + ϕ) (10)
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Similarly, it is possible to derive the position coordinates (X W2, YW2) of point Q2
under the robot’s coordinate system.

After the NAO robot has measured an accurate distance, the estimation of the target
object’s pose can be achieved through a method of multiple measurements. By using the
monocular ranging model established in Figure 4, range measurements are performed on
the two endpoints of the target bar, thereby obtaining the coordinate values of Q1 and Q2,
which are (P X1, PY1) and (P X2, PY2), respectively. Consequently, the deflection angle ε of
the target rod on the OW XWYW plane can be obtained, as demonstrated in Equation (11).

ε = arctan
(

PX1 − PX2

|PY1|+ |PY2|

)
(11)
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3. Modeling Visual Distance Error Compensation
3.1. Error Analysis

Based on the established monocular ranging model of the NAO robot, the distance in
the X-axis direction of the robot’s coordinate system is related to the γ angle in a tangent
function relationship, as shown in Figure 6. The further away, the smaller the γ angle. This
results in larger measurement errors for distances that are further away.
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Therefore, an error compensation model is established to reduce measurement errors
when the target object is at a distance. The error term k has a relationship with the measured
distance dm of the target rod. The relationship is depicted in Figure 7.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 7. Relationship between the measured distance and error coefficient 𝑘. 

3.2. Gaussian Process Regression Model 
Gaussian process regression (GPR) is a method of regression analysis using Gaussian 

processes (GP). The Gaussian process is composed of a series of random variables follow-
ing a normal distribution [18]. 

Suppose there is a learning sample ൛𝑋⃗, 𝑦ൟ containing 𝑛 independent observations, 
where 𝑋⃗ = ሼ𝑥⃗ଵ, 𝑥⃗ଶ, ⋯ , 𝑥⃗௡ሽ  is an input table consisting of 𝑛  input vectors, and 𝑦 =ሼ𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦௡ሽ is an output table consisting of 𝑛 corresponding one-dimensional outputs. 
So, the mean of GP, 𝜇(x), and the variance 𝑘(𝑥, 𝑥′) can be expressed by the Equations (12) 
and (13). 𝜇(𝑥) = 𝐸[𝑓(𝑥)] (12)𝑘(𝑥, 𝑥′) = 𝐸[(𝑓(𝑥) − 𝜇(𝑥))(𝑓(𝑥′) − 𝜇(𝑥′))] (13)

Here, 𝑥, 𝑥′ represents any random variable in the sample, and 𝐸 is the mathemati-
cal expectations. Therefore, the GP can be defined as shown in Equation (14). In practical 
applications, the mean function 𝜇(x)  is zero through data preprocessing, so GP is as 
shown in Equation (15). 𝑓(𝑥) ∼ 𝐺𝑃 [𝜇(𝑥), 𝑘(𝑥, 𝑥′)] (14)𝑓(𝑥) ∼ 𝐺𝑃 [0, 𝑘(𝑥, 𝑥′)] (15)

In regression problems, the output 𝑦 is also affected by noise 𝜀, which follows the 
Gaussian distribution with a mean of zero and a variance of 𝜎௡ଶ, so the output 𝑦 can be 
expressed as Equation (16). 𝑦 = 𝑓(𝑥) + 𝜀 (16)

Then, we can obtain the prior distribution of 𝑦, as Equation (17), and the joint prior 
distribution of 𝑦  and 𝑓(𝑥∗) , as Equation (18). 𝑥∗  is the test input vector, 𝐼  is the n-di-
mensional identity matrix, and 𝐾(𝑋⃗, 𝑋⃗) is 𝑛 × 𝑛 order GP covariance matrix, 𝐾(𝑋⃗, 𝑥∗), is 𝑛 × 1 order covariance matrix between the input set 𝑋⃗ and the test input vector 𝑥∗, and 𝑘(𝑥∗, 𝑥∗) is 𝑥∗ its own covariance. 𝑦~𝑁(0, 𝐾(𝑋⃗, 𝑋⃗) + 𝜎௡ଶ𝐼) (17)

ቂ 𝑦𝑓(𝑥∗)ቃ ∼ 𝑁 ቆ0, ቈ𝐾൫𝑋⃗, 𝑋⃗൯ + 𝜎௡ଶ𝐼௡ 𝐾൫𝑋⃗, 𝑥∗൯𝐾൫𝑥∗, 𝑋⃗൯ 𝑘(𝑥∗, 𝑥∗)቉ቇ (18)

Figure 7. Relationship between the measured distance and error coefficient k.

3.2. Gaussian Process Regression Model

Gaussian process regression (GPR) is a method of regression analysis using Gaussian
processes (GP). The Gaussian process is composed of a series of random variables following
a normal distribution [18].

Suppose there is a learning sample
{→

X, y
}

containing n independent observations,

where
→
X =

{→
x 1,
→
x 2, · · · ,

→
x n

}
is an input table consisting of n input vectors, and

y = {y1, y2, · · · , yn} is an output table consisting of n corresponding one-dimensional
outputs. So, the mean of GP, µ(x), and the variance k(x, x′ ) can be expressed by the
Equations (12) and (13).

µ(x) = E[ f (x)] (12)
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k
(
x, x′

)
= E

[
( f (x)− µ(x))

(
f
(
x′
)
− µ

(
x′
))]

(13)

Here, x, x′ represents any random variable in the sample, and E is the mathematical
expectations. Therefore, the GP can be defined as shown in Equation (14). In practical
applications, the mean function µ(x) is zero through data preprocessing, so GP is as shown
in Equation (15).

f (x) ∼ GP
[
µ(x), k

(
x, x′

)]
(14)

f (x) ∼ GP
[
0, k

(
x, x′

)]
(15)

In regression problems, the output y is also affected by noise ε, which follows the
Gaussian distribution with a mean of zero and a variance of σ2

n , so the output y can be
expressed as Equation (16).

y = f (x) + ε (16)

Then, we can obtain the prior distribution of y, as Equation (17), and the joint prior dis-
tribution of y and f (x∗), as Equation (18). x∗ is the test input vector, I is the n-dimensional

identity matrix, and K
(→

X,
→
X
)

is n × n order GP covariance matrix, K
(→

X, x∗

)
, is n × 1

order covariance matrix between the input set
→
X and the test input vector x∗, and k(x∗, x∗)

is x∗ its own covariance.

y ∼ N
(

0, K
(→

X,
→
X
)
+ σ2

n I
)

(17)

[
y

f (x∗)

]
∼ N

0,

K
(→

X,
→
X
)
+ σ2

n In K
(→

X, x∗

)
K
(

x∗,
→
X
)

k(x∗, x∗)


 (18)

From this, the posterior distribution of the predicted value f (x∗) can be obtained as
shown in Equations (19)–(21). Predicted mean value f (x∗) is the output of the GPR model
and the predicted value of the observed value y.

f (x∗) |
→
X, y, x∗ ∼ N

[
f (x∗), cov( f (x∗))

]
(19)

f (x∗) = K(x∗, X)
[
k(X, X) + σ2

n In

]−1
y (20)

cov( f (x∗)) = k(x∗, x∗)− K(x∗, X)
[
K(X, X) + σ2

n In

]−1
× K(X, x∗) (21)

This study selects the square exponential function [18] as the kernel function, as shown
in Equation (22).

k
(
xi, xj | θ

)
= σ2

f e
[− 1

2
(xi−xj)

T (xi−xj)

σ2
l

]
(22)

Among them, σl and σ f are respectively the characteristic length scale and the signal
standard deviation. The Gaussian model can be derived from prior data, as shown in
Figure 8. Here, the values of σl and σ f are 0.7344 and 1.0522 respectively.
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Figure 8. Gaussian process regression result.

The blue “+” is the true value of the function, and the red solid line is the result of
Gaussian process regression. The upper and lower solid lines represent two samples of the
Gaussian distribution, and the area between them is the confidence region. Both satisfy the
mean value of the red solid line. The farther away from the red solid line, the larger the
variance and the lower the confidence level.

By combining Equations (16) and (22), we can obtain the error compensation model
Equation (23). And by combining Equations (7) and (10), the target coordinates after
compensation are given by Equation (24).

y = σ2
f e

[− 1
2
(xi−xj)

T (xi−xj)

σ2
l

]
+ ε (23)

{
X1 = PX1 × y
Y1 = PY1

(24)

4. Pose-Interpolated Grasping Control Strategy

To verify the results of target recognition and localization, we adopted a pose interpo-
lation strategy to plan the trajectory of the Nao robot arm to achieve smooth grasping of
the target.

4.1. Linear Path Interpolation

The path of the NAO robotic arm end effector from the start point to the endpoint
follows a linear trajectory. Therefore, interpolation is applied to the straight path between
the start and endpoints. Let the positional coordinates of workspace start and end points
be denoted as A = (xa, ya, za) and B = (xb, yb, zb), respectively. The distance between

the start and end points is L =
√
(xb − xa)

2 + (yb − ya)
2 + (zb − za)

2, A point Pi on the
line segment, AB can be represented as Pi = Pa + (Pb − Pa)S(t)/L, t ∈ [0, T], and its
coordinates are denoted as Equation (25):

xi = xa +
S(t)(xb−xa)

L
yi = ya +

S(t)(yb−ya)
L

zi = za +
S(t)(zb−za)

L

(25)
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The interpolation curves of displacement, velocity, and acceleration are depicted in
Figure 9. The arm velocity and acceleration both become zero at the start and end of the
movement, ensuring the stability of the robot arm throughout its motion.
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Substituting the S(t) from the acceleration-uniform-deceleration trajectory into the
xi, results in the arm’s linear motion trajectory in space, as shown in Figure 10. It is
evident that the points are densely packed at the ends of the straight line, while the middle
portion is evenly distributed. This arrangement achieves the effect of acceleration-uniform-
deceleration.
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4.2. Position Interpolation

Due to the issue of excessive acceleration at the start and end points, we employ the
fourth-order polynomial interpolation method for trajectory planning during the accelera-
tion and deceleration phases.

The arm end displacement, velocity, and acceleration functions are expressed as S(t),
V(t), and A(t). The distance between the start and end points is denoted as L, and the
velocity constant is represented as Vm, the time intervals for the three phases are represented
as t ∈ [0, T/4, 3T/4, T]. S(t), V(t), and A(t) of these three phases can be represented by
the Equations (26)–(28) respectively. The acceleration phase t ∈ [0, T/4], S1(t), V1(t), and
A1(t) are 

S1(t) = −Vm
2t3

1
t4 + Vm

t2
1

t3

V1(t) = − 2Vm
t3
1

t3 + 3Vm
t2
1

t2

A1(t) = − 6Vm
t3
1

t2 + 6Vm
t2
1

t

(26)

The constant velocity phase t ∈ [T/4, 3T/4], S2(t), V2(t), and A2(t) are
S2(t) = Vmt−Vmt1/2

V2(t) = Vm
A2(t) = 0

(27)

The deceleration phase t ∈ [3T/4, T], S3(t), V3(t), and A3(t) are
S3(t) = b4t4 + b3t3 + b2t2 + b1t1 + b0
V3(t) = 4b4t3 + 3b3t2 + 2b2t + b1
A3(t) = 12b4t2 + 6b3t + 2b2

(28)

4.3. Pose Interpolation

There are two methods for solving the pose of the robotic arm: the Euler method
and the quaternion method. However, the Euler method struggles with issues such as
singularities and coupling of angular velocities. Therefore, the quaternion method is chosen
to interpolate the arm posture of the NAO robot.

The relationship between the quaternion qt and arm end pose matrix R is as shown in
Equations (29)–(33), where I is the identity matrix and ω is the anti-symmetric matrix.{

qt = [q0, q1, q2, q3] = [q0, qx]
R = I + 2q0ω + 2ω2 (29)

Convert the initial rotation matrix Rb and the final rotation matrix R f into quaternions.
And, then, the attitude angle θ is obtained.

qb = [b0, b1, b2, b3]
q f = [ f0, f1, f2, f3]

θ = cos−1
(

qb • q f

) (30)

At a certain moment t within this period T, the rotation matrix is represented by the
quaternion qt as follows:

qt = xqb + yq f (31)

where x, y are real numbers and the attitude angle t
T θ between the initial quaternion qb and

the quaternion qt at time t is defined. The attitude angle
(
1− t

T
)
θ between the quaternion qt

at time t and the final quaternion q f is defined. Therefore, the quaternion pose interpolation
matrix is

qt =
qb sin((1− t

T )θ)

sin θ
+

q f sin( t
T θ)

sin θ
(32)
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By performing position interpolation, the displacement matrix P can be obtained. Sim-
ilarly, through pose interpolation, the rotation matrix R can be derived. By combining the
displacement matrix P and the rotation matrix R, the pose interpolation matrix is obtained.
Subsequently, by solving the inverse kinematics of the pose interpolation matrix, the angle
values of various joints during the NAO robot arm’s motion process can be determined.

Conduct simulation experiments for arm trajectory planning by using MATLAB,
taking two points coordinates as the starting and ending points of the arm movement, as
illustrated in Equation (33).{

xyz_begin = [0.1817, − 0.1362, 0.0633]
xyz_fin = [0.12, − 0.01, 0.03]

(33)

Using these two points as the starting point and end point for trajectory planning, the
corresponding pose interpolation matrix is substituted into the inverse kinematics equation,
and arm motion simulation is performed using MATLAB to obtain the variation curve
of the five joints from the ShoulderRoll to the WristYaw in the NAO robot’s right arm, as
shown in Figure 11. From the curves depicted in the graph, it is evident that the NAO
robot’s arm can move smoothly from the start point to the end point.
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5. Experiments and Results Analysis
5.1. The NAO Robot Platform

The NAO robot is a bipedal humanoid robot developed by Aldebaran Robotics. It
has 25 degrees of freedom in its body. Its hardware equipment includes a CPU, ultrasonic
sensors, gyroscopes, and infrared sensors.

The NAO robot’s visual system incorporates two COMS cameras positioned on its
forehead and mouth, which serve as a primary mode of perception for the robot in its
surrounding environment. In the experiments discussed in this paper, the lower camera of
the NAO robot will be utilized.

The right arm of the NAO robot has five degrees of freedom and is a serial robotic arm
structure, with each joint connected by a link. According to the D-H method [19], the data
shown in Table 1 can be obtained. On this basis, a link coordinate system for the right arm
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of the NAO robot can be established, as shown in Figure 12. In this coordinate system, s, e,
and w represent the shoulder, elbow, and wrist joints of the NAO robot, respectively. The
dimensions of the links are obtained through the parameters of the NAO robot’s right arm,
where d3 = 0.9 cm and d5 = 10.855 cm.

Table 1. D-H parameters table of the right arm of NAO robot.

Links θi (◦) di/mm ai/mm αi (◦) Joint Range (◦)

1 θ1 0 0 90 −119.5~119.5
2 θ2 (−90◦) 0 0 −90 −76~18
3 θ3 d3 0 90 −119.5~119.5
4 θ4 0 0 −90 2~88.5
5 θ5 (−90◦) d5 0 90 104.5~104.5
1 θ1 0 0 90 −119.5~119.5
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5.2. Object Detection Experiment

The experimental process begins with data collection using the NAO robot. A dataset
is established and fed into the YOLOv8 network for training. The training of the YOLOv8
network is conducted on a Linux-based server.

In this experiment, the target object is a black rod, which is not specific. The NAO
robot’s bottom camera collected 100 images of the target rod at different angles, which
were then processed through rotation and mirroring. Subsequently, the YOLOv8 network
was trained for 800 rounds, with approximately 300 images per round. The original image
captured by the NAO robot’s camera is depicted in Figure 13a. The target bar is identified
using the YOLOv8 network, resulting in a binary image of the target object, as shown in
Figure 13b.
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After obtaining the edge point information of the target object, as shown in
Figure 14a,b, data processing is employed to extract the pixel coordinates of the object’s
center point and endpoints, and then the target is localized.
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Figure 14. (a) Endpoints of the target object; (b) Edge of the target object.

The rod is positioned in front of the NAO robot at distances ranging from 0.25 m to
1.30 m, with intervals of 0.05 m. Multiple experiments are conducted at each position to
calculate an average value. From Table 2, it can be observed that the farther the target is
from the robot, the larger the error becomes. Beyond 60 cm, the distance error exceeds the
requirements for the task.

Table 2. Actual and measured positions of the target before improvement.

Actual Position (cm) Measured Position (cm) Actual Position (cm) Measured Position (cm)

25 25.50 80 94.71
30 29.49 85 104.26
35 35.45 90 113.50
40 38.83 95 116.43
45 43.84 100 123.99
50 52.94 105 133.08
55 57.17 110 139.06
60 64.80 115 144.73
65 73.69 120 152.62
70 82.55 125 163.13
75 87.94 130 166.29
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To address the issue of significant measurement error when the target’s position
exceeds 60 cm, experiments were conducted using the improved monocular distance model
with error compensation.

The target was placed in front of the NAO robot at distances ranging from 0.25 m to
1.30 m. From Table 3, it can be observed that the minimum error between the actual and
measured positions is 0.13 cm, and the maximum error is 1.93 cm. Whether the target’s
position is before or after 0.6 m, the error does not exceed 0.02 m.

Table 3. Actual and measured positions of the target after error compensation.

Actual Position (cm) Measured Position (cm) Actual Position (cm) Measured Position (cm)

25 25.47 80 78.67
30 29.69 85 84.64
35 35.80 90 90.96
40 39.12 95 93.10
45 43.08 100 98.80
50 51.60 105 106.25
55 54.89 110 111.18
60 60.37 115 115.75
65 66.13 120 121.56
70 71.46 125 127.16
75 74.64 130 128.07

As shown in Figure 15, the monocular distance measurement with the integrated error
compensation model effectively reduces the distance error for positions that are farther
away in the X-axis direction of the robot’s coordinate system.
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Figure 15. Comparison of measured distances before and after error compensation.

The rod was placed at 90 cm in the robot’s X-direction, with distances of 0 cm, 20 cm,
and 40 cm in the Y-direction. Each position underwent 10 tests, as shown in Table 4. The
RMSEs of the three points are 0.644 cm, 0.574 cm, and 1.077 cm, respectively. It is evident
that the NAO robot can accurately measure distances in the Y-axis direction, meeting the
subsequent precision requirements.
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Table 4. Actual and measured distances in the Y-axis direction after error compensation.

Actual Distance (cm) 0 20 40

Index
1 0.8 20.4 41.2
2 0.7 20.9 40.4
3 0.8 19.5 40.4
4 0.6 20.4 41.5
5 0.8 20.3 40.4
6 0.6 19.7 41.7
7 0.4 20.2 41.4
8 0.5 20.9 41.5
9 0.6 20.8 39.6
10 0.5 20.5 40.4

After obtaining the position of the target rod, using the pixel coordinates of the two
endpoints of the rod, the endpoint positions are calculated to determine the deviation angle
of the rod. At a position of 60 cm in the robot’s X-axis direction, measurements were taken
for deviation angles α of 30◦, 45◦, and 60◦. As shown in Table 5, the RMSEs are 0.820◦,
0.904◦, and 0.901◦, respectively, so the NAO robot can effectively measure the deviation
angle of the rod, providing a foundation for accurate grasping.

Table 5. Actual deviation angle vs. measured deviation angle.

α/◦ 30 45 60

Index
1 30.48 45.66 60.85
2 30.76 45.69 59.36
3 30.53 45.93 58.82
4 31.22 45.87 59.56
5 29.87 46.05 60.59
6 30.82 45.92 60.89
7 30.63 46.15 61.35
8 29.08 45.56 61.09
9 29.35 44.58 60.53
10 31.34 46.37 59.02

5.3. Object Grasping Experiment

Due to the low friction between the ground and the feet of the NAO robot, it can
experience slipping during walking, especially over longer distances. To mitigate this issue,
a method involving measuring, short-distance walking, adjustment, and then measuring
again. This approach ensures that the NAO robot can walk to the vicinity of the target
rod with the correct orientation. Subsequently, adjust its crouching posture using the
choreograph software. This ensures that the target rod is within the NAO robot’s workspace.
The internal API can obtain the position of its end effector. By combining this information
with the known coordinates of the target’s center point, the robot can accurately grasp the
target at its center position. This process is illustrated in Figure 16.
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6. Discussion

This paper combines YOLOv8 network recognition with monocular ranging methods
to recognize and locate the target object. NAO robot acquires the pose information of
the target object through its own monocular vision sensor, builds a visual distance error
compensation model based on monocular ranging to compensate for distance errors, then
moves near the target and grasps the target object by adjusting its attitude.

Based on experimental data and results, it is observed that the visual distance error
compensation to the monocular ranging model effectively can improve the accuracy of
the NAO robot’s distance measurement. The error between the actual position and mea-
surement position is controlled within 2 cm. This accuracy has been improved compared
to other research results, such as the 5% error rate achieved by Wang Z. et al. through
single-camera distance measurement [20]. Furthermore, by utilizing pose interpolation
techniques, the pose of the finger is adjusted to align with the target at a constant level.
The experimental results show that the rotation angle error is controlled within 2◦. These
results indicate that the NAO robot can precisely estimate the target distance and pose and
then facilitate precise walking and posture adjustments to ensure accurate object grasping.
As previously mentioned, the accuracy of target recognition and long-distance localization
in most present research has been improved.
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Notations and Abbreviations

SOTA (State-Of-The-Art): Describe the model that achieves the current optimal effect on a
certain task in machine learning; YOLACT (You Only Look At CoefficienTs): Real-time Instance
Segmentation.
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