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Abstract: Although emotional speech recognition has received increasing emphasis in research and
applications, it remains challenging due to the diversity and complexity of emotions and limited
datasets. To address these limitations, we propose a novel approach utilizing DCGAN to augment
data from the RAVDESS and EmoDB databases. Then, we assess the efficacy of emotion recognition
using mel-spectrogram data by utilizing a model that combines CNN and BiLSTM. The preliminary
experimental results reveal that the suggested technique contributes to enhancing the emotional
speech identification performance. The results of this study provide directions for further develop-
ment in the field of emotional speech recognition and the potential for practical applications.
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1. Introduction

Speech recognition technology plays a crucial role in enriching and facilitating more
intuitive human–machine interactions. Notably, the significance of emotional speech
recognition is evident from its broadening applications across various domains including
smart homes, healthcare, entertainment, customer service, and sentiment analysis. Initially,
emotion recognition in speech research focused on probabilistic models like hidden Markov
models (HMMs) and Gaussian mixture models (GMMs) [1–5]. With the emergence of
deep learning, the study of emotion recognition through neural networks has become
prevalent [6–11]. Nevertheless, due to the complexity and diversity of emotions and
the challenge of subjective evaluation, precise emotional speech recognition remains a
major challenge.

One of the major challenges hindering progress in these studies is the limited avail-
ability of high-quality emotional speech data. In the realm of image processing, popular
datasets such as CIFAR10 [12], ImageNet [13], and MNIST [14] have been extensively
utilized to train deep learning models. However, these large-scale datasets are inade-
quate for emotional speech datasets. Among emotional speech datasets, datasets such as
IEmoCAP [15], EmoDB [16], and RAVDESS [17] are frequently used in research, but they
are relatively small compared with image datasets. To overcome limitations in data, we
propose utilizing deep convolutional generative adversarial networks (DCGANs) [18] to
augment speech data in the form of mel-spectrograms. While primarily used for image data
augmentation, this work explores the application of DCGANs to mel-spectrograms, which
are time-frequency representations of speech effectively capturing different components
of emotion.

In addition, this study investigates the effectiveness of using a combination of convo-
lutional neural networks (CNNs) and bidirectional long short-term memory (BiLSTM) [19]
to accurately identify emotions from mel-spectrogram data. The combination of these
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techniques indicates the future direction of emotional speech recognition technology devel-
opment and real-world applications. It provides significant potential for improving the
performance of emotional speech recognition.

The structure of this paper is as follows. Initially, prior research on GANs, DCGANs,
and mel-spectrograms is examined. The following section outlines the methodology
by providing details on the utilized database, data preprocessing, data augmentation
through DCGAN, and model design via CNN+BiLSTM. Then, in the Experiments and
Results section, we validate the performance of the proposed approach through diverse
experiments. In the Discussion section, we analyze the implications of these outcomes,
limitations of the research, and potential avenues for future studies.

2. Related Work
2.1. GAN and DCGAN

Generative adversarial networks (GANs) were first introduced by Goodfellow et al.
in [20]. The central idea behind GANs involves using two neural networks, a generator
G, and a discriminator D, in a competitive game. The generator G strives to create data
using noise z from the latent space. Its aim is to produce data that best represent the given
noise. Meanwhile, the discriminator attempts to determine if the input data are genuine or
generated by the generator. The training of a GAN follows the minimax game format and
strives to optimize the objective function presented in Equation (1).

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))] (1)

where E denotes the anticipated value and pdata(x) refers to the distribution of the real data,
while pz(z) represents the distribution of the input noise. During the training, the generator
strives to produce superior data to deceive the discriminator, whereas the discriminator
endeavors to better differentiate the generator output. However, during the learning
phase, typical GANs encounter mode collapse, unstable learning dynamics, and difficulty
generating high-resolution images.

DCGAN is a variation of GAN proposed by Radford et al. in [18]. This structure
efficiently learns high-dimensional image features by incorporating convolutional networks
in both the generator and discriminator. The pooling layer is substituted by stride convo-
lutions, which are executed as fractional-strided convolutions or deconvolutions [21] in
the generator. In addition, each layer of the network undergoes batch regularization [22]
to enhance learning stability. The generator layer implements Rectified linear unit (ReLU)
activation functions [23], while the discriminator uses Leaky ReLU activation functions [24].
To boost image generation quality, fully connected layers are minimized or eliminated, and
dropouts [25] are not utilized in the DCGAN design. These characteristics significantly
contribute to DCGAN’s ability to produce high-quality images with high resolution.

In this study, we utilize DCGAN for emotional speech recognition research to produce
mel-spectrogram data and investigate how the model’s performance can be enhanced by
utilizing the generated data. DCGAN has been successfully applied to image data, and our
goal is to apply it to speech data for better performance in emotional speech recognition.
Combining the generated data with existing data will improve the generalization of the
models during training.

2.2. Speech Feature Extraction Using Mel-Spectrograms

Speech data include diverse patterns and changing information over time. One
effective way to capture these patterns is by using a mel-spectrogram. A mel-spectrogram
shows a visual representation of the changes in frequency over time. The distinction from a
conventional spectrogram lies in the conversion of frequency employing a mel scale. This
mel scale detects more intricate details at lower frequencies and simpler details at higher
frequencies, similar to the characteristics of human hearing.
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The first step in calculating the mel-spectrogram is to perform a short-time Fourier
transform (STFT) on the audio signal to obtain a time-frequency spectrogram. Mathemati-
cally, this is represented by Equation (2):

S( f , t) = |STFT(x(t))|2 (2)

Next, the calculated spectrogram undergoes a mel filter bank process to extract the
energy in each mel frequency region. The mel filter bank consists of peak-shaped filters
that respond to specific mel frequency ranges. The equation for converting the frequencies
to the mel scale is defined by Equation (3).

Mel( f ) = 2595 ∗ log10

(
1 +

f
700

)
(3)

One can use this formula to calculate the center frequency of each mel filter. Afterward,
one can associate each frequency domain in the spectrogram with the corresponding mel
scale and aggregate the energies to produce a mel-spectrogram.

In this study, CNNs are utilized to extract spatial features from speech via a mel-
spectrogram. CNNs, capable of learning local features of 2D data like images or spec-
trograms through multiple layers, are effective in this context. Furthermore, BiLSTM is
employed to capture sequential patterns, particularly in speech time series data. BiLSTM, a
bidirectional version of long short-term memory (LSTM) [26], learns sequential patterns
by taking into account both the preceding and subsequent data points. This enables the
model to precisely detect nuanced shifts in emotions or varied speech patterns. Therefore,
the model in this study uses a combination of CNNs and BiLSTM to effectively detect and
analyze complex patterns and emotional changes in speech data.

2.3. Convolutional Neural Networks

Convolutional neural networks (CNNs) are deep neural network architectures that
primarily extract spatial features from 2D data and work well with data forms such as
images or spectrograms. CNNs consist of multiple layers, each of which is used to detect
and extract patterns in surrounding pixels in the input data. These CNNs are widely used
in a variety of fields, including computer vision, natural language processing, and speech
processing, and are particularly good at extracting features from 2D data. CNNs consist of
the following main layers: convolutional layers, pooling layers, and fully connected layers.

The first layer, the convolutional layer, plays a crucial role in detecting local patterns
or features within the input data. In CNNs, multiple filters are applied to the input data,
with each filter scanning the data to detect specific patterns. In image processing, these
patterns are primarily associated with edges, textures, or meaningful high-level features.
For audio data, they are employed to capture variations over time and frequency. Next, the
pooling layers are used to reduce the size of feature maps and decrease the computational
load. In these layers, operations such as max pooling and average pooling are primarily em-
ployed to subsample and abstract features. Max pooling involves selecting the maximum
value within a local region of a feature map, thereby retaining the most important features
within that region. This process effectively reduces spatial dimensions while enhancing
network efficiency by preserving critical information and reducing computational burden.
Conversely, average pooling calculates the average value within a local region, resulting
in smoother and more generalized feature representations. This abstraction of features
enhances the network’s robustness to variations in input data. Lastly, the fully connected
layers, often structured as a multi-layer perceptron (MLP), utilize the features extracted
from the previous layers to perform prediction or classification tasks. These layers serve
as connectors between the hierarchically learned features from earlier layers and the final
decision-making process. Each neuron within the fully connected layers is connected to
every neuron in the preceding layer, allowing for comprehensive interactions and infor-
mation integration. Through weighted connections and activation functions, these layers
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transform high-level abstract representations of input data into meaningful predictions and
classifications. In summary, fully connected layers aggregate the knowledge acquired by
the network during training and capture complex relationships and patterns within the
data. Consequently, CNNs excel at making meaningful predictions based on learned fea-
tures and are particularly effective in tasks such as image recognition, where understanding
intricate visual patterns and assigning appropriate labels is crucial.

2.4. Bidirectional Long Short-Term Memory

BiLSTM is an extension of the LSTM model that is specifically designed to capture de-
pendencies and context in sequential data. The model has the ability to process information
in both forward and backward directions, allowing for a more complete understanding of
the sequence. This makes it particularly useful for tasks such as speech recognition and lan-
guage translation. Unlike traditional LSTM, which processes data unidirectionally, BiLSTM
operates bidirectionally and considers both past and future information at every time step.
The basic structure of BiLSTM comprises two LSTM networks. This bidirectional approach
enables BiLSTM to integrate context from both directions and create a more thorough
comprehension of the input data. One processes the sequence forward, while the other
processes it backward. At each time step, the forward LSTM cell processes the sequence
from the beginning, and the backward LSTM cell processes it in reverse. The results from
both cells are merged via concatenation to generate a conclusive representation of data at
the given time interval. This merged representation encompasses details on how every
element in the sequence is linked to its past and future context, making BiLSTM highly
practical for tasks that entail capturing intricate dependencies. One of the main advantages
of BiLSTM is its ability to effectively model and capture long-range dependencies, making
it a suitable choice for various types of sequential data analysis tasks, including natural
language processing (NLP) applications. The bidirectional nature of BiLSTM enables it to
perform exceedingly well in situations where context comprehension from both directions
is critical, such as in speech recognition, time series forecasting, and more.

In brief, the BiLSTM model is a flexible deep learning algorithm created to amplify the
depiction and interpretation of sequential data by taking into account the past and future
context, thus rendering it useful for various applications beyond NLP.

2.5. Emotional Speech Database

Databases play a crucial role in emotional speech recognition research. These databases
contain speech samples of different emotional states that are used to train and evaluate models.
Some of the major emotion language databases are briefly introduced in this section.

The EmoDB dataset is a German spoken-word database created at the Technical
University of Berlin [16]. It contains speech clips spoken by five female and five male actors
and labeled with different emotional states: neutral, happiness, sadness, anger, fear, and
disgust. EmoDB is German utterance data that can be used to consider emotional features
in different languages.

RAVDESS is a database developed at Ryerson University in Canada [17]. It contains
recordings of 24 North American English-speaking performers (12 male, 12 female) speak-
ing or singing given sentences in specific emotional states. The database includes different
emotional states, such as neutral, happy, sad, angry, surprise, fearful, disgust, and calm, in
the emotion labels. RAVDESS provides utterances with different emotional intensity for
each performer, which is useful for exploring the diversity of emotional expression.

SAVEE (Surrey Audio-Visual Expressed Emotion) is a database created at the Univer-
sity of Surrey in the UK that captures different emotional states through the utterances of
four male actors [27]. The emotion labels include different emotional states, such as neutral,
happiness, sadness, anger, surprise, fear, and disgust.

These emotional speech databases are an important source for researchers to analyze
different emotional expressions and speech styles, and for model training and evaluation.
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In this study, we propose a method to improve the performance of emotional speech
recognition using RAVDESS and EmoDB databases.

3. Proposed Method
3.1. Data Preprocessing

This study utilizes RAVDESS and EmoDB emotion speech databases. Although
both contain various emotional states, this research concentrates on anger, disgust, fear,
happiness, neutral, and sadness. Table 1 summarizes the quantity of speech data for each
emotional state in each database.

Table 1. Data distribution by emotion in RAVDESS and EmoDB datasets.

Emotion RAVDESS EmoDB

Angry (Anger) 192 127
Disgust (Disgust) 192 46

Fearful (Fear) 192 69
Happy (Happiness) 192 71
Neutral (Neutral) 96 79

Sad (Sadness) 192 62

Total 1440 454

One of the crucial stages in utilizing speech data is data preprocessing. This process
targets the removal of extraneous components and the transformation of data into a form
that satisfies the requisites of the model, all while retaining the distinctive features of
the speech data. We first employ envelope detection to eliminate silent and redundant
segments of the speech data. Envelope detection in the librosa package proves helpful for
identifying the primary variations in an audio signal and efficiently eliminating silence [28].
The process involves using Short-Time Fourier Transform (STFT) [29] to divide the audio
signal into multiple frames and locate the maximum amplitude in each frame. These
maximums are concatenated to form an envelope, which can then be utilized to isolate
and eliminate the silent portions from the original audio signal. As a result, the data
are preprocessed to remove extraneous information and retain only essential audio data.
Figure 1 illustrates a comparison between the original speech and the speech with silent
parts eliminated via envelope detection.

The data were converted into a mel-spectrogram after detecting the envelope, utilizing
the mel-spectrogram function from the librosa package. Subsequently, the mel-spectrogram
was transformed to a dB scale via Equation (4) for more consistent and efficient model
training, which reduced the dynamic range of the mel-spectrogram.

SdB = 10 ∗ log10

(
S

re f

)
(4)

The “ref” is set to the maximum value of the mel-spectrogram. To compress the large
dynamic range common in real-world environments and facilitate model training, a dB
scale is applied to the mel-spectrogram. Figure 2 displays a mel-spectrogram that has been
processed in this manner.

3.2. Mel-Spectrogram Data Augmentation Using DCGAN

In this study, we utilized DCGAN to enhance speech data. The model underwent
training through mel-spectrograms obtained from the original speech data. The trained
generator resulted in fresh mel-spectrograms. A mini-batch technique was utilized due to
memory limitations during deep learning training. The PyTorch deep learning framework
was used to construct the model’s layers.

The generator receives a random noise vector in latent space and transforms it into
image-like data. In our model, we employ an initial fully connected linear layer to expand
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the latent vectors into 2D tensors. Subsequently, we use four transposed convolution
layers to incrementally enhance the image resolution, thus yielding the final image. Batch
normalization and ReLU activation functions are applied after each transposed convolution
layer to ensure network stability. The generator’s final layer uses the tanh activation
function to confine the output within the range of [–1, 1].
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The discriminator is a model that takes in image data to classify whether an image
is genuine or generated by a generator. The framework for the discriminator comprises
four convolutional layers, each incorporating batch normalization and a Leaky ReLU
activation function. The last convolutional layer generates a single value, indicating the
probability of an image being authentic. The sigmoid activation function then outputs the
probability value within the range of [0, 1]. Table 2 shows the overall design structure for
both networks.
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Table 2. Architectures of the generator and discriminator for DCGAN-based mel-spectrogram augmentation.

Network Layer Input Shape Stride Output Shape

Generator

Linear [100] - [512, 8, 8]
ConvTranspose2d [512, 8, 8] 2 [256, 16, 16]

BatchNorm2d [256, 16, 16] - [256, 16, 16]
ReLU [256, 16, 16] - [256, 16, 16]

ConvTranspose2d [256, 16, 16] 2 [128, 32, 32]
BatchNorm2d [128, 32, 32] - [128, 32, 32]

ReLU [128, 32, 32] - [128, 32, 32]
ConvTranspose2d [128, 32, 32] 2 [64, 64, 64]

BatchNorm2d [64, 64, 64] - [64, 64, 64]
ReLU [64, 64, 64] - [64, 64, 64]

ConvTranspose2d [64, 64, 64] 2 [1, 128, 128]
Tanh [1, 128, 128] - [1, 128, 128]

Discriminator

Conv2d [1, 128, 128] 2 [64, 64, 64]
LeakyReLU [64, 64, 64] - [64, 64, 64]

BatchNorm2d [64, 64, 64] - [64, 64, 64]
Conv2d [64, 64, 64] 2 [128, 32, 32]

LeakyReLU [128, 32, 32] - [128, 32, 32]
BatchNorm2d [128, 32, 32] - [128, 32, 32]

Conv2d [128, 32, 32] 2 [256, 16, 16]
LeakyReLU [256, 16, 16] - [256, 16, 16]

BatchNorm2d [256, 16, 16] - [256, 16, 16]
Conv2d [256, 16, 16] 2 [1, 8, 8]
Sigmoid [1, 8, 8] - [1, 8, 8]

The mel-spectrogram data produced by this process are illustrated in Figure 3. This
information was then combined with the original data under the label “fake”. This was
used to train the emotion recognition model.
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3.3. Model Architecture: CNN-BiLSTM Emotional Speech Recognition

In this study, the original mel-spectrogram extracted from the original speech data and
the mel-spectrogram generated with DCGAN were combined to form the final dataset. This
dataset was used as input to a combined emotional speech recognition model of CNN and
BiLSTM. The structure of the model is as follows: The first CNN module passes through a
convolutional layer with 64 3 × 3 filters, applies batch normalization and ReLU activation
function, and performs 2 × 2 max pooling. Next, it undergoes convolution with 128 3 × 3
filters, followed by batch normalization and an ReLU activation function. It then undergoes
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4 × 4 maximum pooling. The third CNN module conducts convolution using 256 4 × 4
filters, implements batch regularization and ReLU activation functions, and executes 4 × 4
maximum pooling. To avoid overfitting, each module was subjected to drop-out. The
outcome of the CNN module is transformed into the input of the LSTM and is passed
through a BiLSTM layer containing 256 LSTM units. Finally, the output passes through a
dense layer consisting of 128 units that incorporate L2 regularization. This is followed by a
dense layer utilizing the softmax activation function, which produces the final output and
denotes the probability of the class.

4. Experiment
4.1. Experimental Setting

In our experiments, we used authentic mel-spectrograms extracted from the RAVESS
and EmoDB databases as well as augmented mel-spectrograms generated using DCGAN as
datasets. The model structure was developed through a combination of CNN and BiLSTM,
and we opted for the RMSprop [30] optimizer to ensure stable gradient updates and rapid
convergence. We set the ratio of dividing the data into train, test, and validation sets to
7:1.5:1.5 to maintain the stability of the model while performing sufficient training and
evaluation. We used the ReduceLROnPlateau method to dynamically adjust the learning
rate to maintain the stability of the optimization process: the initial learning rate was set to
0.001, and as the training progressed, we were able to achieve better model performance by
reducing the learning rate when performance improvement was no longer observed.

The main purpose of the performance evaluation is to see how effective data augmen-
tation with DCGAN is. For this study, we compared the performance of the original data
and the augmented data combined with the original data for each dataset in RAVDESS and
EmoDB. Weighted accuracy (WA) and Unweighted accuracy (UA) were used as perfor-
mance measures, which are commonly applied in speech emotion recognition, especially
when there is an imbalanced data distribution for each emotion class. WA is a technique
that measures overall accuracy by assigning weights to each class based on its significance
or frequency, which mirrors the distribution of each class in the dataset. It evaluates the
accuracy of each class independently. Conversely, UA calculates the average accuracy of all
classes equally, without taking data imbalance into account, and evaluates the accuracy of
each class independently.

4.2. Result

In this experiment, we assessed performance through the evaluation of two datasets:
RAVDESS and EmoDB. To compare results, we examined the performance of using only
original data versus that of incorporating augmented data for each dataset, resulting
in a total of four different data configurations. To compare results, we examined the
performance of using only original data versus that of incorporating augmented data for
each dataset, resulting in a total of four different data configurations. Table 3 summarizes
the results.

Table 3. Comparison of WA and UA for original and augmented datasets.

Dataset WA UA

RAVDESS 64.8% 64.2%
RAVDESS+augmented 72.3% 72.3%

EmoDB 80.6% 82.6%
EmoDB+augmented 90.4% 91.3%

In the RAVDESS dataset, solely utilizing the original data resulted in a weighted
accuracy (WA) of 64.8% and an unweighted accuracy (UA) of 64.2%. However, when
the augmented data were incorporated, there was a marked improvement, registering
72.3% for both WA and UA. Similarly, for the EmoDB dataset, the original data yielded a
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WA of 80.6% and a UA of 82.6%, while incorporating augmented data led to a WA and
UA of 90.4% and 91.3%, respectively. These results demonstrate that the performance of
the speech emotion recognition model improves when utilizing the DCGAN-based data
augmentation technique. Tables 4–7 present the experimental findings, specifically focusing
on the UA value in the confusion matrix. The colored numbers in the table footer are the
highest scores in each emotion group.

Table 4. Confusion matrix for RAVDESS dataset (%).

Predicted

Angry Disgust Fear Happy Neutral Sad

True

angry 75.9 13.8 3.4 3.4 3.4 0
disgust 6.9 72.4 0 6.9 0 13.8

fear 3.4 3.4 51.7 6.9 0 34.5
happy 17.2 10.3 6.9 41.4 0 24.1
neutral 0 7.1 7.1 0 71.4 14.3

sad 3.4 6.9 10.3 0 3.4 75.9

Table 5. Confusion matrix for RAVDESS+augmented dataset (%).

Predicted

Angry Disgust Fear Happy Neutral Sad

True

angry 82.8 6.9 6.9 3.4 0 0
disgust 0 79.3 0 6.9 0 13.8

fear 3.4 6.9 65.5 0 6.9 17.2
happy 10.3 6.9 6.9 51.7 6.9 17.2
neutral 7.1 14.3 7.1 0 71.4 0

sad 0 3.4 6.9 3.4 3.4 82.8

Table 6. Confusion matrix for EmoDB dataset (%).

Predicted

Angry Disgust Fear Happy Neutral Sad

True

angry 94.7 0 5.3 0 0 0
disgust 14.3 71.4 0 0 0 14.3

fear 0 9.1 81.8 0 0 9.1
happy 18.2 0 9.1 63.6 9.1 0
neutral 0 0 8.3 0 83.3 8.3

sad 0 0 0 0 11.1 88.9

Table 7. Confusion matrix for EmoDB+augmented dataset (%).

Predicted

Angry Disgust Fear Happy Neutral Sad

True

angry 94.7 0 0 5.3 0 0
disgust 0 85.7 0 0 0 14.3

fear 0 0 90.9 0 0 9.1
happy 18.2 0 0 81.8 0 0
neutral 0 0 0 0 100 0

sad 0 0 11.1 0 0 88.9

5. Conclusions

In this study, we proposed a method to augment emotional speech data using DC-
GAN. Using the proposed method, a speech emotion recognition model was trained using
the original data along with the augmented mel-spectrogram data generated from the
RAVDESS and EmoDB datasets. The experiments indicate that the inclusion of DCGAN-
generated data in the training set leads to significant improvements in model performance
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as compared with only using the original data. In our experiments, we also evaluated the
performance of the model using two major performance evaluation metrics, WA and UA.

This research demonstrates that using generative models like DCGAN for data aug-
mentation is an effective approach to construct high-performance models for speech emo-
tion recognition, especially when the size of the emotional speech dataset is limited. In
future work, we will further verify the generality of the proposed method by utilizing
different generation models and different speech datasets. Furthermore, we believe that a
deeper study of the characterization of the augmented data and the resulting performance
changes in the speech emotion recognition model is necessary.
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