
Citation: Duan, G.; Li, S. Verifiable

and Searchable Symmetric

Encryption Scheme Based on the

Public Key Cryptosystem. Electronics

2023, 12, 3965. https://doi.org/

10.3390/electronics12183965

Academic Editors: Yu-an Tan, Qikun

Zhang, Yuanzhang Li and Xiao Yu

Received: 30 July 2023

Revised: 4 September 2023

Accepted: 7 September 2023

Published: 20 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Verifiable and Searchable Symmetric Encryption Scheme
Based on the Public Key Cryptosystem
Gangqiang Duan and Shuai Li *

School of Information Engineering, Ningxia University, Yinchuan 750021, China; 12022131924@stu.nxu.edu.cn
* Correspondence: lis198707@gmail.com

Abstract: With the rapid development of Internet of Things technology and cloud computing tech-
nology, all industries need to outsource massive data to third-party clouds for storage in order to
reduce storage and computing costs. Verifiable and dynamic searchable symmetric encryption is
a very important cloud security technology, which supports the dynamic update of private data
and allows users to perform search operations on the cloud server and verify the legitimacy of the
returned results. Therefore, how to realize the dynamic search of encrypted cloud data and the
effective verification of the results returned by the cloud server is a key problem to be solved. To
solve this problem, we propose a verifiable dynamic encryption scheme (v-PADSSE) based on the
public key cryptosystem. In order to achieve efficient and correct data updating, the scheme designs
verification information (VI) for each keyword and constructs a verification list (VL) to store it. When
dynamic update operations are performed on the cloud data, it is easy to quickly update the security
index through obtaining the latest verification information in the VL. The safety and performance
evaluation of the v-PADSSE scheme proved that the scheme is safe and effective.

Keywords: Internet of Things; cloud computing; verifiable; searchable; symmetric encryption;
public key cryptosystem

1. Introduction

With the development of IoT technology, in order to achieve industrial informatization,
more and more IoT devices are being connected, and the amount of data is becoming larger
and larger. In order to save on storage and computing costs, enterprises choose to outsource
massive amounts of data to cloud servers. However, while enjoying the convenience
brought by the cloud, the security of the data has become crucial. To protect data privacy,
sensitive private data need to be encrypted before being outsourced to the IoT cloud [1].
Song et al. [2] proposed searchable symmetric encryption (SSE). SSE is an encryption
scheme that allows users to store encrypted data on a third-party cloud server and search
the encrypted cloud data through the trapdoor generated by the keywords. However, most
SSE schemes only consider keyword search operations on statically encrypted cloud data,
which is inconsistent with the real-time and dynamic update requirements for enterprise
data. Moreover, some studies have shown that conventional SSE schemes are vulnerable
to leakage abuse attacks [3], file injection attacks [4], and technical attacks [5]. In order to
realize the dynamic update (add, delete, or modify) operations of encrypted data stored
on cloud servers, some SSE schemes supporting the dynamic update operations of private
data have been proposed [6–9]. Kamara et al. [6] proposed an SSE scheme that supports
dynamic data updating. The scheme realizes a sublinear search via extending an inverted
index and uses a search array and delete array combined with other storage space to realize
the dynamic update of the data. Subsequently, they proposed another method based on
the keyword red–black tree index structure [7] to support parallel keyword search and
parallel data insertion and deletion. Guo et al. [8] proposed a dynamic SSE scheme based
on an inverted index. The scheme records the keyword position by the inverted index and

Electronics 2023, 12, 3965. https://doi.org/10.3390/electronics12183965 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12183965
https://doi.org/10.3390/electronics12183965
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8871-3272
https://doi.org/10.3390/electronics12183965
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12183965?type=check_update&version=1

Electronics 2023, 12, 3965 2 of 25

realizes the data dynamics through updating the index. Xia et al. [9] proposed a dynamic
keyword search scheme for encrypted cloud data based on the tree index structure that
supports multi-keyword sorting.

The above DSSE schemes do not consider the correctness and integrity verification
of the returned matching result of the cloud server. In practice, the cloud server may
return un-updated or incorrect matching results to the user in order to save computing
resources. Therefore, users need to verify the results returned by the cloud server to
ensure the correctness and integrity of the returned results. Some schemes [10–12] use the
timestamp function of the RSA accumulator to verify the search results, which generates
accumulator bits for all files and indexes, which can be saved by the data owner. If the
cloud server returns an un-updated result, the user can check it with the latest accumulator.
The RSA accumulator [13] can synthesize a large number of data into a fixed-size value to
achieve member authentication, which can effectively reduce communication overhead.
The RSA accumulator is applied to the compressed prefix tree structure to realize both
efficient retrieval and result verification. However, the RSA accumulator is based on
asymmetric cryptosystems, and the computational costs and verification costs are high.
Some research teams have proposed verifiable schemes based on message authentication
code (MAC) [14–16], but in DSSE application scenarios, MAC cannot verify whether the
results returned by the cloud server are the latest, that is, it cannot resist replay attacks [17].
Ge et al. [18] proposed a verifiable DSSE scheme based on cumulative authentication tags
(AATs), which generates authentication tags for keywords and verifies the returned results
through recording the number of global updates and the number of updates of a single
file containing those keywords. Each update operation consumes only one label, which is
highly efficient. However, the pseudo-random permutation and pseudo-random function
are used in this scheme to replace and encrypt the keywords and global update times,
which leads to key management problems. Relational authentication tags (RALs) [19] are
used to verify the relationship of query keywords in documents, and audit certificates
can be generated without exposing sensitive information. However, the program requires
third-party auditors to be involved in the search process. Therefore, how to effectively
verify the correctness and integrity of the returned results is an urgent problem to be solved.

According to the research on the above schemes, the verification of search results
in most schemes is not comprehensive and also involves key management problems.
Therefore, how to effectively verify the correctness and integrity of search results as well
as the security management of encryption keys are the problems we should focus on and
solve.

In this paper, we explore how to use the public key cryptosystem in the DSSE scheme
to verify the correctness and integrity of the result returned by the cloud server and to
manage the encryption key effectively and securely.

The contributions of this paper can be summarized as follows:
(1) In order to efficiently realize the index update and index lookup, we constructed

a bitmap index to store the relationship between the keywords and encrypted files. A
verification list (VL) was used to store the latest verification information of files containing
keywords so that we can quickly obtain the latest verification information from the VL to
perform the secure index update.

(2) In order to support the effective verification of dynamic data, we designed public-
key-based cumulative verification information (VI), which is stored in the bitmap index.
When the encrypted cloud data are dynamically updated, the verification information can
be easily updated. In addition, the verification information contains the corresponding
keywords’ information, which makes the verification information of various keywords
different. Moreover, replay attacks can be resisted by the VI, that is, through verifying
whether the returned result is up to date.

(3) In order to achieve forward security, the scheme places the node information in the
bitmap index to avoid statistical attacks. When we need to search or update private data,

Electronics 2023, 12, 3965 3 of 25

the cloud server will return or change the whole column’s data so that malicious cloud
software cannot obtain the relationship of the keywords and index.

(4) Based on the above description, we design a verifiable DSSE scheme based on the
public key cryptosystem. The security, verification efficiency, and updating efficiency of the
scheme are analyzed and explored. The results show that the scheme is safe and effective.

Organization: The rest of the paper is organized as follows. We summarize the related
work in Section 2. In Section 3, the formulas and algorithms involved in the scheme are
defined, including model construction, design objectives, etc. In Section 4, we describe the
construction of the scheme and the execution of the algorithm. The security analysis of the
v-PADSSE scheme is given in Section 5. In Section 6, the implementation efficiency and
updating efficiency of the program are analyzed and evaluated.

2. Related Work

With the development and application of the Internet of Things and cloud computing
technology, many industries have chosen to outsource data to third-party clouds for storage.
While cloud storage brings convenience to enterprises, it also brings new security challenges.
Users cannot directly control the data stored in the cloud, so it is impossible to determine
whether the data stored are complete and correct. To solve the problem of data verification,
the research community has proposed some cloud storage verification schemes [20–22]
to audit and verify data in the cloud. In addition, before uploading private data to the
cloud for storage, users need to encrypt it to prevent it from being accessed directly by
cloud providers. However, in this case, how users perform search operations on encrypted
cloud data is also an important problem to be solved. To solve the above problems, the
research community proposes searchable symmetric encryption (SSE), which allows users
to perform search operations directly on the ciphertext. Compared with the searchable
encryption scheme of the public key encryption system [23,24], the efficiency of the SSE
scheme has received more attention from the industry.

Dynamic SSE. Searchable encryption can be divided into two categories: symmetric
key encryption [25] and public key encryption [26]. Song et al. [2] first proposed a searchable
encryption scheme that encrypts each keyword through constructing a special two-layer
encryption structure. Some static SSE schemes, such as semantic search schemes [27] and
ranked keyword search schemes [28,29], are also proposed. However, in practice, industrial
data are dynamically updated in real time, and the static SSE scheme does not support
the dynamic update of encrypted cloud data, so it cannot meet the requirements of cloud
storage data encryption at this stage. In order to support the dynamic update of encrypted
data, Kamara et al. [6] proposed a dynamic SSE scheme through constructing an extended
inverted index to achieve sublinear search efficiency and CKA-2 security. Scheme [30]
proposed a dynamic SSE scheme which allows data owners to store privacy files in a way
that the cloud server does not know the number of files through constructing a blind
storage system on the cloud server. Guo et al. [9] proposed a DSSE scheme based on the
inverted index, which allows data users to search multiple phrases in a query request, and
the scheme supports the ordering of search results. In recent years, a number of cloud-
assisted schemes have been proposed for searchable encryption [31]. Scheme [32] utilized
the searchable encryption technologies of keyword range search and multi-keyword search.
Since the cloud is untrustworthy, scheme [32] used Bloom filters and message verification
codes to classify health information, filter out fake data, and check data integrity. In order
to verify whether the cloud faithfully performs the search operation, a multi-user verifiable
searchable symmetric encryption is proposed in scheme [25]. Authorized users can search
the data, verify the authenticity of the search results, and improve the accuracy of the
search results. Since the access rights of authorized users are always valid, it is not secure.
In order to automatically revoke a user’s access, the time key was introduced in [33]. At
the beginning of encryption, the key is encapsulated in ciphertext, which means that all
users, including the data owner, are bound by the time period. Later, Yang et al. [34]
proposed a conjunctional keyword search with the function of specifying testers and

Electronics 2023, 12, 3965 4 of 25

enabling timed proxy re-encryption. It utilizes a time server to generate time tokens for
users. In addition, it implements time-controlled access revocation to prevent authorized
users from accessing future EHRs. Scheme [35] proposed timed-release computational
secret sharing and threshold encryption which used a time-release function instead of
a time server to reduce overhead. Scheme [36] proposed 0-encoding and 1-encoding to
generate the time key. However, the retrieval efficiency of this work is low. In order to
improve search efficiency, scheme [37] with hidden data structures was proposed in the
literature. The user expected to find more ciphertexts in one step. However, scheme [37]
reduced the number of computation-intensive operations without searching for at least
two matching ciphertexts in just one step. This work cannot meet the need for a quick
search and prevent authorized users from accessing future data. While all of the above
work enables cloud-based search, there is still a challenge: the cloud is not a fully trusted
entity and can collude with other entities to gain access to users’ private information.

Verifiable SSE. In practice, cloud servers are semi-trusted entities [38] that may return
incorrect or un-updated results to the data user in order to save on computing overhead.
Miao et al. [39] constructed the verifiable SE framework (VSEF), which can withstand inter-
nal KGA and achieve verifiable searchability. Wu et al. [40] proposed a new authentication
data structure based on homomorphic encryption and showed how to apply it to verify the
correctness and integrity of search results. However, the verification proof in their scheme
is generated by the cloud server, which can forge the proof to pass the verification when the
cloud server is seen as an adversary. To avoid this, Chai et al. [41] first proposed a verifiable
keyword search scheme for encrypting cloud data, using hash functions to generate proof
of document identity. Jiang et al. [14] proposed a verifiable multi-keyword ranked search
scheme based on encrypted cloud data, which realized an efficient keyword search through
constructing the special data structure QSet. Yang et al. [42] designed a forward-privacy
VDSSE scheme with Bloom filters and message authentication codes to allow verification
and support dynamic updates of outsourced data. Zhang et al. [43] proposed a verifiable
data structure based on a multi-set hash function, which guarantees forward security and
realizes effective verifiable data updates. Gao et al. [19] used relational authentication
tags (RALs) to verify the relationship of the query keywords in the document, which can
generate audit certificates without exposing sensitive information. However, the program
requires third-party auditors to be involved in the search process. Merkle hash trees [44] are
used to validate data elements in large databases. Through adding data elements to the leaf
node of the tree, the tree structure is constructed layer by layer from the leaf node to the root
node, and finally the unique root node is obtained. A change to any element in the data set
will make the root node change. A Merkle Patricia tree is proposed in GSSE [45] to reduce
the storage overhead of index structures in schemes based on Merkle hash trees. It reduces
storage space through reducing the depth of the tree. However, in the above two scenarios,
the proof provided by the cloud server to the DU is larger in scale, which brings more
communication overhead. Chen et al. [46] extend the Merkle hash tree [47] to a searchable
index tree to achieve efficient result verification, where search time grows sublinearly with
the size of the data set, and verification is more efficient than the accumulator structure.
In addition, verifiable DSSE has been implemented by schemes [45,48], but they either
support a single keyword match search or use two rounds of communication in a single-
user setup to achieve result verification. The RSA accumulator [13] can aggregate a large
amount of data into a fixed value to achieve member verification, which can effectively
reduce communication overhead. The RSA accumulator is applied to the compressed
prefix tree structure to realize the combination of efficient retrieval and result verification.
Schemes [10,12,13] all use an RSA accumulator to realize result verification for dynamic
data. Most of the above VDSSE schemes are based on asymmetric key cryptography, and
the results returned by the cloud server are verified using the public key signature.

Forward secure SSE. Forward privacy protection requires that update operations
(insert or delete) performed by the data owner cannot be associated with previously
performed search operations. Because the secret key is used for the deterministic encryption

Electronics 2023, 12, 3965 5 of 25

of private data in the DSSE scheme, it is easy for untrusted servers to obtain repeated queries
and other information, which leads to information leakage (such as the number of keyword
queries, etc.). If ORAM is introduced into the scheme, such problems will be avoided,
but the communication cost and calculation cost are high, which causes the calculation
and execution efficiency of DSSE to be exchanged through allowing some information to
be leaked in actual use. However, such leaks are often attacked in different ways [49,50].
Bost et al. [51] proposed to use a one-way trapdoor replacement to eliminate the correlation
between the latest trapdoor and the previous trapdoor, that is, the latest trapdoor can search
all encrypted documents, but the previous trapdoor cannot match the latest encrypted
document. Cao et al. [52] used the KNN method to construct the security index and
trapdoor. This method is used to encode indexes and trapdoors so that even if the keyword
is the same, the encoding is different. In this way, the cloud server can avoid obtaining the
number of keyword queries and the association between keywords and encrypted data
based on data user query operations, thereby protecting forward privacy. Li et al. [53]
used partitioning and pointer hiding technology to partition the secure index and extracted
sub-keywords according to the original keywords as the keywords of partition search,
then encrypted and hid the index block, which only needed to save the index table header
identification and encryption key locally. Since the search token information is calculated
using subkeywords, it is difficult for subsequent query keywords to be directly associated
with the newly added encrypted document.

3. Security Model and Related Definitions
3.1. Security Model

In the design scheme, there are four entities that need to be involved, namely: the
data owner (DO), the data user (DU), the cloud server (CS), and the key distribution center
(KGC). The system security architecture is shown in Figure 1.

• Data owner: This entity encrypts private files and secure indexes with a symmetric
key and encrypts verification information with the data user’s public key. After the
encryption is finished, the ciphertext and index are uploaded to the cloud server.
When the data owner wants to update the privacy data, the update token needs to be
generated locally and then sent to the cloud server for data updating. Upon receiving
the VI request from the data user, the data owner returns the number of files N and
the total number of file updates V that contain the keyword w.

Figure 1. System security architecture.

• Data user: The entity shares the encrypted private key with the data owner. When
he wants to perform a search operation containing keywords, he needs to generate a
trapdoor locally, then send the trapdoor to the cloud server for searching, and apply

Electronics 2023, 12, 3965 6 of 25

to the data owner for the latest verification information of the keyword. The w of VI
indicates the keyword for which the user wants to perform the search operation. Upon
receiving the returned results from the cloud server, the correctness and integrity of
the results are verified according to the verification information.

• Cloud server: This entity stores the ciphertext and security index information up-
loaded by the data owner. When it receives a search request, it performs the search
operation on the security index and returns the corresponding matching results and
verification information. When it receives an update request, it performs an update
operation on the security index and the corresponding ciphertext.

• Key Distribution Center (KGC): This entity is primarily used to generate keys. Upon
receiving a key request from the data user, the entity returns a key pair (PK, SK) to
the corresponding user.

In the system model, both the data owner and data user must be trusted entities.
The data owner honestly encrypts the private files and builds the secure index. The data
user honestly generates trapdoors for the desired keywords and sends them to the cloud
server. The cloud server is an untrusted entity that allows search operations to record the
correspondence between search keywords and encrypted files, and it may return incorrect
or un-updated results to the data user in order to save computing overhead. The key
distribution center is a trusted entity that honestly generates the key pair requested by the
data user and sends it to the requesting user.

3.2. Design Goals

Based on the above model architecture, to achieve a verifiable DSSE scheme, we design
a scheme which needs to meet the following objectives:

• Support keyword search over the encrypted cloud data: The scheme needs to match
all ciphertexts containing the corresponding keywords according to the search token
and demonstrate high query efficiency.

• Support efficient dynamic data updates: The scheme needs to support the dynamic
update of encrypted data and secure indexes, such as dynamic addition, dynamic
deletion, and dynamic modification.

• Support search result verification: The scheme needs to support data users in efficiently
verifying the correctness and integrity of the matching results returned by the cloud
server, and the verification does not involve any complex operations.

• Privacy protection.: Due to the scheme being based on the public key cryptosystem,
the public key cannot be used to encrypt private information directly. The private
information is encrypted using the symmetric key, and the asymmetric key is used
to encrypt the verification information. In addition, the scheme should hide the
encrypted file containing information about keyword quantity and keyword search
frequency.

• Replay attack resistance: To save on computing or storage overhead, the cloud server
directly returns the un-updated results to the data user. The scheme should enable
data users to verify the returned results to determine whether the returned results
are up to date.

3.3. Algorithm Definition

The related algorithms in the v-PADSSE scheme we designed are KeyGen, PSKeyGen,
IndexBuild, Building VL, GenToken, Search, Verify, Decrypt, UpdateToken, and Update.
These algorithms are defined as follows:

• K ← KeyGen(1λ1). The data owner outputs the key (K) through using the secure
random parameter λ1 as the input.

• (PK, SK)← PSKeyGen(λ2). The KGC outputs the key pair (PK,SK), using the secure
random parameter λ2 as input.

Electronics 2023, 12, 3965 7 of 25

• (I, C) ← IndexBuild(K, PK, F, W, N, V, vi, f lag). When building a secure index, en-
crypt the file F and the keywords W with K. Use the public key (PK) to encrypt the
number of files (N) and the total number of updates (V) containing the keywords,
the number of updates (vi) per file, and the flag bit of whether the file contains the
keyword (f lag), where the random number generator function rand() is used to gen-
erate random numbers (randA for odd numbers, randB for even numbers). If the file
contains the keyword, the f lag is odd. If not, the f lag is an even number. Calculate
the file F using the SHA-3 hash algorithm (later replaced with the symbol “H”), and
finally, output security index I and ciphertext C.

• Tw ← GenToken(K, w). The data user executes the trapdoor generation algorithm.
Take key K and keyword w as inputs, and output trapdoor Tw.

• (VI, C(w))← Search(Tw, I, C). The output is the verification information VI, match-
ing ciphertext set C(w). The VI contains the update times of the file (vi) matching the
trapdoor, the flag of whether the ciphertext contains the keyword, and the result H(F)
after hashing the plaintext file using Tw, I and C as input.

• (Y, N) ← Veri f y(VI, SK, Tw, C(w)). Output the result of verifying (Y or N) through
using VI, PK(N, V), SK, Tw, and C(w) as inputs.

• F(w)← Decrypt(K, C(w)). Take K and C(w) as inputs, and output plaintext file F.
• τ ← UpdateToken(K, PK, F, {w, f lag}, vi). Update token information includes the

update operation type, the newly updated file F, the document identifier Fid, the
number of updates per file vi, H(F) (the hash result of F), the set of keywords w
contained in the file, and f lag. When the add operation is performed, the VL is
matched according to the keyword set contained in file F, V = V + 1 and N = N + 1
are calculated in the matched node, and the document ID (Fid) and update number
vi = 1 of file F are added to the node. At this point, the update token contains
the addition of Fid, vi, the keyword set wi contained in the file F, and H(F). If F
contains the keyword, f lag = randA; otherwise, randB. When the delete operation is
performed, the verification list VL is matched according to the keyword set contained
in F; then, N = N − 1 and V = V − vi are calculated in the matched nodes, and Fid
and its update times vi in the nodes are deleted, so that vi = 0 and f lag = randB.
When the modify operation is performed, the verification list VL is matched according
to the keyword set contained in F. In the matching node, perform V = V + 1 and
vi = vi + 1; N and f lag remain unchanged, and the new file is hashed to H(F). After
the above verification information is modified, the public key is used to encrypt this
information except for H(F).

• (I′, C′)← Update(τ). The cloud server executes the update algorithm. Match accord-
ing to Fid contained in τ, and replace the nodes’ value in the column. According to
the update token τ, The cloud server generates a new index item I′ and ciphertext C′.

3.4. Security Definition

• Updated Reliability: A verifiable DSSE scheme first needs to ensure that the cloud
server performs reliable update operations, that is, replay attack resistance. Since the
cloud server is not trusted after it receives an update request from the data owner, it
may not perform the corresponding update operation according to the update token
content, that is, it will not update the security index and ciphertext collection. After
receiving a search request from the data user, the un-updated data are returned to the
data user, and the data user should verify that the returned results are up to date. If
the opponent obtains the latest authentication information VI′ and valid ciphertext
C(w)′, and the forged information can pass the verification algorithm, the opponent
wins.

• Verifiability: If the probability of the opponent successfully forging search results is
negligible, the v-PADSSE scheme is considered verifiable. Due to the unreliability of
the cloud server, it may return incorrect or incomplete results to the data user. Data
users should be able to detect the improper behavior of the cloud server using verifi-

Electronics 2023, 12, 3965 8 of 25

cation algorithms to ensure the correctness and integrity of the returned results. If the
opponent obtained the latest verification information VI′ and the valid ciphertext set
C(w)′ and can forge the authentication information to pass the verification algorithm,
the opponent wins.

4. v-PADSSE Scheme Construction and Algorithm Description

We have summarized some common symbols used in the design of the v-PADSSE
scheme, as shown in Table 1.

Table 1. Common symbols and descriptions

Symbol Description

N the number of files containing keywords
n the number of keywords
F plaintext file set
W keywords set
wi the i-th keyword in the keywords set
V the total number of updates to the file containing keyword w
vi the number of updates to per file containing the keyword wi
I secure index
C ciphertext set
Tw the search trapdoor of keyword w

C(w) ciphertext set containing keyword w
VI verification information set

F(w) plaintext file set containing keyword w
τ update token

VL verify list
I’ updated security index
C’ updated ciphertext set

docId document identification
H SHA-3 hash algorithm

flag indicates whether the file contains the keyword
rand() random number generation function
randA odd numbers generated by rand()
randB even numbers generated by rand()

4.1. Overview of the v-PADSSE Scheme

In order to solve the problem of correctness and integrity verification of the results
returned by the cloud server, this paper designs a DSSE scheme based on public key
verification (v-PADSSE). In this scheme, verification information is added to the security
index and encrypted using the public key of the data user, so that the user can verify the
returned results. Below, the construction of the v-PADSSE scheme is described in detail.

When constructing VI, the v-PADSSE scheme needs to include vi, f lag, and H(F).
The VI needs to be encrypted with the user’s public key. Assume that the encryption
function is PK(VI). To prevent the cloud server from collecting statistics on the correlation
between keywords and updated files, all index nodes in the column of the document
representation of the updated file must be updated so that the update operation can
hide the correlation between the ciphertext and the keywords. Therefore, the verification
information VI = PK(vi) + PK(f lag) + H(F). In addition, the data owner creates a
verification list (VL) locally, which stores the latest verification information of each keyword,
including the number of files containing keyword N, the total number of updates of files
containing keyword V, the document identification of files containing keyword id, and its
single set of file update times vi so that the latest update token can be generated directly
when the update operation is performed. For different update operations (such as modify,
add, and delete), VI needs to be performed in different operations. VI is calculated as
follows:

Electronics 2023, 12, 3965 9 of 25

• Add new file F′.

When the data owner obtains the latest VI and performs the add operation, the
number of updates of a single file is initialized to vi = 1. If the newly added file F′ contains
the keyword w in the VL, the corresponding node in the VL needs to execute N = N + 1,
V = V + 1, then add the document id of the new file F and the number of updates vi to the
node. If it does not, a new node needs to be added to the VL, where N = 1, V = 1, vi = 1,
and VI = PK(vi) + PK(f lag = randA) + H(F′).

• Modify file F to F′.

When file F needs to be updated to a new file F′ (both F and F′ contain the keyword
w), the data owner updates VL with the latest verification information for the keyword w
in the corresponding node and executes V = V + 1 and vi = vi + 1. VI′ = VI − pk(vi) +
PK(vi + 1)− H(F) + H(F′).

• Delete file F.

File F contains keyword w, and the data owner updates N = N − 1, V = V − vi, and
vi = 0 in the VL in the node where keyword w resides. In this case, the latest verifica-
tion information VI′ = VI − PK(N) + PK(N − 1)− PK(vi) + PK(vi = 0)− PK(f lag =
randA) + PK(f lag = randB). Additionally, the document id and vi of file F are removed
from the VL.

After the data owner performs different update operations, the corresponding update
token τ is generated and sent to the cloud server, which updates the security index and
ciphertext according to the update token information.

4.2. Secure Index Structure

In v-PADSSE, the data owner constructs the security index through using the bitmap
index and constructs VL locally. The data owner generates the symmetric encryption key
through executing the algorithm KeyGen, and the data user’s key pair (PK, SK) is generated
via KGC executing the PSKeyGen algorithm.

First, the data user publicly releases the public key, and the data owner, after obtaining
the user’s public key, uses the symmetric private key K to encrypt the privacy files and
keywords and uses PK to encrypt the verification information corresponding to the key-
words. When the security index is firstly constructed, the data owner needs to initialize
VI through initializing N to the number of files containing the keyword w, V = ∑n

i=1 vi,
vi = 1 (1 ≤ i ≤ N). When the security index is constructed, the column header contains the
keyword wi, and the row header contains the document ID docId. Middle node information
includes vi (the number of updates to the file containing the keyword wi), f lag (indicating
whether the document contains the keyword), and H(F) (the result of the hash operation
of the plaintext file). The security index structure is shown in Figure 2.

Figure 2. Security index structure.

The number of rows in the secure index is determined by the number of keywords,
and each row is associated with a keyword. The number of column nodes is determined by
the number of privacy files. When the data owner needs to perform an update operation,
PK(vi), PK(f lag), and H(F) in all nodes in the whole column are modified according to
the updated document identifier.

Electronics 2023, 12, 3965 10 of 25

The data owner needs to obtain the latest verification information of the corresponding
keyword when generating the update token. Therefore, VL is designed in the scheme and
is owned by the data owner. The latest VI of keywords contained in each privacy file must
be recorded in VL. When updating, the data owner modifies the VI in VL to ensure that
the VL and VI in the security index are updated simultaneously. The structure of the VL
is shown in Figure 3, where N indicates the number of files containing the keyword, V
indicates the total number of updates to files containing the keyword, and {id, vi} indicates
the set composed of the document identification of the file containing the keyword and the
number of updates to the file.

Figure 3. Structure of VL.

4.3. Algorithm Description

In this section, we give the execution steps of the core algorithm of the v-PADSSE
scheme and explain the related functions in detail.

In v-PADSSE, the core algorithms involved are IndexBuild (Algorithm 1), Building VL
(Algorithm 2), GenToken, Search (Algorithm 3), Verify (Algorithm 4), UpdateToken (Algorithm 5),
and Update (Algorithm 6). The IndexBuild Algorithm 1 is used by the data owners to
construct the secure index with bitmaps. Among them, the header node stores keyword
and document identification, and the middle node stores keyword-related verification
information. After constructing the secure index, data users upload the secure index and
encrypted files to the cloud server. Data users use the GenToken algorithm to generate a
trapdoor and send it to the cloud server. The cloud server executes the Search Algorithm 3,
performs the matching query on the security index according to the trapdoor, and returns
the matching results and verification information to the data user. After receiving the
results, the user executes the Verify Algorithm 4 to verify the correctness and integrity of
the results. If not verified, refuse. To update the privacy file, the data owner obtains the
verification information related to the keyword contained in the file from VL, runs the
UpdateToken Algorithm 5 to generate the corresponding update token, and sends it to the
cloud server. The cloud server executes the Update Algorithm 6 based on the updated token
information to update the security index and related ciphertext. Below, we will give a
detailed explanation of the above core algorithm execution process.

• Initialization parameters:

(1) Obtain the keyword set {w} contained in the plaintext file and save it in the
keyword set W = {w1, w2, . . . , wn}, where n is the number of keywords.

(2) Obtain the number of files containing keyword w, N = F(w).num, the total num-
ber of updates to files containing keyword w, V = N, the set {id, vi = 1} consist-
ing of the document ID and the number of updates per file, and whether the file con-
tains the f lag of the keyword. (PK(v[N]), PK(f lag)) ← EncryptPK(v[N], f lag)
through using the public key.

(3) Encrypt keyword w and plaintext file F using the symmetric key algorithm,
compute (Kw, C)← EncryptK(w, F), and hash file F to obtain H(F).

• Building secure index:

For each privacy file, document identification docId and keyword set {wi} ∈ W(1 ≤
i ≤ n) are used to construct the bitmap index. The functions and parameters required
to construct the security index are described as follows:

(1) Create the header node BuildHeadNode(Kw, docId), where Kw is the keyword set
after symmetric key K encryption, and docId is the private file identification set.

Electronics 2023, 12, 3965 11 of 25

(2) Create an intermediate node BuildMiddleNode(Kw, docId, PK(vi), PK(f lag),
H(F)); Kw and docId indicate where verification information is stored in the
bitmap index, PK(vi) is the number of file updates containing the keyword w,
and PK(f lag) indicates whether the privacy file corresponding to docId contains
keyword w. If yes, f lag = randA; if no, f lag = randB. H(F) is the result of
hashing the privacy file F.

The algorithm process is as follows:

Algorithm 1 (I, C)← IndexBuild(K, PK, F, W, N, V, vi, f lag)

1: DO:
2: N=F.num();V=F.num();v[N]={1, 1, . . . , 1};
3: (Kw, C)← EncryptK(w, F);
4: PK(vi), PK(f lag)← EncryptPK(vi, f lag);
5: H(F)← Hash(F);
6: // Assuming a total of n keywords and n privacy files, the following procedure is

executed n ∗ n times.
7: for i = 0; i < n; i++ do
8: for j = 0; j < n; j++ do
9: BuildHeadNode(Kw, docId);

10: BuildMiddleNode(Kw, docId, PK(vi), PK(f lag), H(F));
11: end for
12: end for
13: //The above process of creating head nodes and middle nodes together forms

the bitmap index, and assigns the f lag bit according to whether the keyword is
contained in the privacy file, and generates the security index I.

14: //The data owner sends the generated security index I and ciphertext C to the
cloud server.

15: Send to CS(I,C);

• Building verification list: VL

The verification list is constructed and stored locally by the data owner. The VL is a
single linked list, and the linked list node needs to contain the verification information
of each keyword. The creation process is as follows.
The VL header node does not store any information, only the address of the first
keyword.
BuildHeadNode(∗ f irstKeyWord):∗ f irstKeyWord indicates the address of the first key-
word.
BuildListNode(wi, Ni, Vi, {id, vi}, ∗nextKeyWord). The middle node of the linked list
stores the keyword wi, the number of files Ni containing wi, and the total number of
updates to files Vi containing wi. A set of the document identification of the privacy
file containing wi and the number of updates vi to the file, and a pointer to the next
keyword address ∗nextKeyWord are also included.

Algorithm 2 Building VL

1: //Because there are n keywords, the creation of the intermediate index node
needs to be executed n times.

2: for i = 0; i < n; i++ do
3: BuildListNode(wi, Ni, Vi, {id, vi}, ∗nextKeyWord);
4: end for

Electronics 2023, 12, 3965 12 of 25

The Search algorithm process is as follows:

Algorithm 3 (veri f yIn f o, C(w))← Search(Tw, I, C)

1: DO:
2: //Data users execute trapdoor generation algorithm GenToken, use symmetric key K to

encrypt keyword information, generate trapdoor Tw, and send it to the cloud server.
It is also sent to the data owner through the channel to obtain the latest verification
information of the keyword.

3: Tw ← GenToken(K, w);
4: Send (Tw) to CS and DO;
5: CS:
6: if IndexSearch(Tw) = null then
7: Then return null;
8: else
9: //Obtain keyword verification information.

10: verifyInfo = GetVerifyInfo(PK(vi),PK(flag),H(F));
11: C(w) = search(docId);
12: end if
13: //Return the search results and VI to the data user.
14: Return (verifyInfo,C(w));

The Verity algorithm process is as follows:

Algorithm 4 (Y, N)← Veri f y(veri f yIn f o, SK, Tw, C(w))

1: DU:
2: //The user uses the private key SK to decrypt the verification information.
3: (vi, f lag)← DecSK(PK(vi), PK(f lag));
4: //Decrypt the latest verification information returned by the data owner.
5: getNewVeri f yIn f o(Tw, PK(Nw), PK(Vw));
6: DecSK(PK(Nw), PK(Vw));
7: //Check whether the keyword is contained in the privacy file according to the f lag. If

yes, proceed with the execution. If not, the privacy file will not be decrypted.
8: if flag% 2=0 then
9: Delete;

10: //The verification information returned by the data owner compares with that
returned by the cloud server. If the verification information is correct, the ciphertext
is accepted and decrypted. If not, the ciphertext is rejected.

11: else
12: if Nw = C(w). num and Vw = ∑ vi and H(Decrypt(K,C(w)))=H(F) then
13: Return Y;
14: else
15: return N;
16: end if
17: end if

The UpdateToken algorithm process is as follows:

Algorithm 5 τ ← UpdateToken(K, PK, F, {w, f lag}, vi)

1: DO:
2: Add:
3: //The data owner needs to add the privacy file F, he firstly obtains the keyword set
{w} and document identification docIdF in F and then encrypts F and keyword {w}
with K, vi is the number of updates corresponding to the privacy file.

4: ({Kw}, C)← EncryptK({w}, F);

Electronics 2023, 12, 3965 13 of 25

Algorithm 5 Cont.

5: //The VL is matched according to the keywords contained in F. If {wi} contained in F
already exists, add (docIdF, 1) to the {id, vi} in the matched node, and do N = N + 1,
V = V + 1 in this node. If not, add a new node (w, N = 1, V = 1, {docIdF, 1}) to VL.

6: //Assume there are k keywords in file F, it needs to be executed k times.
7: for i = 0; i < k; i++ do
8: if search(wi) is true then
9: N = N + 1;V = V + 1;

10: Add(docIdF,1);
11: else
12: BuildListNode(wi, Ni = 1, Vi = 1, {docIdF, 1}, ∗nextKeyWord);
13: end if
14: end for
15: //The updated verification information is encrypted using public key PK, and gener-

ates the added token τadd. If w is contained by the file F, the value of f lag is randA in
node (w, docIdF), If not, the f lag’s value is randB.

16: PK(vi), PK(f lag)← EncryptPK(vi, f lag);
17: H(F)← Hash(F);
18: τadd = (”add”, {PK(vi), PK(f lag), H(F), Kw, docIdF}, C);
19: Send(τ)toCS;
20: Delete:
21: //If the data owner needs to delete file F, he obtains the set of keyword {wi}(1 ≤ i ≤ k)

in file F and uses K to encrypt the keywords and the deleted file F. The document
identification of the file F is docIdF.

22: ({Kw}, C)← EncryptK({w}, F);
23: //Search for {wi} in VL, and update N, V and the set {id, vi} in the corresponding

node according to the keyword wi. This procedure takes k times.
24: for i = 0; i < k; i++ do
25: if search(w) is true then
26: N=N-1;V=V-v[docIdF];
27: //Removes {docIdF, v} from the document identification {id, vi} set in matched

node;
28: Delete {docIdF, v};
29: else
30: Return error;
31: end if
32: end for
33: //The updated verification information is encrypted using the public key, and the

deleted token τdel is generated and sent to the cloud server.
34: PK(vi), PK(f lag)← EncryptPK(vi = 0, f lag = randB);
35: H(F)← Hash(F);
36: τdel = (”delete”, {PK(vi), PK(f lag), H(F), Kw, docIdF}, C);
37: Send(τ) to CS;
38: Modify:
39: //If the data owner needs to modify the privacy file, he uses K to encrypt the modified

file F and keywords contained in F.
40: ({Kw}, C)← EncryptK({w}, F);
41: //Update VI in VL according to the keywords contained in file F. After updating, the

verification information is encrypted using the public key, and the modified token τmod
is generated and sent to the cloud server.

42: //Since the modified file F contains k keywords {wi}(1 ≤ i ≤ k), the following
procedure needs to be performed k times.

Electronics 2023, 12, 3965 14 of 25

Algorithm 5 Cont.

43: for i = 0; i < k; i++ do
44: if search(w) is true then
45: V=V+1;v[docIdF]=v[docIdF]+1;
46: end if
47: end for
48: PK(v[docIdF])← EncryptPK(v[docIdF]);
49: H(F)← Hash(F);
50: //During the modification, the f lag remains unchanged.
51: τmod = (”modi f y”, {PK(v[docIdF]), PK(f lag), H(F), Kw, docIdF}, C);
52: Send(τ) to CS;

Algorithm 6 (I′, C′)← Update(τ)

1: CS:
2: //After receiving the updated token from the data owner, the cloud server performs

operations on the security index I and ciphertext C according to the token.
3: if τ.operate = “add” then
4: //Add a new column docIdF to the bitmap index, or add a new row if the keyword

contained in F does not exist in the bitmap index.
5: BuildHeadNode(docIdF);
6: //Assume there are n keywords in the bitmap index, that is, n rows, which need to

be executed n times.
7: for i = 0; i < n; i++ do
8: BuildMiddleNode(Kw, docIdF, PK(vi), PK(f lag), H(F));
9: end for

10: if Kwi does not exist in the bitmap index then
11: BuildHeadNode(Kwi);
12: //Assume there are n document identifications in bitmap, the following procedure

needs to be performed n times.
13: for i = 0; i < n; i++ do
14: BuildMiddleNode(Kw, id, PK(vi), PK(f lag), H(F));
15: end for
16: end if
17: addFile(C’);
18: else if τ.operate = “delete” then
19: //Delete All nodes in the bitmap index if the value of column head node is deleteId.
20: deleteColumn(deleteId);
21: deleteFile(C’);
22: else if τ.operate = “modify” then
23: //Assume there are n keywords in the bitmap index, all nodes need to be changed if

the value of column head node is modi f yId.
24: for i = 0; i < n; i++ do
25: ChangeNode(Kwi, modi f yId, PK(vi), PK(f lag), H(F));
26: end for
27: changeFile(C,C’);
28: end if

In conclusion, when the cloud server performs the update operation, the updated
column needs to be modified. At this time, the existence of the f lag and the correct
update of the f lag will not affect the verification result, even if the keyword w which is not
contained in F changes. Moreover, since the update operation involves the change of an
entire column in the secure index, it is also a good way to hide the correlation between the
keywords and the updated file.

Electronics 2023, 12, 3965 15 of 25

4.4. Comparison

In this section, we compare our scheme with Σoφoς [51], Ge’s scheme [18], Gao’s
scheme [19], and Zhang’s scheme [43]. All of those schemes can ensure the verifiability
of search results. Assume there are n files and m keywords in total. For simplification,
we assume that each search returns n files. We neglect the communication costs and only
compare the computation overhead in different phases of these schemes. Table 2 shows the
results of the comparison.

Table 2. Performance comparison.

Schemes FS Update Search Verify

Σoφoς [51] X O(mn) O(m)

Zhang’s scheme [43] X O(mn) O(m) O(n)

Gao’s scheme [19] X O(mn) O(m) O(n)

Ge’s scheme [18] X O(n) O(m) O(n)

our scheme X O(n) O(m) O(n)

As can be seen from Table 2, the efficiency of our scheme is close to Zhang’s scheme [43],
Gao’s scheme [19], and Ge’s scheme [18] in terms of search and verify operations. However,
in the update process, our scheme and Ge’s scheme [18] are better than others; the time
complexity of the two schemes is O(n).

5. Security Analysis

In this section, we will analyze the security of the v-PADSSE scheme in two aspects:
update reliability and verifiability.

5.1. Update Reliability Analysis

Due to the cloud server being unreliable in v-PADSSE, it may not update the security
index and ciphertext after receiving the update request from the data owner in order to save
computing or storage resources. We are going to prove that the Verify algorithm outputs
“N” when the cloud server returns un-updated results.

Assume that the result returned by the cloud server is (VI′, C′(w)), and the correct
result and verification information is (VI, C(w)). The number of files containing the
keyword w is N′, and the total number of updates to files containing the keyword w is V′.
In addition, the scheme proposes that when the data user performs a query, it will apply
to the data owner for the latest verification information PK(N), PK(V) for the keyword.
At this time, we will consider the following three scenarios to prove the reliability of the
v-PADSSE.

(1) VI = VI’, C(w) 6= C’(w)
If the cloud server updates only the security index but not the ciphertext, the returned

result is (VI, C′(w)).
VI = {PK(vi), PK(f lag), H(F)};
PK(V) = PK(∑ v[1, . . . , N]);
But the return verification information contains H(F). At this time, we decrypt the

return ciphertext C′(w) to get F′. If you want to pass the verification, then H(F) = H(F′);
that is, F = F′. If the plaintext is the same, the result C(w) = C′(w) after encryption with
the same key, which is inconsistent with the assumption that C(w) 6= C′(w). The above
calculation shows that if only the security index is updated without the ciphertext, the
Verify Algorithm 4 cannot output ‘Y’ when the data user performs verification.

(2) VI 6= VI’, C(w) = C’(w)
In this case, the cloud server only updates the ciphertext but not the verification

information in the security index.
VI = {PK(vi), PK(f lag), H(F)};

Electronics 2023, 12, 3965 16 of 25

VI′ =
{

PK(v′i), PK(f lag′), H(F′)
}

;
If we want the Verify Algorithm 4 to output ‘Y’, that means
{PK(vi), PK(f lag), H(F)} =

{
PK(v′i), PK(f lag′), H(F′)

}
.

Since the verification information in the security index is not updated, if PK(vi) 6= PK(v′i)
and the rest are equal, the total update times V = ∑ v[1, . . . , N′] will output ‘N’ when
verifying the returned results. If PK(f lag) 6= PK(f lag′) and the rest are the same, the
number of returned results is not equal to N, and the Verify Algorithm 4 will output ‘N’. If
the number of f lag = randA is the same as the number of f lag′ = randA in the returned
VI, it is also necessary to ensure that the vi corresponding to the two are the same, which
indicates that the attacker needs to obtain the verification information from the data owner,
but VL is private to the data owner, and the probability of information leakage can be
almost ignored. If H(F) 6= H(F′) and the rest are the same, in this case F 6= F′, the Verify
Algorithm 4 will output ‘N’.

(3) VI 6= VI’, C(w) 6= C’(w)
Assume that the cloud server does not update the security index and ciphertext

after receiving the update token from the data owner. If the data user performs a Search
operation (Algorithm 3), the cloud server returns the un-updated results to the user. In
the system model architecture (Figure 1), before performing the Search operation, the data
user needs to send the latest VI request for the searched keyword to the data owner. The
data owner searches VL and returns the latest VI of the keyword to the data user. After
receiving the VI, the data user uses the Verify Algorithm 4 to compare the un-updated VI
with the latest. If any inconsistency is found, the Verify Algorithm 4 directly outputs ‘N’.

The above shows that if the cloud server does not update the security index and
ciphertext to save computing or storage resources, our scheme can verify the verification
information and return results through the verification algorithm to find the un-updated
situation in time. Therefore, the v-PADSSE scheme proposed by us meets the updated
reliability.

5.2. Verifiability Analysis

In this section, we assume that the attacker can forge (C′(w), VI′) so that the returned
results pass the Verify Algorithm 4. Assuming that the correct results and verification infor-
mation are (C(w), VI), we will compare the forged information with the real information
to prove that the probability of the attacker passing the Verify Algorithm 4 through forging
verification information is negligible.

We will consider the following three scenarios to demonstrate the verifiability of the
v-PADSSE.

(1) VI = VI’, C(w) 6= C’(w)
Attackers forge VI′ = PK(f lag) + PK(VI) + H(F′), while proper verification infor-

mation VI = PK(f lag) + PK(VI) + H(F). This makes:
PK(f lag′) + PK(v′i) + H(F′) = PK(f lag) + PK(vi) + H(F);
In this case, because N, V, f lag, and vi are encrypted using the user’s public key, the

cost of forgery is relatively small. At this point, we can consider:
H(F′) = H(F);
According to the properties of the hash function, F′ = F is certain. In this case,

C′(w) = C(w), which is not consistent with the assumption. Therefore, the probability of
an attacker passing the Verify Algorithm 4 in this way is almost negligible.

(2) VI 6= VI’, C(w) = C’(w)
The attacker forges the ciphertext C′(w) to be consistent with the correct ciphertext.

According to the design of the v-PADSSE, the verification information contains H(F). At
this point, we can consider:

PK(v′i) + PK(f lag′) 6= PK(vi) + PK(f lag);
According to the above situation, PK(V) = PK(∑ vi) = PK(∑ v′i); when PK(f lag′) 6=

PK(f lag), if the number of f lag = randA is not equal to the number of f lag′ = randA, the
known probability of information leakage of VL can be ignored. In this case, the probability

Electronics 2023, 12, 3965 17 of 25

of the number of returned results being N is negligible, and the Verify Algorithm 4 will
output ‘N’. Therefore, the probability of the above situation passing the Verify Algorithm 4
can also be ignored.

(3) VI 6= VI’, C(w) 6= C’(w)
In this case, the data user will spend a communication after sending the trapdoor to

the data owner to request the latest verification information N, V of the keyword. Therefore,
under this assumption, as long as any of the verification information is different, or the
encrypted files returned are different, H(F) is inconsistent, which will make the Verify
Algorithm 4 output ‘N’. Therefore, the probability of the attacker passing the verification
can be ignored under this condition.

The above three scenarios show that if a malicious attacker forges ciphertext or verifi-
cation information, our scheme can also determine which information is forged and give
feedback. Therefore, our scheme satisfies verifiability.

6. Performance and Experiments

In this section, we will analyze the performance of the proposed v-PADSSE scheme.
The basic logic of the experiment was written in C++, and the running environment was
Windows 10 equipped with a 2.40 GHz 12th Gen Intel(R) Core(TM) i7 CPU and 4.0 GB
RAM.

Index construction efficiency. We evaluated the bitmap index proposed in the scheme
and the verification list construction efficiency. Figure 4 shows the time spent to build the
security index and verification list when the number of keywords is set to 10,000 and the
number of privacy files changes from 1000 to 10,000. In the scheme, the security index
adopts the form of a bitmap index, the number of rows is the number of keywords, and
the number of columns is the number of document identifiers of privacy files. When the
number of rows in the bitmap index is fixed and the number of private files increases, the
number of columns in the bitmap also needs to increase, and the time cost of building a
secure index also increases. Figure 5 shows the time spent to construct the security index
and verification list when the number of privacy files is 10,000 and the number of keywords
contained in the privacy files changes from 1000 to 10,000. When the number of secure index
columns is fixed, the increase in the number of keywords leads to an increase in the number
of rows in the bitmap index, and the time cost of building the secure index Algorithm 1 also
increases. During secure index construction, the number of nodes is related to the number
of keywords and privacy files. Therefore, when the number of privacy files or keywords
increases, the number of columns or rows of the bitmap index will also increase, and the
time cost of building a security index will also increase. Since the number of nodes in VL is
only related to the number of keywords contained in the privacy file, when the number of
keywords increases, the number of nodes in VL increases, and the time cost of building
VL (Algorithm 2) increases at the same time.

Update token generation efficiency. Figure 6 shows the time cost of generating update
tokens (Algorithm 5) (modify token, delete token, and add token) in the scheme. Since the
generation of the update token involves the document identification and the number of
keywords contained in the privacy file after the document identification of the modified file
is determined, the latest update times of the file need to be obtained from VL. Therefore,
the generation efficiency of update tokens is linearly related to the number of nodes in VL,
and the higher the number, the longer the token generation time. However, since the added
token may involve increasing the number of VL nodes, the generation time will be slightly
longer.

Electronics 2023, 12, 3965 18 of 25

Figure 4. Security index and VL construction time cost.

Figure 5. Security index and VL construction time cost.

Figure 6. The update token generation time cost.

Electronics 2023, 12, 3965 19 of 25

Search efficiency analysis. The VL obtains the latest verification information and
generates an update token. After receiving the update token, the cloud server searches for
it in the security index. Figure 7 shows the time cost of performing a search operation in
the security index when the number of keywords is 10,000 and the number of private files
changes from 1000 to 10,000. It can be seen that when the number of rows in the security
index is fixed, that is, the number of keywords is fixed, the time cost of searching the index
increases linearly with the increase in the number of columns, that is, the number of privacy
files. Figure 8 shows the time cost of searching (Algorithm 3) the VL and the secure index
when the number of privacy files is 10,000 and the number of keywords changes from 1000
to 10,000. Since the number of nodes in VL is equal to the number of keywords, the search
time also increases linearly when the number of keywords increases. When the number of
columns in the security index is fixed and the number of rows in the bitmap index increases
as the number of keywords increases, the search time cost increases.

Figure 7. Search secure index time cost.

Figure 8. Search secure index and VL time cost.

In this section, we compare this scheme with what is generally regarded as the most
typical verifiable SSE scheme [54] in terms of verification efficiency and update efficiency.

Verify efficiency analysis. We made a comparative analysis of the verification
(Algorithm 4) time cost of our scheme and scheme [54]. As can be seen from Figure 9,

Electronics 2023, 12, 3965 20 of 25

the verification time cost of our scheme is lower than scheme [54]. Scheme [54] used a
bilinear mapping accumulator to verify search results, which is based on asymmetric key
encryption. Our scheme is based on a VL; the number of file updates is stored in the VL,
which is more efficient than the accumulator. As shown in Figure 9, when the number of
privacy files containing search keywords is 200, the verification time cost of scheme [54] is
roughly 5 ms, and the verification time cost of our scheme is 0.3725 ms. When the number
of search keywords is 2000, the verification time cost of scheme [54] is about 48 ms, and the
verification time cost of our scheme is about 9.2437 ms. As can be seen from Figure 10, the
number of CPU clock cycles of our scheme is lower than that of scheme [54]. Therefore, the
verification efficiency of our scheme is higher than that of scheme [54].

Figure 9. Verification efficiency comparison.

Figure 10. CPU clock cycles of per data comparison.

Update efficiency analysis. After receiving the update token, the cloud server needs to
perform the corresponding Update operation (Algorithm 6) on the security index. As can
be seen from Figures 11–13, the number of columns or rows in the security index needs to
be increased due to the add and modify operation, and the time cost is slightly larger than
the delete operation. The cloud server deletes the corresponding column in the security
index when it performs the delete operation, and the time cost is lower. As can be seen
from Figures 11–13, the update efficiency of our scheme is better than scheme [54].

Electronics 2023, 12, 3965 21 of 25

Figure 11. The comparison of add operation time cost.

Figure 12. The comparison of modify operation time cost.

Figure 13. The comparison of delete operation time cost.

Electronics 2023, 12, 3965 22 of 25

7. Discussion

In this section, we analyze the advantages and disadvantages of schemes [18,19,43,51],
as shown in Table 3. Σoφoς [51], Zhang’s scheme [43], and Gao’s scheme [19] realize the
dynamic update and searchability of data through constructing an inverted index. If the
update file contains many keywords, the update efficiency is relatively low. None of the
above four schemes involve key management securely. Σoφoς [51] uses a one-way trap
gate to realize forward security, but the calculation cost is high. Zhang’s scheme [43]
is improved on the basis of Σoφoς [51], using random states to achieve forward safety
and improve efficiency. However, the correctness of the returned results is not verified;
that is, the update reliability proposed in this scheme is not satisfied. Gao’s scheme [19]
requires third-party TPA to verify the integrity of search results, which requires TPA
to honestly implement the verification algorithm, which requires a trap gate, data block
number, RAL, and authenticator to perform related calculations, which is relatively complex.
Both Ge’s scheme [18] and our scheme used a bitmap to construct the security index,
which has high updating efficiency. However, the accumulated authentication tags (AATs)
in Ge’s scheme [18] contain ciphertext data blocks, which consume additional storage
resources. In our scheme, the verification process does not involve complex operations,
and the verification information is simple, which makes the verification efficiency high,
but the scheme also needs to consume communication resources once more. In conclusion,
compared with the above schemes, our scheme is relatively efficient in the process of
searching, updating, and verifying.

Table 3. Advantages and disadvantages.

Schemes Advantages Disadvantages

Σoφoς [51] Effectively implement forward security. The calculation of trapdoor replacement is costly.

Zhang’s scheme [43]
The multi-level hash function is used to replace the

one-way permutation function, and the update
efficiency is improved significantly.

The correctness of the returned result is not verified.

Gao’s scheme [19]
The verification process effectively hides the

relation between the keywords and the encrypted
files to avoid statistical attacks.

The verification process is complex, and TPA must
perform the verification process honestly.

Ge’s scheme [18] The verification of the returned results consumes
only one AAT resource, which has high efficiency.

AAT contains ciphertext data blocks, which
consume additional storage resources.

our scheme
The verification procedure is simple and does not

involve complex operations, which has high
efficiency.

The verification process consumes an additional
communication resource.

8. Conclusions

In this paper, we first studied the research status of the DSSE scheme and analyzed the
advantages and disadvantages of different schemes. Since most schemes do not involve key
management, we proposed a verifiable DSSE scheme based on the public key cryptosystem
which can realize secure key management. In Section 3, we defined the security model,
design goals, core algorithm, and security analysis of the V-PDSSE scheme. In Section 4,
we described the bitmap index and verification list construction of the scheme in detail
and explained the core algorithm steps of the scheme. Finally, we compared the time
complexity with schemes [18,19,43,51] to prove that the implementation efficiency of our
scheme is high. In Section 5, a security analysis was carried out on the reliability and
verifiability of our scheme to prove that our scheme meets the security requirements. In
Section 6, we tested the efficiency of the core algorithms and compared the efficiency of
scheme [54] in security index construction, verification list construction, searching, search
result verification, and updating. The results show that our scheme has high efficiency
and strong feasibility. In Section 7, we analyzed the advantages and disadvantages of
schemes [18,19,43,51].

Electronics 2023, 12, 3965 23 of 25

Compared with previous schemes, the functional design of this scheme is more com-
prehensive. The verification process does not involve complex operations, the verification
information structure is simple, and the execution efficiency is high. Our scheme can solve
the problems of dynamic searchability, forward security, integrity, and correct verification
of search results and key management well. In future work, given the rapid development
of quantum computers and verifiable DSSE schemes, how to deal with quantum attacks
effectively will become a key direction of our research.

Author Contributions: Writing—original draft preparation, G.D.; writing—review and editing, S.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Natural Science Foundation of Ningxia (No. 2021AAC03068)
and the Key R&D Program of Ningxia (No. 2021BEG03071).

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the editor and the anonymous reviewers for
their valuable comments and suggestions that improved the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Xu, L.; Xu, C.G.; Liu, Z.Y.; Wang, Y.L.; Wang, J.F. Enabling comparable search over encrypted data for IoT with privacy-preserving.

Comput. Mater. Contin. 2019, 60, 675–690. [CrossRef]
2. Song, D.X.; Wagner, D.; Perrig, A. Practical techniques for searches on encrypted data. In Proceedings of the 2000 IEEE Symposium

on Security and Privacy, Berkeley, CA, USA, 14–17 May 2000; pp. 44–55.
3. Islam, M.S.; Kuzu, M.; Kantarcioglu, M. Access Pattern Disclosure on Searchable Encryption: Ramification, Attack and Mitigation;

Proc.NDSS: New York, NY, USA, 2012; pp. 1–15.
4. Zhang, Y.P.; Katz, J.; Papamanthou, C. All your queries are belong to us: The power of file-injection attacks on searchable

encryption. IACR Cryptol. Eprint Arch. 2016, 172, 707–720.
5. Cash, D.; Grubbs, P.; Perry, J.; Ristenpart, T. Leakage-abuse attacks against searchable encryption. In Proceedings of the ACM

SIGSAC Conference on Computer and Communications Security (CCS’15), Denver, CO, USA, 12–16 October 2015; pp. 668–679.
6. Kamara, S.; Papamanthou, C.; Roeder, T. Dynamic searchable symmetric encryption. In Proceedings of the ACM Conference on

Computer and Communications Security (CCS 2012), Raleigh, NC, USA, 16–18 October 2012; pp. 965–976.
7. Kamara, S.; Papamanthou, C. Parallel and dynamic searchable symmetric encryption. In Proceedings of the 17th International

Conference on Financial Cryptography and Data Security (FC 2013), Okinawa, Japan, 1–5 April 2013; Sadeghi, A.-R., Ed.; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 258–274.

8. Guo, C.; Chen, X.; Jie, Y.M.; Fu, Z.J.; Li, M.C.; Feng, B. Dynamic multi-phrase ranked search over encrypted data with symmetric
searchable encryption. IEEE Trans. Serv. Comput. 2017, 13, 1034–1044. [CrossRef]

9. Xia, Z.H.; Wang, X.H.; Sun, X.M.; Wang, Q. A secure and dynamic multi-keyword ranked search scheme over encrypted cloud
data. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 340–352. [CrossRef]

10. Liu, Q.; Nie, X.H.; Liu, X.H.; Peng, T.; Wu, J. Verifiable ranked search over dynamic encrypted data in cloud computing. In
Proceedings of the 2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS), Vilanova i la Geltrú, Spain,
14–16 June 2017; pp. 1–6.

11. Nie, X.H.; Liu, Q.; Liu, X.H.; Peng, T.; Lin, Y.P. Dynamic verifiable search over encrypted data in untrusted clouds. In Algorithms
and Architectures for Parallel Processing; Springer: Cham, Switzerland, 2016; pp. 557–571.

12. Zhu, X.Y.; Liu, Q.; Wang, G.J. A novel verifiable and dynamic fuzzy keyword search scheme over encrypted data in cloud
computing. In Proceedings of the 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016; pp. 845–851.

13. Liu, Q.; Tian, Y.; Wu, J.; Peng, T.; Wang, G. Enabling verifiable and dynamic ranked search over outsourced data. IEEE Trans. Serv.
Comput. 2022, 15, 69–82. [CrossRef]

14. Jiang, X.X.; Yu, J.; Yan, J.B.; Hao, R. Enabling efficient and verifiable multi-keyword ranked search over encrypted cloud data. Inf.
Sci. 2017, 403–404, 22–41. [CrossRef]

15. Chen, F.; Xiang, T.; Fu, X.W.; Yu, W. User differentiated verifiable file search on the cloud. IEEE Trans. Serv. Comput. 2018, 11,
948–961. [CrossRef]

16. Wan, Z.G.; Deng, R.H. VPSearch: Achieving verifiability for privacy preserving multi-keyword search over encrypted cloud data.
IEEE Trans. Depend. Sec. Comput. 2018, 15, 1083–1095. [CrossRef]

17. Kurosawa, K.; Ohtaki, Y. How to update documents verifiably in searchable symmetric encryption. In Cryptology and Network
Security; Springer: Cham, Switzerland, 2013; pp. 309–328.

http://doi.org/10.32604/cmc.2019.05276
http://dx.doi.org/10.1109/TSC.2017.2768045
http://dx.doi.org/10.1109/TPDS.2015.2401003
http://dx.doi.org/10.1109/TSC.2019.2922177
http://dx.doi.org/10.1016/j.ins.2017.03.037
http://dx.doi.org/10.1109/TSC.2016.2589245
http://dx.doi.org/10.1109/TDSC.2016.2635128

Electronics 2023, 12, 3965 24 of 25

18. Ge, X.; Yu, J.; Zhang, H.; Hu, C.; Li, Z.; Qin, Z.; Hao, R. Towards achieving keyword search over dynamic encrypted cloud data
with symmetric-key based verification. IEEE Trans. Dependable Secur. Comput. 2021, 18, 490–504. [CrossRef]

19. Gao, X.; Yu, J.; Chang, Y.; Wang, H.; Fan, J. Checking only when it is necessary: Enabling integrity auditing based on the keyword
with sensitive information privacy for encrypted cloud data. IEEE Trans. Dependable Secur. Comput. 2021, 19, 3774–3789. [CrossRef]

20. Yu, J.; Ren, K.; Wang, C. Enabling cloud storage auditing with key-exposure resistance. IEEE Trans. Inf. Forensics Secur. 2015, 10,
1167–1179.

21. Zhang, Y.; Yu, J.; Hao, R.; Wang, C.; Ren, K. Enabling efficient user revocation in identity-based cloud storage auditing for shared
big data. IEEE Trans. Dependable Secur. Comput. 2018, 17, 608–619. [CrossRef]

22. Shacham, H.; Waters, B. Compact Proofs of Retrievability. In Proceedings of the 14th Annual International Conference on the
Theory and Application of Cryptology & Information Security, Melbourne, Australia, 7–11 December 2008; pp. 90–107.

23. Miao, Y.B.; Ma, J.F.; Liu, X.M.; Li, X.H.; Jiang, Q.; Zhang, J.W. Attribute-based keyword search over hierarchical data in cloud
computing. IEEE Trans. Serv. Comput. 2017, 13, 985–998. [CrossRef]

24. Miao, Y.B.; Ma, J.F.; Liu, X.M.; Weng, J.; Li, H.W.; Li, H. Lightweight fine-grained search over encrypted data in fog computing.
IEEE Trans. Serv. Comput. 2018, 12, 772–785. [CrossRef]

25. Liu, X.; Yang, G.; Mu, Y.; Deng, R.H. Multi-user verifable searchable symmetric encryption for cloud storage. IEEE Trans.
Dependable Secur. Comput. 2020, 17, 1322–1332. [CrossRef]

26. Xu, P.; Wu, Q.; Wang, W.; Susilo, W.; Domingo-Ferrer, J.; Jin, H. Generating searchable public-key ciphertexts with hidden
structures for fast keyword search. IEEE Trans. Inf. Forensics Secur. 2015, 10, 1993–2006.

27. Fu, Z.J.; Xia, L.L.; Sun, X.M.; Liu, A.X.; Xie, G.W. Semantic aware searching over encrypted data for cloud computing. IEEE Trans.
Inf. Forensics Secur. 2018, 13, 2359–2371. [CrossRef]

28. Zhang, W.; Xiao, S.; Lin, Y.P.; Zhou, T.; Zhou, S.W. Secure ranked multi-keyword search for multiple data owners in cloud
computing. In Proceedings of the 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
Atlanta, GA, USA, 23–26 June 2014; pp. 276–286.

29. Fu, Z.J.; Sun, X.M.; Linge, N.; Zhou, L. Achieving effective cloud search services: Multi-keyword ranked search over encrypted
cloud data supporting synonym query. IEEE Trans. Consum. Electron. 2014, 60, 164–172. [CrossRef]

30. Naveed, M.; Prabhakaran, M.; Gunter, C.A. Dynamic searchable encryption via blind storage. In Proceedings of the 2014 IEEE
Symposium on Security and Privacy, Berkeley, CA, USA, 18–21 May 2014; pp. 639–654.

31. Zhang, R.; Xue, R.; Liu, L. Searchable encryption for healthcare clouds: A survey. IEEE Trans. Serv. Comput. 2018, 11, 978–996.
[CrossRef]

32. Xu, C.; Wang, N.; Zhu, L.; Sharif, K.; Zhang, C. Achieving searchable and privacy-preserving data sharing for cloud-assisted
E-healthcare system. IEEE Internet Oftings J. 2019, 6, 8345–8356. [CrossRef]

33. Emura, K.; Miyaji, A.; Omote, K. A timed-release proxy re-encryption scheme. IEICE-Trans. Fundam. Electron. Commun. Comput.
Sci. 2011, E94-A, 1682–1695. [CrossRef]

34. Yang, Y.; Ma, M. Conjunctive keyword search with designated tester and timing enabled proxy Re-encryption function for
E-health clouds. IEEE Trans. Inf. Forensics Secur. 2016, 11, 746–759. [CrossRef]

35. Watanabe, Y.; Shikata, J. Timed-release computational secret sharing and threshold encryption. Des. Codes Cryptogr. 2018, 86,
17–54. [CrossRef]

36. Emura, K.; Hayashi, T.; Ishida, A. Group signatures with timebound keys revisited: A new model, an efcient construction, and its
implementation. IEEE Trans. Dependable Secur. Comput. 2020, 17, 292–305. [CrossRef]

37. Xu, P.; He, S.; Wang, W.; Susilo, W.; Jin, H. Lightweight searchable public-key encryption for cloud-assisted wireless sensor
networks. IEEE Trans. Ind. Inform. 2018, 14, 3712–3723. [CrossRef]

38. Xiong, H.; Wang, Y.; Li, W.; Chen, C.M. Flexible, efficient, and secure access delegation in cloud computing. ACM Trans. Manag.
Inf. Syst. (TMIS) 2019, 10, 2. [CrossRef]

39. Miao, Y.; Tong, Q.; Deng, R.H.; Choo, K.K.R.; Liu, X.; Li, H. Verifiable searchable encryption framework against insider
keyword-guessing attack in cloud storage. IEEE Trans. Cloud Comput. 2020, 10, 835–848. [CrossRef]

40. Wu, D.N.; Gan, Q.Q.; Wang, X.M. Verifiable public key encryption with keyword search based on homomorphic encryption in
multi-user setting. IEEE Access 2018, 6, 42445–42453. [CrossRef]

41. Chai, Q.; Gong, G. Verifiable symmetric searchable encryption for semi-honest-but-curious cloud servers. In Proceedings of the
2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 917–922.

42. Yang, L.; Zheng, Q.; Fan, X. Rspp: A reliable, searchable and privacy-preserving e-healthcare system for cloud-assisted body area
networks. In Proceedings of the IEEE INFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4
May 2017; pp. 1–9.

43. Zhang, Z.; Wang, J.; Wang, Y.; Su, Y.; Chen, X. Towards efficient verifiable forward secure searchable symmetric encryption. In
Computer Security-ESORICS 2019; Springer International Publishing: Cham, Switzerland, 2019; Volume 11736, pp. 304–321.

44. Deepa, N.; Perumal, P. Hybrid context aware recommendation system for e-health care by merkle hash tree from cloud using
evolutionary algorithm. Soft. Comput. 2020, 24, 7149–7161. [CrossRef]

45. Zhu, J.; Li, Q.; Wang, C.; Yuan, X.; Wang, Q.; Ren, K. Enabling generic, verifiable, and secure data search in cloud services. IEEE
Trans. Parallel Distrib. Syst. 2018, 29, 1721–1735. [CrossRef]

http://dx.doi.org/10.1109/TDSC.2019.2896258
http://dx.doi.org/10.1109/TDSC.2021.3106780
http://dx.doi.org/10.1109/TDSC.2018.2829880
http://dx.doi.org/10.1109/TSC.2017.2757467
http://dx.doi.org/10.1109/TSC.2018.2823309
http://dx.doi.org/10.1109/TDSC.2018.2876831
http://dx.doi.org/10.1109/TIFS.2018.2819121
http://dx.doi.org/10.1109/TCE.2014.6780939
http://dx.doi.org/10.1109/TSC.2017.2762296
http://dx.doi.org/10.1109/JIOT.2019.2917186
http://dx.doi.org/10.1587/transfun.E94.A.1682
http://dx.doi.org/10.1109/TIFS.2015.2509912
http://dx.doi.org/10.1007/s10623-016-0324-2
http://dx.doi.org/10.1109/TDSC.2017.2754247
http://dx.doi.org/10.1109/TII.2017.2784395
http://dx.doi.org/10.1145/3318212
http://dx.doi.org/10.1109/TCC.2020.2989296
http://dx.doi.org/10.1109/ACCESS.2018.2861424
http://dx.doi.org/10.1007/s00500-019-04322-7
http://dx.doi.org/10.1109/TPDS.2018.2808283

Electronics 2023, 12, 3965 25 of 25

46. Chen, C.; Zhu, X.; Shen, P.; Hu, J.; Guo, S.; Tari, Z.; Zomaya, A.Y. An efficient privacy-preserving ranked keyword search method.
IEEE Trans. Parallel Distrib. Syst. 2015, 27, 951–963. [CrossRef]

47. Cheng, H.; Wang, H.; Liu, X.; Fang, Y.; Wang, M.; Zhang, X. Person re-identification over encrypted outsourced surveillance
videos. IEEE Trans. Dependable Secur. Comput. 2019, 18, 1456–1473. [CrossRef]

48. Guo, Y.; Zhang, C.; Jia, X. Verifiable and forward-secure encrypted search using blockchain techniques. In Proceedings of the 2020
IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–7.

49. Wang, Q.; He, M.; Du, M.; Chow, S.; Lai, R.; Zou, Q. Searchable encryption over feature-rich data. IEEE Trans. Depend. Sec. Comput.
2018, 15, 496–510. [CrossRef]

50. Du, M.; Wang, Q.; He, M.; Weng, J. Privacy-preserving index-ing and query processing for secure dynamic cloud storage. IEEE
Trans. Inf. Forensics Secur. 2018, 13, 2320–2332. [CrossRef]

51. Bost, R. Σoφoς: forward secure searchable encryption. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS 2016), Vienna, Austria, 24–28 October 2016; Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S., Eds.; ACM: New York, NY, USA, 2016; pp. 1143–1154.

52. Cao, N.; Wang, C.; Li, M.; Ren, K.; Lou, W. Privacy-preserving multi-keyword ranked search over encrypted cloud data. IEEE
Trans. Parallel Distrib. Syst. 2014, 25, 222–233. [CrossRef]

53. Li, J.; Huang, Y.; Wei, Y.; Lv, S.; Liu, Z.; Dong, C.; Lou, W. Searchable Symmetric Encryption with Forward Search Privacy. IEEE
Trans. Dependable Secur. Comput. 2021, 18, 464–465. [CrossRef]

54. Sun, W.H.; Liu, X.F.; Hou, W.J.L.Y.T.; Li, H. Catch you if you lie to me: Efficient verifiable conjunctive keyword search over
large dynamic encrypted cloud data. In Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM),
Hong Kong, China, 26 April–1 May 2015; pp. 2110–2118.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPDS.2015.2425407
http://dx.doi.org/10.1109/TDSC.2019.2923653
http://dx.doi.org/10.1109/TDSC.2016.2593444
http://dx.doi.org/10.1109/TIFS.2018.2818651
http://dx.doi.org/10.1109/TPDS.2013.45
http://dx.doi.org/10.1109/TDSC.2019.2894411

	Introduction
	Related Work
	Security Model and Related Definitions
	Security Model
	Design Goals
	Algorithm Definition
	Security Definition

	v-PADSSE Scheme Construction and Algorithm Description
	Overview of the v-PADSSE Scheme
	Secure Index Structure
	Algorithm Description
	Comparison

	Security Analysis
	Update Reliability Analysis
	Verifiability Analysis

	Performance and Experiments
	Discussion
	Conclusions
	References

