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Abstract: A multi-strategy crazy sparrow search algorithm (LTMSSA) for logic-tent hybrid chaotic
maps is given in the research to address the issues of poor population diversity, slow convergence,
and easily falling into the local optimum of the sparrow search algorithm (SSA). Firstly, the LTMSSA
employs an elite chaotic backward learning strategy and an improved discoverer-follower ratio factor
to improve the population’s quality and diversity. Secondly, the LTMSSA updates the positions of
discoverers and followers by the crazy operator and the Lévy flight strategy to expand the selection
range of target following individuals. Finally, during the algorithm’s optimization search, the LTMSSA
introduces the tent hybrid and Corsi variable perturbation strategies to improve the population’s
ability to jump out of the local optimum. Different types and dimensions of test functions are used
as performance benchmark functions to test the performance of the LTMSSA with SSA variants
and other algorithms. The simulation results show that the LTMSSA can jump out of the optimal
local solution, converge faster, and have higher accuracy. Its overall performance is better than the
other seven algorithms, and the LTMSSA can find smaller optimal values than other algorithms
in the welded beam and reducer designs. The results confirm that the LTMSSA is an effective
aid for computationally complex practical tasks, provides high-quality solutions, and outperforms
other algorithms.

Keywords: sparrow search algorithm; metaheuristic; multi-strategy hybrid; engineering design problems

1. Introduction

Optimization refers to finding the best solution to achieve an objective by satisfying
all constraints. Traditional optimization methods, such as simplex and gradient descent [1],
are fast to solve and have a more mature mathematical theoretical basis. The feasibility
requirements greatly influence the extent to which these algorithms can be implemented,
and the solution capability could be better for optimization problems with unknown math-
ematical characteristics. The metaheuristic algorithm is an intelligent iterative search-based
optimization method combining local search strategies and stochastic algorithms [1], which
has no constraints on the nature of the problem, is highly searchable and widely applicable,
and can solve practical optimization problems efficiently. Metaheuristic algorithms include
the gravitational search algorithm (GSA) [2], the fireworks algorithm (FA) [3], the genetic
algorithm (GA) [4], the harmony search algorithm (HS) [5], the seagull optimization algo-
rithm (SOA) [6], the Harris hawks optimization (HHO) [7], and so on. Based on simulated
evolutionary theory, these evolutionary computational methods are self-organizing and
efficient at finding the optimum, making them effective at solving intricate solutions and
massive optimization issues. Swarm intelligence algorithms are widely used today and
yield significant benefits in many fields. Ever since the pioneering work of Beni and Wang,
who introduced the notion of swarm intelligence (SI) [8], there has been an increase in
the amount of in-depth research being conducted. Swarm intelligence algorithms have
achieved rich results regarding theoretical systems and practical applications.
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Particle swarm optimization (PSO) [9,10] and ant colony optimization (ACO) [11] are
two good examples of optimization techniques. The foundation of search algorithms lies in
the intricate mechanism of information exchange between individuals in a population as
they progress through the evolution of a biological system. PSO has the advantage of good
global convergence ability and ease of implementation, but there is a strong parameter
dependency. For this reason, some scholars have introduced taboo search mechanisms [12]
and local search strategies [13,14] to enhance the PSO algorithm’s efficiency. Inspired by ant
foraging, ACO provides rapid solution times and computational simplicity. Researchers
have increasingly been drawn to swarm intelligence optimization algorithms due to the
competitive nature and global search capabilities demonstrated by algorithms like PSO and
ACO. Yang et al. proposed the bat algorithm (BA) [15], which simulates bat echolocation.
The grey wolf optimizer (GWO) algorithm is widely recognized for its ability to mimic the
hierarchical organization and predatory behavior observed in grey wolves [16]. In addition,
several algorithms for optimizing group intelligence have emerged in the past few years: the
bacterial foraging algorithm (BFA) [17], the artificial bee colony (ABC) algorithm [18,19], the
pigeon-inspired optimization (PIO) [20], the firefly algorithm (FA) [21,22], the cuckoo search
(CS) algorithm [23,24], the whale optimization algorithm (WOA) [25], the fly optimization
algorithm (FOA) [26], the krill herd (KH) [27], the dragonfly algorithm (DA) [28], the
monkey algorithm (MA) [29], the beetle antennae search algorithm (BAS) [30], and so on.

The sparrow search algorithm (SSA) was put forward by Xue et al. as a cutting-edge
bionic stochastic search technique [31], originating from an in-depth study of the social
and behavioral characteristics of sparrow groups of predators and anti-predators. This
algorithm has been widely applied and has obtained good results in various practical
optimization problems, such as image segmentation [32], trajectory planning [33], work-
shop scheduling [34], power generation prediction [35], and other fields. However, this
algorithm solves complex multidimensional optimization problems with the limitation that
the sparrow population convergence is more severe and prone to early convergence. It is of
great theoretical research value to determine how to effectively overcome the shortcomings
of SSA to enhance its performance processing practical optimization problems and thus
obtain a more widespread application.

1.1. Literature Review

There have been many improvements made by researchers to strengthen the effectiveness
of SSA, and this paper will discuss two aspects of such algorithms.

1.1.1. Improving the Search Mechanism of the Algorithm

Tang et al. presented a progressive cosine algorithm aimed at modifying the placement
of new members in a positive manner. They used a linear decreasing method to control
individual alert scouting sparrows [36], balancing local exploitation of the algorithm with
global exploration. Tang et al. developed a hierarchy and Brownian motion strategy to
improve information communication between individuals; maintaining sparrow diversity
involves upgrading improved sparrow placements [37]. Zhang et al. introduced a Corsi
variation strategy for solving the optimum local problem using a tent mapping initial-
ization of the population [38], effectively enhancing the algorithm’s search capability. A
chaotic mapping method was used by Chen et al. to determine the location of sparrow
populations, and the Lévy flight and random wandering strategies were introduced [39],
which effortfully optimized algorithm efficiency and exploration capabilities. Ou-Yang et al.
utilized the k-means algorithm cluster analysis to differentiate the sparrow population
positions in SSA [40], reducing the perturbation, and applied it to the optimization study of
the active suspension LQR controller. Ou-Yang et al. introduced a mirror-opposite learning
strategy into the discoverer’s stage to increase population variety and search flexibility [41].
Mao et al. interfered with the optimal sparrow individuals using a Corsi variation and
backward learning strategy to escape local optima [42]. Fu et al. introduced an innovative
method called the elite chaotic backward learning mechanism in the population initial-
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ization stage. By combining it with a randomized following strategy in the chicken flock
algorithm, they enhanced the quality and diversity of individuals, resulting in improved
search performance for updating the joiner location [43]. Duan et al. employed Sobol
sequence mapping to construct the population’s beginning location and used horizontal
as well as vertical crossing to prevent local optimum and sustain sparrow variety [44].
Chen et al. incorporated the spiral exploration strategy into the discoverer search mech-
anism [45], which greatly improved the capacity for global exploration. By employing
advanced diversity-enhancing techniques such as elite dissimilarity and random inverse
hybrid variation, the algorithm effectively avoids premature convergence. This is achieved
through the swift assimilation of individuals during the later stages of the iteration process.
Yan et al. made the location distribution of the initial population more consistent by adding
good point sets [46]. Combining the characteristics of the SSA algorithm, an iterative local
search method with increased flexibility is introduced. A backward learning mechanism
for dimension-by-dimensional lens imaging is introduced to reduce perturbations between
dimensions and avoid premature convergence. He et al. asserted an SSA which varied the
hybrid quantum behavior of the inferior population by introducing a quantum strategy.
This modification had a profound effect on the superheated temperature control system,
enabling them to accurately determine its parameters [47]. Wu et al. integrated a competi-
tion mechanism into their approach, aiding the sparrow in locating the optimal position
nearest to the individual [48]. They cleverly employed a positive cosine strategy to strike a
balance between exploring the wider context and conducting a targeted search within the
local vicinity. A polynomial variation strategy was introduced to eliminate local optima.
Liu et al. [49] enhanced the global search algorithm using t-distribution perturbation, which
was discussed in the literature. For the sparrow individual crossing problem, a random
regression strategy was adopted and used to deal with the design of the stressor. Referring
to Sin’s chaotic search mechanism, Ma et al. improved the initialization of the population
by introducing the Lévy flight perturbation mechanism into the SSA to improve the spatial
search diversity [50].

1.1.2. Integration of Other Algorithms

To enhance the multiplicity of sparrow populations, Tian et al. devised an algorithm
that employs fusion arithmetic optimization. Their strategy involves substituting the popu-
lation’s individuals with an undirected weighted graph [51]. According to the improved
circle algorithm to calculate the Hamiltonian ring length composed of population indi-
viduals, the ratio of the Hamiltonian ring lengths of two adjacent generations was used
to indicate the population convergence trend. The pressure vessel and butterfly spring
problems are effectively resolved by the greedy algorithm, which employs a strategy of
randomly selecting individuals generated within a specific range. This approach enables
the algorithm to break free from local optimum solutions. Yang et al. have incorporated
the PSO algorithm with the SSA to enhance convergence speed [52]. Li et al. mixed a
simulated annealing algorithm with the SSA to remove the algorithm from its local maxi-
mum [53], which boosts the algorithm’s global exploration. Using the simplex method, Liu
et al. moved individuals with weak adaptability to enhance algorithm variety and search
capacity after each cycle [54].

1.2. Research Gaps and Motivations

Our previous analysis demonstrated the resounding effectiveness of the SSA, as it
transcends across different realms. Many scholars have made notable strides in enhancing
the original algorithm’s search optimization capability by implementing iterative updates,
amalgamating with other algorithms, and modifying parameters. Nevertheless, numerous
research findings have primarily enhanced the algorithm’s capacity in a one-sided manner.
The algorithm must continue to strike a delicate balance between effectively utilizing
data and allowing for exploratory analysis. The ability to uphold diversity still needs
to be discovered. In tackling non-convex problems, the challenges of achieving accurate



Electronics 2023, 12, 3967 4 of 25

optimization, conducting effective global searches, and avoiding the pitfalls of local optima
persist and require attention. There is still ample opportunity for enhancing and advancing
the SSA.

1.3. Contribution

To further boost the optimization performance, this research put forth a multi-strategy
hybrid SSA methodology. The complete integration of dynamic parameters into every
algorithm phase ensures a comprehensive evaluation of their relationships. The individual
population experiences a shift towards being the majority. Significant improvements have
been implemented in the dynamic parameters. We have included the active adaptive
adjustment strategy as part of our approach. The purpose of dynamic global optimization
is accomplished through the mutual influence of various interactions on one another. The
primary advancements are showcased in the following manner:

i. The introduction of the LTMSSA aims to address the issues inherent to the initial
algorithm.

ii. The LTMSSA increases the population diversity by utilizing logistic-tent hybrid chaotic
maps and improves the discoverer-follower scaling factor to make the algorithm more
accurate at convergence.

iii. Improving the discoverer and follower positions with the crazy operator and the Lévy
flight strategy, respectively, and introducing the tent hybrid and Corsi variational
perturbation strategies to reconcile the capability for both local and global search of
the SSA.

iv. The LTMSSA is evaluated for efficacy on 23 standard test functions and compared to
different algorithms.

v. The scalability of the LTMSSA in various dimensions is examined and implemented
in practical engineering issues involving the design of welded beams and reducers.
Results indicate that the enhanced LTMSSA strategy proposed applies to solving
optimization-related issues.

This study follows this structure: in Section 2, the concept of the SSA is introduced.
In Section 3, the LTMSSA mechanism and its mathematical model are comprehensively out-
lined and discussed. In Section 4, the test results for LTMSSA and several other algorithms
on 23 benchmark functions are presented. In Section 5, the practical engineering hurdles
associated with the welded beam and reducer design are effectively addressed through the
utilization of the LTMSSA. In Section 6, the paper comes to a conclusion.

2. Sparrow Search Algorithm

Sparrow search algorithms have three categories of individuals, namely discoverers,
followers, and vigilantes, and their positions are representative of potential solutions.
Throughout the foraging process, the three places are updated to find the ideal food source,
which is the best solution.

2.1. Sparrow Search Algorithm Model

In the following matrix, the sparrow population can be represented.

X =


x1,1 x1,2 · · · x1,d
x2,1 x2,2 · · · x2,d

...
...

...
...

xn,1 xn,2 · · · xn,d

 (1)
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where d denotes the problem dimension and n is the total amount of sparrows in the
population. Depending on the sparrow population’s fitness, the following is calculated.

FX =


f
([

x1,1 x1,2 · · · x1,d
])

f
([

x2,1 x2,2 · · · x2,d
])

...
f
([

xn,1 xn,2 · · · xn,d
])
 (2)

where FX denotes the fitness value of the sparrow and f denotes the fitness value of the
problem dimension corresponding to each sparrow.

Since the discoverer in the sparrow population is searching for food for all sparrows,
the discoverer experiences a greater level of fitness. Throughout the algorithm’s iteration,
the discoverer’s position is continuously adjusted in accordance with Equation (3).

Xt+1
i,j =

{
Xt

i,j · exp
(
−i
α·T

)
, R2 < ST

Xt
i,j + Q · L, R2 ≥ ST

(3)

where t denotes the number of iterations, j = 1, 2 . . . d; T denotes the maximum number
of iterations, Xi,j denotes the coordinates of the position of the i th sparrow in the j th
dimension, α ∈ (0, 1] is a randomly generated number, R2 (R2 ∈ [0, 1]) is the warning
value, ST (ST ∈ [0.5, 1]) denotes the security value, Q is a random number that follows
a normal distribution, and L denotes a 1 × d matrix. When R2 < ST, the discoverer
can perform extensive foraging operations and there are no predators near the foraging
area. Conversely when R2 ≥ ST, some sparrows deliver a danger alert to the remaining
sparrows, thus sparrows will be able to move quickly to foraging areas that are safe.

The followers will compete with the finder for food when they are looking for food. If
they succeed, the followers will obtain the food searched by the finder; if not, they will con-
tinue to follow the finder. Equation (4) shows the formula for updating follower positions.

Xt+1
i,j =


Q · exp

(
Xt

worst − Xt
i,j

i2

)
, i > n/2

Xt+1
p +

∣∣∣Xt
i,j − X

t+1

i,j

∣∣∣∣· A+ · L, i ≤ n/2
(4)

where Xt+1
p denotes the global best position of the sparrow at t + 1th iteration, Xt

worst
denotes the global worst position of the sparrow at t th iteration, n is the population
size, A is a matrix of 1× d, randomly generated 1 or −1 is assigned to the matrix A, and
A+ = AT(AAT)−1.

A random position is chosen for the vigilantes, and the formula for updating their
status is presented in Equation (5).

Xt+1
i,j =


Xt

best + β·
(

Xt
i,j − Xt

best

)
, fi 6= fg

Xt
i,j + K ·

(
Xt

i,j−Xt
worst

| fi− fworst |+ε

)
, f i = fg

(5)

where Xbest is the current global best position, β is a randomly generated parameter that
controls the row length of sparrows and follows a normal distribution with variance 1 and
mean 0, K is also a random number that controls the search direction of sparrows and
ranges from [−1, 1], fi is the fitness value of the ith sparrow at this time, fg is the fitness
value of the sparrow with the worst position in the entire sparrow population, fworst is the
fitness value of the sparrow with the worst position in the entire sparrow population, and
ε is the smallest constant to make the denominator in Equation (5) not equal to 0. When
fi 6= fg, the sparrow at the edge of the population has a greater chance of getting caught
by predators, and Xbest indicates that at this moment, the sparrow is in the safest position.
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When fi = fg, sparrows in the middle of a population perceive a crisis and move closer to
the sparrow in a safe position to prevent the risk of being caught.

2.2. Sparrow Search Algorithm Pseudo Code

According to the above algorithm design steps, the following Algorithm 1 is a pseu-
docode representation of the specific algorithm flow.

Algorithm 1 The framework of the SSA.

Input:
T: the maximum iterations
PD: the number of producers
SD: the number of sparrows who perceive the danger
R2: the alarm value
ST: safety value
n: the number of sparrows
Initialize a population of n sparrows and define its relevant parameters.
Output: Xbest, f best.
1: While (t < T)
2: Rank the fitness values and find the current best individual
and the current worst individual.
3: R2 = rand (1)
4: for i = 1: PD
5: Using Equation (3) update the sparrow’s location;
6: end for
7: for i = (PD + 1): n
8: Using Equation (4) update the sparrow’s location;
9: end for
10: for i = 1: SD
11: Using Equation (5) update the sparrow’s location;
12: end for
13: Obtain the current new location;
14: If the new location is better than before, update it;
15: t = t + 1
16: End While
17: return Xbest, f best.

3. Multi-Strategy Hybrid Crazy Sparrow Search Algorithm
3.1. Population Initialization
3.1.1. Logistic-Tent Hybrid Chaos Map

Chaotic systems describe a complex chaotic phenomenon arising from deterministic
nonlinear systems sensitive to initial value conditions, which are nonperiodic, and internally
stochastic [55,56]. In general, chaotic systems are classified into low- and high-dimensional
chaos [57]. To develop chaotic systems with better chaotic performance, researchers have
combined multiple low-dimensional chaos to form a new composite chaotic system. This
type of chaotic system can effectively overcome the shortcomings of low-dimensional
chaos and is less complex and more accessible to implement than high-dimensional chaos.
Tang et al. proposed a logistic-sine composite chaotic mapping and used it for image
encryption to address the limitations of traditional one-dimensional chaotic systems and
the security of parameter values [58] and achieved good encryption results. In order to
safeguard the algorithm’s integrity, Zhang et al. employed the chaotic sequence derived
from the logistic-sine-cosine composite chaos system. This involved the application of rank
dislocation and cyclic pixel diffusion methodologies [59]. Combining logistic-tent chaotic
maps with tent chaotic maps improves the randomness of the algorithm.
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The mathematical formula for it is:

Xn+1 =


(

rXn(1− Xn) +
(4−r)Xn

2

)
mod1, Xn < 0.5(

rXn(1− Xn) +
(4−r)(1−Xn)

2

)
mod1, Xn ≥ 0.5

(6)

where X is the system variable, r is the control parameter, X ∈ [0, 1], and r ∈ (0, 4).
The amalgamation of the logistic and tent chaotic systems in this disorderly setup

results in complex dynamics, offering faster iteration, heightened autocorrelation, and
broad applicability to many sequences.

3.1.2. Initial Population Elitism

To enhance the original population by using lens imaging inverse learning [60], let xj
and x∗j denote the current individual sparrow and its individual after the reversal of lens
imaging, respectively.

x∗j =
aj + bj

2
+

aj + bj

2k
−

xj

k
(7)

where aj and bj denote the minimum and maximum values in the j th dimension of the
current population, respectively, and k is the scaling factor of the lens, k = 10, 000.

In order to initiate the sparrow population using the elite chaos reversal learning
approach, the following set of procedures must be followed: the initial sparrow population
X = [xi1, . . . , xid], i = 1, . . . , n, xid denotes the position of the i th sparrow in the d th
dimension, the population x is substituted into Equation (7) to generate the chaotic popu-
lation Y, and the population X is substituted into Equation (8) to generate the lenticular
imaging reversal population Z. The sparrow individuals in population Y and population
Z are ranked according to their fitness values, and the top n individuals are selected to
form the elite chaotic reverse population P. The top n individuals of population P and the
original sparrow population X are then selected to form a new initial sparrow population
based on the ranking of individual fitness values.

X′ =
[
x′i1, . . . , x′id

]
(8)

3.2. Location Formula Update
3.2.1. Proportionality Improvement

The SSA algorithm maintains a constant ratio between discoverers and followers,
which may lead to an inefficient search globally. The main objective of this study is to
put forth a strategy that effectively improves the discoverer-follower ratio coefficient,
resulting in a reduction in discoverers and a simultaneous increase in followers through an
adaptive approach.

To determine the optimal number of discoverers and followers, one can calculate the
adjustments using the following prescribed method:

r = b(tan
(
− πt

4·itermax
+

π

4

)
− k·rand(0, 1)) (9)

pNum = r·N (10)

sNum = (1− r) N (11)

where k is the perturbation variation factor to disturb the nonlinearly falling r value, pNum
is the total amount of discoverers, sNum is the number of followers, and the value of b is
instrumental in maintaining an optimal equilibrium between pioneers and adopters, effec-
tively regulating the ratio of individuals exploring new ideas versus those embracing them.



Electronics 2023, 12, 3967 8 of 25

3.2.2. Join the Madness Calculator to Improve the Discoverer

The element of “madness” plays a crucial role in amplifying the unexpected behavior
exhibited by the group [61]. A madness operator is introduced into the discoverer’s location
update equation to maintain a diverse set of results. This operator perturbs the discoverer’s
position with a predetermined probability of madness, effectively adding an unpredictable
aspect to the equation. Here is the latest formulation for the discoverer update:

Xt+1
i,j =

{
Xt

i,j · exp
(
−i
α·T

)
+ P(c1)·sign(c1)·x8raziness, R2 < ST

Xt
i,j + Q · L + P(c1)·sign(c1)·x8raziness, R2 ≥ ST

(12)

where P(c1) and sign(c1) are defined, respectively, as:

P(c1) =

{
1, c1 ≤ Pcr
0, otherwise

(13)

sign(c1) =

{
−1, c1 ≥ 0.5
1, otherwise

(14)

where c1 denotes a number chosen at random, with a uniform distribution between [0, 1];
xcrazines is usually taken as a small constant (=0.0001). Pcr is the set probability of madness.
In this case, if Pcr takes a small value (=0.3), c1 will likely exceed Pcr and the madness
factor P(c1) will be 0.

3.2.3. Lévy Flight Strategy to Improve Followers

Lévy flight strategies have been successfully applied to improve many swarm intelli-
gence algorithms, and researchers have been inspired by it to introduce Lévy mechanisms
in update strategies to improve algorithm performance. The step length of the walk satisfies
a heavy-tailed Lévy distribution as shown in Equation (15):

L(s) ∼
∣∣∣s|−1−β, 0 < β 6 2 (15)

Equation (16) visually represents the erratic trajectory of the Lévy flight strategy, which
is characterized by its random and sporadic steps.

s =
µ∣∣∣∣ν| 1

β

(16)

where µ ∼
(

0, σ2
µ

)
, v ∼

(
0, σ2

v
)
, 0 < β1 < 2, β1 = 1.5.

σµ = [
Γ(1 + β)sin(πβ/2)

Γ(1 + β)/2]β2(β−1)/2
]
1/β1

(17)

The Lévy flight strategy has improved the following follower formula for the SSA
algorithm:

Xt+1
i,j =


Q · exp

(
Xt

worst−Xt
i,j

i2

)
, i > n/2

Xt+1
p +

∣∣∣Xt
i,j − X

t+1

i,j

∣∣∣∣·s, i ≤ n/2
(18)
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3.3. Tent Chaotic Perturbation and Corsi Variation Strategy
3.3.1. Tent Chaos Perturbation

The tent chaotic mapping equation was modified by Zhang et al., who introduced
random variables rand(0, 1)× 1

N [62]. As a result, a new version of the tent chaotic mapping
equation is presented below.

zi+1 =

{
2zi + rand(0, 1)× 1

N , 0 ≤ z ≤ 1
2

2(1− zi) + rand(0, 1)× 1
N , 1

2 < z ≤ 1
(19)

The following is the expression using the Bernoulli shift improvement:

zi+1 = (2zi)mod1 + rand(0, 1)× 1
N

(20)

where N is the number of particles in the sequence.

3.3.2. Corsi Mutation

The Cauchy variation comes from constant frequency distributions and Cauchy dis-
tributions, and is characterized by a smaller peak at zero and a slow decline from the
peak to the zero value [63], making the variation range more uniform. Variation can be
characterized as follows.

mutation(x) = x(1 + tan(π(u− 0.5)) (21)

where x is the original individual position, mutation(x) is the individual position after
the Corsi variation, and u is a random number in the (0, 1) interval. Where x is the initial
location of the individual, mutation(x) is the position of the individual after the Corsi
variation, and u is a random value within the range of (0, 1).

3.4. LTMSSA Flow Chart

The LTMSSA process diagram is shown in Figure 1. First, the initial parameters
of the SSA are set, and the populations are initialized according to logistic-tent chaotic
maps and elite reverse learning. Next, calculate the fitness value of each sparrow and its
position and count the number of discoverers and followers, update the position of the three
populations, and calculate the fitness value and average fitness value again. Finally, the
tent mixing perturbation and the Cauchy mutation are performed, and when the perturbed
and mutated individuals are better than the original individuals, the population fitness
value, optimal position, and worst position are updated.

3.5. Computational Complexity

Assume that the algorithm incorporates a population of N individuals, each character-
ized by D dimensions. With a specified maximum iteration limit (itermax), s1 is the optimal
moment for initiating the population parameters in a random manner. Additionally, j(D)
encompasses the assessment of the suitability of every individual, working in conjunction
with pNum discoverers, and the time taken for each dimension to be updated is represented
by s2. Moreover, it consists of sNum followers who necessitate s3 time to update their di-
mensions, as well as alerters who rely on s4 time for their updates. Therefore, the time com-
plexity at the outset can be expressed as T1 = O(s1 + N(j(D) + Ds1)). The update of the
discoverer is characterized by a time complexity of T2 = O(pNums2D)). The time required
to update followers is represented by the complexity T3 = O(sNums3D). The time com-
plexity for updating the alerters has been improved to T4 = O((N− pNum− sNum)s4D.
To sum up, the complete time complexity of the SSA can be represented by the equation:
T = T1 + (T2 + T3 + T4)itermax = O(D + j(D)).

The initial stage in the LTMSSA involves elite chaotic backward learning, which is
estimated to take u1 time, and sorting selection, which takes u2 time. As a result, the
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time complexity of this stage can be denoted as T11 = O(s1 + N(u1 + j(D) + Ds1) + u2).
The updated formula for the count of explorers and supporters is referred to as u3,
and consequently, the time complexity for updating the explorers is denoted as T22 =
O(pNums2D + itermaxu3). The time complexity for updating the followers is denoted as
T33 = O(sNums3D + itermaxu3), while the time complexity for updating the alerters is
denoted as T44 = O((N− pNum− sNum)s4D). In the context of the Corsi variation and
the tent chaos perturbation process, assign the variable u4 to represent the time taken
to solve favg, while u5 and u6, respectively, denote the time needed for computing the
perturbation formula and the Corsi variation formula. During this stage, u7 denotes the
specific point in time when we compare the fitness value of the sparrow with the average
fitness value. Similarly, u8 represents the moment when the target position is updated
based on merit. As a result, the time complexity for this stage is succinctly expressed as
T55 = O(u4 + u5 + u6 + N(j(D) + u7) + u8). In conclusion, the overall time complexity of
the LTMSSA can be represented as follows: TT = T11 + (T22 + T33 + T44 + T55)itermax =
O(D + j(D)). Given that TT = T, it demonstrates that the time complexity of the LTMSSA
remains unchanged.
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4. Experimental Results and Discussion
4.1. Test Function and Algorithm Parameters

To gauge the performance of the LTMSSA, a simulation has been conducted using
23 benchmark test functions. Each algorithm maintains a population size of 30 (represented
as N) and caps the number of iterations at 500 (designated as M). Meanwhile, SSA [31],
SSSA [64], FSSA [65], CSFSSA [45], GWO [16], PSO [10], and BOA [66] are the algorithms
used in this study for comparison, and the experimental parameters of each algorithm are
shown in Table 1. Table 2 showcases a graphical depiction of single-peak functions F1–F7 in
high-dimensional settings, multi-peak functions F8–F13 in high-dimensional settings, and
multi-peak functions F14–F23 in low-dimensional settings. High-dimensional single-peak
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functions exhibit a distinct global optimum point and do not feature any local extreme
points when assessing the speed of convergence. From a multidimensional perspective,
local extremum points can give rise to multi-peaked functions, showcasing their diverse
peaks in different dimensions.

Table 1. Experimental parameters.

Algorithms Parameters

SSA ST = 0.8, PD = 0.2, SD = 0.2
SSSA ST = 0.8, PD = 0.2, SD = 0.2
FSSA ST = 0.8, PD = 0.2, SD = 0.2

CSFSSA ST = 0.8, PD = 0.2, SD = 0.2
LTMSSA ST = 0.8, PD = 0.2, SD = 0.2

GWO a = (2→0), r1, r2 ∈ [0, 1]
PSO W = 0.9, C1 = 1.49445, C2 = 1.49445
BOA a = (0.1→0.3)

Table 2. Test Functions.

Type Function Dimension Scope Optimal Value

Unimodal functions

F1(x) =
D
∑

k=1
x2

k 30 [−100, 100] 0

F2(x) =
D
∑

k=1
|xk |+

D
∏

k=1
|xk | 30 [−10, 10] 0

F3(x) =
D
∑

k=1
(

k
∑

l=1
xl)

2

30 [−100, 100] 0

F4(x) = max
k

[|xk |, 1 ≤ k ≤ D] 30 [−100, 100] 0

F5(x) =
D−1
∑

k=1
[100((xk+1 − x2

k))
2
+ (xk − 1)2] 30 [−30, 30] 0

F6(x) =
D
∑

k=1
(|xk + 0.5|)2 30 [−100, 100] 0

F7(x) =
D
∑

k=1
kx4

k + random(0, 1) 30 [−1.28, 1.28] 0

Multimodal
functions

F8(x) =
D
∑

k=1
−xksin(

√
|xk |) 30 [−500, 500] −418.9826 × D

F9(x) =
D
∑

k=1
[x2

k − 10cos(2πx) + 10] 30 [−5.12, 5.12] 0

F10(x) = −20exp

(
−0.2

√
1
D

D
∑

k=1
x2

k − exp
(

1
D

D
∑

k=1
cos2πxk

))
+20 + e

30 [−32, 32] 0

F11(x) =
D
∑

k=1
|xksin(xk) + 0.1xk | 30 [−10, 10] 0

F12(x) = π
D · (10sin(πy1) + (yk − 1)2)+

π
D ·

D−1
∑

k=1
(yk − 1)2[1 + 10sin2(πyk+1)]

+
D
∑

k=1
µ(xk , 10, 100, 4)

yk = 1 + xk+1
4 , µ(xk , p, a, m) = { p(xk − a)m, xk > a

p(−xk − a)m, xk < −a

30 [−50, 50] 0

F13(x) = 0.1{sin2(3πx1) +
D
∑

k=1
(xk − 1)2[1 + sin2(3πxk + 1)]+

(xk − 1)2[1 + sin2(2πxk)] +
D
∑

k=1
µ(xk , 5, 100, 4)}

µ(xk , p, a, m) =

 p(xk − a)m, xk > a
0,−a < xk < a

p(−xk − a)m, xk < −a

30 [−50, 50] 0
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Table 2. Cont.

Type Function Dimension Scope Optimal Value

Fixed dimensional
functions

F14(x) =
(

1
500 +

25
∑

l=1
( 1

l+∑D
k=1(xk−akl )

6 )

)−1
2 [−65.536, 65.536] 0.998

F15(x) =
11
∑

k=1
[ai −

x1(b2
k+bk x2)

b2
k+bk x3+x4

]
2

4 [−5, 5] 0.0003075

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

F17(x) = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10(1− 1

8π )cosx1 + 10 2 [−5, 5] 0.398

F18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

×[30 + (2x1 − 3x2)
2 × (18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

2 [−2, 2] 3

F19(x) = −
4
∑

k=1
ckexp(−

3
∑

l=1
akl(xl − pkl)

2) 3 [0, 1] −3.86

F20(x) = −
4
∑

k=1
ckexp(−

6
∑

l=1
akl(xl − pkl)

2) 6 [0, 1] −3.32

F21(x) = −
5
∑

k=1
[(X− ak)(X− ak)

Tck ]
−1

4 [0, 10] −10.1532

F22(x) = −
7
∑

k=1
[(X− ak)(X− ak)

Tck ]
−1

4 [0, 10] −10.4028

F23(x) = −
10
∑

k=1
[(X− ak)(X− ak)

Tck ]
−1

4 [0, 10] −10.5363

4.2. Scalability Testing

To test the algorithmic scalability of the LTMSSA, the LTMSSA was compared with
SSA in different dimensions. According to Table 3, the test outcomes of the LTMSSA in
dimensions 20, 50, and 80 are nearly identical. The comparative data show that the quality
of the SSA scheme before the improvement needs to be higher. The LTMSSA is more
effective in terms of experimental performance.

Table 3. Algorithm scalability testing.

F
Dim = 20 Dim = 50 Dim = 80

Avg Std Avg Std Avg Std

F1
LTMSSA 0 0 0 0 0 0

SSA 4.58 × 10−29 2.51 × 10−28 1.47 × 10−36 6.76 × 10−36 9.75 × 10−33 5.34 × 10−32

F2
LTMSSA 0 0 0 0 0 0

SSA 1.00 × 10−30 4.03 × 10−30 3.11 × 10−32 1.62 × 10−31 2.49 × 10−33 1.36 × 10−32

F3
LTMSSA 0 0 0 0 0 0

SSA 3.21 × 10−14 1.19 × 10−13 1.85 × 10−13 9.13 × 10−13 2.19 × 10−15 6.46 × 10−15

F4
LTMSSA 0 0 0 0 0 0

SSA 2.62 × 10−9 1.27 × 10−8 3.48 × 10−9 1.31 × 10−8 1.37 × 10−9 3.70 × 10−9

F5
LTMSSA 9.15 × 10−3 1.19 × 10−2 1.66 × 10−1 2.19 × 10−1 3.42 × 10−1 4.04 × 10−1

SSA 8.51 × 10−4 2.50 × 10−3 3.11 × 10−3 7.30 × 10−3 5.83 × 10−3 1.04 × 10−2

F6
LTMSSA 1.30 × 10−3 1.28 × 10−3 1.20 × 10−2 9.59 × 10−3 1.96 × 10−2 2.39 × 10−2

SSA 6.29 × 10−6 1.23 × 10−5 2.17 × 10−5 4.13 × 10−5 5.46 × 10−5 1.08 × 10−4

F7
LTMSSA 2.17 × 10−4 1.30 × 10−4 2.12 × 10−4 1.64 × 10−4 2.24 × 10−4 1.68 × 10−4

SSA 2.61 × 10−4 1.85 × 10−4 4.06 × 10−4 3.36 × 10−4 2.66 × 10−4 2.58 × 10−4

F8
LTMSSA −7.28 × 103 8.00 × 102 −1.86 × 104 1.80 × 103 −2.38 × 104 4.46 × 103

SSA −6.60 × 103 1.56 × 103 −1.65 × 104 4.60 × 103 −2.98 × 104 4.84 × 103

F9
LTMSSA 0 0 0 0 0 0

SSA 0 0 0 0 0 0

F10
LTMSSA 8.88 × 10−16 0 8.88 × 10−16 0 8.88 × 10−16 0

SSA 3.73 × 10−15 6.42 × 10−15 1.72 × 10−15 2.02 × 10−15 1.95 × 10−15 1.90 × 10−15
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Table 3. Cont.

F
Dim = 20 Dim = 50 Dim = 80

Avg Std Avg Std Avg Std

F11
LTMSSA 0 0 0 0 0 0

SSA 0 0 0 0 0 0

F12
LTMSSA 4.13 × 10−4 5.23 × 10−4 4.24 × 10−4 3.64 × 10−4 3.40 × 10−4 5.04 × 10−4

SSA 5.82 × 10−7 1.69 × 10−6 6.73 × 10−7 1.04 × 10−6 3.54 × 10−7 5.52 × 10−7

F13
LTMSSA 9.01 × 10−3 1.44 × 10−2 1.89 × 10−2 2.17 × 10−2 2.37 × 10−2 2.40 × 10−2

SSA 1.38 × 10−5 3.64 × 10−5 1.15 × 10−5 2.04 × 10−5 1.76 × 10−5 3.29 × 10−5

4.3. Population Diversity Analysis of the LTMSSA

The population initialization was randomized, and to evaluate the impact of the
improvement strategy, the Sphere function was selected for the merit-seeking experiment.

F(x) = ∑D
k=1 x2

k (22)

The initial population distribution and the distribution of individual sparrow positions
after 10 and 50 iterations of the LTMSSA are shown in Figure 2a–c, and the distribution of
individual sparrow positions after 10 and 50 iterations of the SSA are shown in Figure 2d.
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10 iterations of the LTMSSA; (c): Sparrow population distribution for 50 iterations of the LTMSSA;
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From Figure 2, we can see that the population initialized by the elite chaos inverse
learning strategy has good diversity, and individual sparrows have a uniform distribution
around the optimal value, which gives the algorithm a good starting point for iteratively
finding an optimal solution. Elite sparrows led the population to the ideal solution quicker
as iterations rose. After 50 iterations, the sparrow population in the LTMSSA was more
uniform and concentrated near the optimal solution compared with the distribution of
sparrow individuals in the SSA, which verified the effective improvement of population
diversity and population quality by the improved strategy.

4.4. Algorithm Comparison
4.4.1. Comparison of Single-Peak Test Functions

A widely adopted method in this field involves assessing the algorithm’s performance
by subjecting it to a test function that is equipped with predetermined global optima. Based
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on the SSA mentioned, we further evaluated the algorithm on a single-peaked test function.
The single-peak function is a better test for local exploitation capabilities. The optimization
results for the LTMSSA, SSA, SSSA, FSSA, CSFSSA, GWO, PSO, and BOA are given in
Table 4 for running 30 independent experiments.

Table 4. Unimodal function optimization results.

F LTMSSA SSA SSSA FSSA CSFSSA GWO PSO BOA

F1
Avg 0 2.53 × 10−32 1.08 × 10−30 1.37 × 10−32 2.43 × 10−30 1.32 × 10−27 1.18 × 10−5 7.77 × 10−11

Std 0 1.38 × 10−31 5.91 × 10−30 5.31 × 10−32 1.33 × 10−29 1.95 × 10−27 2.98 × 10−5 8.62 × 10−12

F2
Avg 0 5.19 × 10−31 2.67 × 10−37 1.18 × 10−34 3.39 × 10−37 8.15 × 10−17 1.68 × 10−1 2.25 × 10−8

Std 0 2.84 × 10−30 1.46 × 10−36 4.37 × 10−34 1.86 × 10−36 6.37 × 10−17 5.36 × 10−1 8.11 × 10−9

F3
Avg 0 4.74 × 10−13 2.98 × 10−8 1.18 × 10−14 1.48 × 10−7 6.66 × 10−6 7.36 × 10 6.33 × 10−11

Std 0 2.56 × 10−12 8.45 × 10−8 5.97 × 10−14 6.79 × 10−7 1.77 × 10−5 4.88 × 10 7.40 × 10−12

F4
Avg 0 6.07 × 10−9 1.78 × 10−7 6.74 × 10−9 3.38 × 10−6 8.38 × 10−7 1.52 3.58 × 10−8

Std 0 2.40 × 10−8 9.37 × 10−7 1.51 × 10−8 1.04 × 10−5 1.02 × 10−6 7.02 × 10−1 4.18 × 10−9

F5
Avg 6.43 × 10−2 1.15 × 10−3 4.70 × 10−1 1.62 × 10−3 1.51 2.70 × 10 5.89 × 10 2.89 × 10
Std 9.91 × 10−2 2.72 × 10−3 1.04 2.77 × 10−3 3.63 8.32 × 10−1 3.47e+01 2.07 × 10−1

F6
Avg 4.11 × 10−3 2.32 × 10−5 1.18 × 10−1 1.45 × 10−5 3.50 × 10−2 8.64 × 10−1 2.59 × 10−2 5.34
Std 4.28 × 10−3 4.22 × 10−5 8.42 × 10−2 3.03 × 10−5 1.46 × 10−2 3.79 × 10−1 9.38 × 10−2 6.90 × 10−1

F7
Avg 1.75 × 10−4 3.84 × 10−4 7.52 × 10−4 1.95 × 10−3 4.28 × 10−3 1.82 × 10−3 6.69 × 10−2 2.34 × 10−3

Std 1.60 × 10−4 3.96 × 10−4 1.89 × 10−3 1.02 × 10−3 4.21 × 10−3 1.10 × 10−3 3.76 × 10−2 8.92 × 10−4

Figure 3 provides a visual representation of the convergence curves for each algorithm,
illustrating their performance on the single-peak test functions.
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The F1–F7 optimum algorithm is summarized in Table 4. The LTMSSA performs better
on the single-peak test functions contrary to additional algorithms. F1, F2, F3, F4, and F7
have a minimal LTMSSA mean and standard deviation. The SSA and FSSA had lower
mean values as well as standard deviations than the LTMSSA for F5 and F6. Figure 3 shows
that the LTMSSA achieves optimal solutions in all seven single-peak test functions, and the
convergence speeds and accuracy exceed those of the SSA, FSSA, and other competitors.

4.4.2. Comparison of Multi-Peak Test Functions

The multi-peak test functions include several local optima, making the global optimum
difficult to identify. Consequently, an algorithm’s capacity to investigate and step outside
local solutions can be assessed more comprehensively. Table 5 gives the optimization results
of the SSA, SSSA, FSSA, CSFSSA, GWO, PSO, and BOA on the multi-peak test function by
running 30 independent experiments.
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Table 5. Multimodal function optimization results.

F LTMSSA SSA SSSA FSSA CSFSSA GWO PSO BOA

F8
Avg −1.05 × 104 −9.03 × 103 −8.60 × 103 −3.20 × 103 −3.05 × 103 −6.17 × 103 −5.39 × 103 −4.09 × 103

Std 1.25 × 103 2.43 × 103 2.12 × 103 2.23 × 103 3.56 × 103 8.61 × 103 1.49 × 103 4.13 × 103

F9
Avg 0 0 7.51 0 3.60 2.32 6.42 × 10 3.91 × 10
Std 0 0 3.84 × 10 0 1.77 × 10 2.97 1.46 × 10 7.99 × 10

F10
Avg 8.88 × 10−16 1.72 × 10−15 3.26 × 10−15 1.84 × 10−15 4.57 × 10−14 1.01 × 10−13 1.85 2.81 × 10−8

Std 0 1.53 × 10−15 1.23 × 10−14 1.60 × 10−15 2.45 × 10−13 1.51 × 10−14 8.85 × 10−1 5.16 × 10−9

F11
Avg 0 0 3.56 × 10−3 0 0 3.13 × 10−3 5.64 × 10−2 1.21 × 10−11

Std 0 0 1.95 × 10−2 0 0 7.76 × 10−3 8.70 × 10−2 1.33 × 10−11

F12
Avg 7.07 × 10−4 9.13 × 10−7 7.79 × 10−3 4.10 × 10−7 7.29 × 10−4 4.32 × 10−2 4.17 × 10−1 5.25 × 10−1

Std 6.17 × 10−4 1.62 × 10−6 7.81 × 10−3 4.59 × 10−7 7.18 × 10−4 3.90 × 10−2 7.49 × 10−1 1.54 × 10−1

F13
Avg 1.33 × 10−2 2.07 × 10−5 1.06 × 10−1 1.20 × 10−5 3.58 × 10−2 5.69 × 10−1 2.05 × 10−1 2.81
Std 1.14 × 10−2 6.86 × 10−5 1.28 × 10−1 3.27 × 10−5 4.32 × 10−2 2.25 × 10−1 7.13 × 10−1 3.08 × 10−1

Figure 4 illustrates the convergence patterns of the algorithms mentioned earlier when
applied to the multi-peak test functions.
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Table 5 shows that both the Avg and Std of the LTMSSA have the lowest values on
F8-F11 and rank first overall in the multi-peak test functions. The LTMSSA converges
significantly faster than other methods, as seen in Figure 4. Based on the findings, the
LTMSSA solution has high accuracy and does not eventually fall into the local optimum.
In particular, in F8, F9, F10 and F11, the LTMSSA shows a better exploration mechanism
than other methods. The convergence accuracy of the LTMSSA is not optimal from F12
and F13, but the rate at which the convergence occurs gradually increases, leading to the
eventual discovery of the optimal outcome. Therefore, the overall optimization effect of the
LTMSSA is more substantial.

4.4.3. Comparison of Fixed-Dimensional Test Functions

Finding the global optimum of these test functions needs a well-balanced algorithm
that is constantly adapting to new information. In order to validate the sparrow search
algorithm’s ability to explore globally and exploit locally, we specifically chose fixed-
dimensional test functions for testing purposes. Based on 30 independent experiments, the
optimization outcomes of each algorithm regarding fixed-dimensional test functions are
listed in Table 6.
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Table 6. Fixed dimensional functions optimization results.

F LTMSSA SSA SSSA FSSA CSFSSA GWO PSO BOA

F14
Avg 2.64 4.34 4.84 2.80 5.30 5.46 2.77 1.10
Std 3.07 4.46 3.61 3.23 4.51 4.61 2.23 2.59 × 10−1

F15
Avg 3.40 × 10−4 3.98 × 10−4 8.24 × 10−3 3.54 × 10−4 4.20 × 10−4 4.46 × 10−3 5.80 × 10−4 3.90 × 10−4

Std 4.75 × 10−5 2.44 × 10−4 2.00 × 10−2 1.05 × 10−4 1.41 × 10−4 8.09e × 10−3 2.52 × 10−4 6.34e × 10−5

F16
Avg −1.03 −1.03 −8.68 × 10−1 −1.03 −4.89 × 10−1 −1.03 −1.03 −1.31 × 104

Std 1.053 × 10−9 7.65 × 10−16 3.32 × 10−1 5.44 × 10−16 3.91 × 10−1 2.56 × 10−8 6.39 × 10−16 1.22 × 104

F17
Avg 3.98 × 10−1 3.98 × 10−1 4.04 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.99 × 10−1

Std 1.48 × 10−6 5.78 × 10−7 3.01 × 10−2 2.84 × 10−6 1.40 × 10−6 1.74 × 10−6 0 6.83 × 10−4

F18
Avg 3.00 1.29 × 10 1.34 × 10 3.00 2.91 × 10 3.90 3.00 3.08
Std 9.50 × 10−13 1.32 × 10 1.85 × 10 1.71 × 10−3 1.32 × 10 4.93 1.08 × 10−12 2.47 × 10−1

F19
Avg −3.86 −3.81 −3.82 −3.86 −3.86 −3.86 −3.84 −1.87 × 1018

Std 1.93 × 10−3 1.96 × 10−1 6.66 × 10−2 2.07 × 10−3 2.54 × 10−3 2.71 × 10−3 1.41 × 10−1 1.38 × 1019

F20
Avg −3.28 −3.27 −3.11 −3.28 −3.28 −3.23 −3.27 −3.01
Std 2.41 × 10−2 7.17 × 10−2 1.93 × 10−1 5.96 × 10−2 5.39 × 10−2 9.67 × 10−2 5.99 × 10−2 1.14 × 10−1

F21 Avg −1.01 × 10 −7.43 −6.34 −1.01 × 10 −9.81 −9.28 −6.36 −4.83
Std 7.13 × 10−2 2.59 3.13 7.04 × 10−1 1.44 1.99 3.60 4.80 × 10−1

F22 Avg −1.04 × 10 −7.75 −6.06 −1.04 × 10 −1.00 × 10 −1.04 × 10 −6.70 −4.47
Std 2.80 × 10−2 2.70 3.21 1.67 × 10−1 1.55 9.70 × 10−1 3.60 3.81 × 10−1

F23 Avg −1.05 × 10 −7.11 −5.52 −1.05 −9.76 −9.99 −5.98 −4.57
Std 2.62 × 10−2 2.65 3.12 8.21 × 10−2 2.05 2.06 3.85 8.70 × 10−1

The convergence curves for each method on the fixed-dimensional test functions are
displayed in Figure 5.
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Table 6 shows excellent performance on the fixed-dimension LTMSSA test function as
well. On F14, the Avg and Std of the BOA outperform the LTMSSA, but the convergence
plot of F14 shows that the LTMSSA converges faster. In addition, on F16 and F17, although
the Std of the LTMSSA is not optimal, the Avg is the lowest among all algorithms. On F15,
F18, F19, F20, F21, F22, and F23, both the Avg and Std of the LTMSSA are optimal. From
Figure 5, all fixed dimensional test functions find the optimal values quickly and have a
high convergence rate.
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4.4.4. Optimal Value of Each Algorithm

For each algorithm, 30 experiments were carried out in every benchmark function to
ascertain the best possible outcome. A box plot analysis was also carried out to confirm
the long-term viability and converging of the LTMSSA. The box plot shows the maximum,
minimum, upper, lower, median, and outliers. In Figure 6, each box plot has “
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” for
outliers, “–” for medians, upper and lower quartiles at the ends of the rectangular boxes,
and “-“ for maximum or minimum values.
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From the box plot, the LTMSSA has the most stable optimal value in the iterations and
the median is closest to the optimal value. From the convergence value, we can indicate that
the LTMSSA algorithm has stronger robustness. In addition, in each benchmark function,
the LTMSSA has fewer outliers compared to other algorithms.

The radar plots are plotted below after ranking according to the optimal values to
evaluate the comprehensive optimization capability of the LTMSSA.

Optimal performance is achieved when the algorithm’s total score is minimized, and
its graph representation occupies a smaller area. Among the eight algorithms, the LTMSSA
emerges as the top scorer with exceptional efficiency in Figure 7. This can be attributed to its
ability to enclose the smallest area among the single-peak, multi-peak, and fixed-dimension
test functions.
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4.5. Discussion

The LTMSSA introduced in this research demonstrates superior performance com-
pared to the SSA, SSSA, FSSA, CSFSSA, GWO, PSO, and BOA in optimizing the functions
across the conducted experiments. Through a comprehensive integration of convergence
performance and optimization performance, the findings were thoroughly analyzed and
subsequently discussed. Despite the fact that the LTMSSA had lower average and stan-
dard deviation values compared to SSA for functions F5, F6, F12, and F13, it exhibited
significantly higher convergence rates. On F14, the Avg and Std of the BOA outperformed
the LTMSSA, but the convergence plot of F14 shows that the LTMSSA converges faster.
In addition, on F16 and F17, although the Std of the LTMSSA is not optimal, the Avg is the
lowest among all algorithms. The LTMSSA has the highest ranking in the number of opti-
mal values obtained among the 23 tested functions and has the most stable optimal values
in the iterative process. Based on the aforementioned analysis, the LTMSSA has the ability
to swiftly achieve the most accurate global solution while ensuring rapid convergence. The
findings indicate that the algorithm possesses a robust ability to explore both wide-ranging
and localized areas, consistently delivering effective optimization outcomes. The achieved
outcomes cannot be separated from the initial population that has been fine-tuned through
comprehensive exploration, as well as the ongoing adjustments made throughout the
iterative process. Undoubtedly, there are still some aspects of the algorithm that require
refinement and improvement. To provide an instance, the algorithm’s effectiveness in
optimization is influenced by random numbers, thus slightly compromising its overall
accuracy. There is potential for enhancing the existing approach to adjusting parameters
and weights, as the current dynamic scheme may not offer the most effective solution.
Additionally, it is crucial to verify the algorithm’s effectiveness across various iterations
and diverse population sizes.

5. Engineering Design Issues
5.1. Welded Beam Design

Welded beam design (WBD) is an issue of cost minimization to reduce production ex-
penses [67]. It is also a typical nonlinear programming problem with four design variables:
height (t), thickness (b), weld width (h), and length (l), as shown in Figure 8.
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To express the mathematical model, we can utilize the following representation.
Variables:

→
z = [z1z2z3 z4] = [hltb] (23)

Objective function:

f
(→

z
)
= 1.10471z2

1z2 + 0.04811z3z4(14.0 + z2) (24)

where f
(→

z
)

denotes the total cost, and cost-effectiveness is needed.
The decision variables take a range of values:

0.1 ≤ z1 ≤ 2 (25)

0.1 ≤ z2 ≤ 10 (26)

0.1 ≤ z3 ≤ 10 (27)

0.1 ≤ z4 ≤ 2 (28)

Constraints:
s1

(→
z
)
= τ

(→
z
)
− τmax ≤ 0 (29)

s2

(→
z
)
= σ

(→
z
)
− σmax ≤ 0 (30)

s3

(→
z
)
= δ

(→
z
)
− δmax ≤ 0 (31)

s4

(→
z
)
= z1 − z4 ≤ 0 (32)

s5

(→
z
)
= P− Pc

(→
z
)
≤ 0 (33)

s6

(→
z
)
= 0.125− z1 ≤ 0 (34)

s7

(→
z
)
= 1.10471z2

1 + 0.04811z3z4(14.0 + z2)− 5.0 ≤ 0 (35)
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The expressions of each function in the constraints can be referred to as Equations (36)–(42).

τ
(→

z
)
=

√
τ′2 + 2τ′τ′′ (z2/R) + (τ′′ )2 (36)

τ′ =
P√

2z1z2
(37)

τ′′ = MR/J (38)

M = p(L + z2/2) (39)

R =

√
[z2

2+(z1+z3)
2]

4
(40)

J = 2{
√

2z1z2[
z2

2
12 + (z1+z3)

2

14 ]} (41)

Pc(
→
z ) = 4.013Ez3z2

4
6L2 (1− z3

√
E

8LG ) (42)

where, σmax = 30000 psi, P = 6000 lb, L = 14 in., δmax = 0.25 in., E = 3 × 106 psi,
τmax = 136000 psi, and G = 1.2× 107 psi.

Table 7 shows that the LTMSSA achieves the lowest cost. It shows that the LTMSSA
performs well in the challenging task of designing welded beams.

Table 7. Parameter optimization comparison of welded beam design problem.

Algorithms
Optimal Values for Variables

Optimum Value
h l t b

LTMSSA 0.3345 2.0109 8.2792 0.2451 1.8117
SSA 0.2890 2.5890 7.4037 0.3065 2.0499

SSSA 0.2798 4.5590 9.3352 0.2043 2.0970
FSSA 0.3888 1.7238 8.1146 0.2551 1.8541

CSFSSA 0.4953 2.1360 5.5490 0.5495 2.9458
GWO 0.3007 2.1222 9.0381 0.2058 1.9549
PSO 0.1000 7.0875 9.0366 0.2057 1.9769
BOA 0.3322 3.2012 6.6256 0.3865 2.5096

5.2. Reducer Design

Reducers are often used in mechanical systems and are an important component of
gearboxes [68]. The task of designing a reducer involves finding the optimal solution to
minimize its size, with 11 constraints in which the reducer’s weight must be lowered. Seven
variables are involved in the problem, including the tooth width b, the gear module m, the
amount of teeth z in the pinion, the length l1 of the first shaft between bearings, the length
l2 of the second shaft between bearings, and the diameters d1 and d2, as shown in Figure 9.
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Objective function:

f (X) = 0.7854x1x2
2
(
3.3333x2

3 + 14.9334x3 − 43.0934
)

−1.508x1
(
x2

6 + x2
7
)
+ 7.4777

(
x3

6 + x3
7
)
+ 0.7854

(
x4x2

6 + x5x2
7
) (44)

Constraints:
d1(X) =

27
x1x2

2x3
− 1 ≤ 0 (45)

d2(X) =
397.5

x1x2
2x2

3
− 1 ≤ 0 (46)

d3(X) =
1.93x3

4
x2x4

6x3
− 1 ≤ 0 (47)

d4(X) =
1.93x3

5

x2x4
7x3
− 1 ≤ 0 (48)

d5(X) =
√

(745x4/(x2x3))
2+16.9×106

110x3
6

− 1 ≤ 0 (49)

d6(X) =

√
(745x5/(x2x3))

2 + 157.5× 106

85x3
7

− 1 ≤ 0 (50)

d7(X) =
x2x3
40 − 1 ≤ 0 (51)

d8(X) =
5x2
x1
− 1 ≤ 0 (52)

d9(X) =
x1

12x2
− 1 ≤ 0 (53)

d10(X) =
1.5x6 + 1.9

x4
− 1 ≤ 0 (54)

d11(X) =
1.1x7+1.9

x5
− 1 ≤ 0 (55)

Boundary constraints:
2.6 ≤ x1 ≤ 3.6 (56)

0.7 ≤ x2 ≤ 0.8 (57)

17 ≤ x3 ≤ 28 (58)

7.3 ≤ x4 ≤ 8.3 (59)

7.8 ≤ x5 ≤ 8.3 (60)

2.9 ≤ x6 ≤ 3.9 (61)

5.0 ≤ x7 ≤ 5.5 (62)

Table 8 lists optimization outcomes. The LTMSSA optimizes reducer design and
improves optimization results.
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Table 8. Parameter optimization comparison of the reducer design problem.

Algorithms
Optimal Values for Variables Optimum

b m z l1 l2 d1 d2 Value

LTMSSA 3.6538 0.7000 15.0919 6.8289 8.1556 3.3513 5.2872 2733.9
SSA 3.2104 0.7375 15.4116 7.2710 7.4555 3.3662 5.2867 2981.9

SSSA 3.5327 0.7000 15.1698 8.2012 7.9430 3.0855 5.4437 3106.5
FSSA 3.3172 0.7079 15.7402 7.5154 7.5370 3.3576 5.2868 2897.4

CSFSSA 3.6443 0.7000 16.7168 8.5967 7.9260 3.3535 5.2868 3017.5
GWO 3.4837 0.7000 17.000 7.5806 7.6425 3.3577 5.2877 3002.1

6. Conclusions

A notable limitation of the SSA lies in its inclination to get trapped in local optimum
solutions, coupled with the sluggish pace at which it converges during iterations. These
factors significantly curtail its effectiveness in various practical scenarios. To overcome the
drawbacks of the original algorithm, this paper puts forth a new solution called the logistic-
tent hybrid chaotic maps-based multi-strategy mad sparrow search algorithm (LTMSSA).
By utilizing a logistic-tent hybrid chaotic algorithm, the population is effectively initialized
while also ensuring a balanced and unpredictable distribution across the board. First, the
LTMSSA employs an elite chaotic backward learning strategy and an improved discoverer-
follower scaling factor, resulting in improved quality and diversity. Secondly, the LTMSSA
updates the positions of discoverers and followers by the crazy operator and the Lévy
flight strategy to expand the selection of target followers. Finally, during the optimization
search of the algorithm, the LTMSSA introduces tent mixing and Corsi variable perturbation
strategies to improve the ability of populations to jump out of local optimum. The proposed
LTMSSA algorithm is compared with other classical metaheuristic algorithms and SSA
variants. Based on the optimization experiments carried out on 23 benchmark functions, it
is evident that the proposed LTMSSA provides a noteworthy solution to the drawbacks of
the SSA. Notably, it surpasses other SSA variants and advanced algorithms in terms of both
iterative convergence and optimization performance. The findings from the optimization
of the welded beam and reducer clearly demonstrate that the LTMSSA outperforms various
classical metaheuristic algorithms in terms of optimization performance. Experimental
results demonstrate that the suggested algorithm effectively strikes a balance between
utilizing and exploring, adapting the algorithm’s global and local search, enabling swift
iterations, and effortlessly attaining global optimization.
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