
Citation: Yoon, J.; Kim, N.; Lee, D.;

Lee, S.-J.; Kwak, G.-H.; Kim, T.-H. A

Resource-Efficient Keyword Spotting

System Based on a One-Dimensional

Binary Convolutional Neural

Network. Electronics 2023, 12, 3964.

https://doi.org/10.3390/

electronics12183964

Academic Editor: Valeri Mladenov

Received: 23 August 2023

Revised: 19 September 2023

Accepted: 19 September 2023

Published: 20 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Resource-Efficient Keyword Spotting System Based on a
One-Dimensional Binary Convolutional Neural Network
Jinsung Yoon, Neungyun Kim, Donghyun Lee, Su-Jung Lee, Gil-Ho Kwak and Tae-Hwan Kim *

School of Electronics and Information Engineering, Korea Aerospace University, 76, Hanggongdaehak-ro,
Deogyang-gu, Goyang-si 10540, Gyeonggi-do, Republic of Korea
* Correspondence: taehwan.kim@kau.kr

Abstract: This paper proposes a resource-efficient keyword spotting (KWS) system based on a
convolutional neural network (CNN). The end-to-end KWS process is performed based solely on
1D-CNN inference, where features are first extracted from a few convolutional blocks, and then the
keywords are classified using a few fully connected blocks. The 1D-CNN model is binarized to
reduce resource usage, and its inference is executed by employing a dedicated engine. This engine is
designed to skip redundant operations, enabling high inference speed despite its low complexity. The
proposed system is implemented using 6895 ALUTs in an Intel Cyclone V FPGA by integrating the
essential components for performing the KWS process. In the system, the latency required to process
a frame is 22 ms, and the spotting accuracy is 91.80% in an environment where the signal-to-noise
ratio is 10 dB for Google speech commands dataset version 2.

Keywords: keyword spotting; convolutional neural networks; binarized neural networks; inference;
processor; field-programmable gate arrays

1. Introduction

Keyword spotting (KWS) refers to the task of detecting predefined keywords in an
audio stream. This plays a foundational role in voice assistant services by triggering
the services with a single keyword [1]. KWS systems are embedded in devices, such as
smartphones and smart speakers, and involve considerable complexity with respect to
spotting the keyword spoken by unspecified speakers. Such complexity becomes a limiting
factor in miniaturized embedded devices with tight constraints on the available resources,
thus necessitating the creation of an efficient KWS system with low resource usage. Re-
cent works have shown that feature extraction using Mel-frequency cepstral coefficients
(MFCCs) [2] and classification via deep neural networks (DNNs) [3] can contribute to
achieving high spotting accuracy, even in environments with background noise. However,
these techniques increase the complexity of the system [4].

To reduce the complexity of the KWS system, various techniques have been proposed
to optimize the feature extraction and classification process. K. He [5] and Y. S. Chong [6]
attempted to reduce the complexity of calculating the MFCCs. In the work of K. He [5], the
discrete cosine transformation and windowing procedure were removed. In the work of
Y. S. Chong [6], a rectangular filter was introduced instead of the conventional triangular
filter to reduce computational and memory requirements. Convolutional neural networks
(CNNs) have been successfully employed to perform classic speech recognition tasks [7],
which is closely related to KWS. Several studies employing CNNs or their variants to
implement KWS systems have been conducted [8]. In the work of S. Bae [9], the memory
required for storing model parameters was reduced by employing a depthwise separable
CNN (DS-CNN) while achieving high spotting accuracy based on ternary quantization. In
the work of W. Shan [10], a DS-CNN-based model was also employed to reduce system
complexity with a low memory footprint. In the work of B. Liu [11], a low-complexity

Electronics 2023, 12, 3964. https://doi.org/10.3390/electronics12183964 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12183964
https://doi.org/10.3390/electronics12183964
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12183964
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12183964?type=check_update&version=1

Electronics 2023, 12, 3964 2 of 12

KWS system was effectively implemented by eliminating the MFCC calculations with a
one-dimensional convolutional recurrent neural network (1D-CRNN) model.

In addition, studies on achieving a real-time KWS system with high spotting accuracy
have been conducted. In the work of E. Ceolini [12], the processing latency of a KWS
system was reduced by introducing rate-based machine learning networks. In the work
of Yan [13], an event-driven pipeline was utilized to reduce the processing latency of
KWS systems. In the work of R. Prabhavalkar [14], a robust KWS system was developed
to achieve high spotting accuracy even in noisy environments on the basis of the novel
technique of automatic gain control. In the work of Y. A. Hwang [15], a voice enhancement
algorithm with dual microphones was employed to implement a noise-robust KWS system.

This work proposes a resource-efficient KWS system based on a 1D binary convo-
lutional neural network (1D-BCNN) and validates the proposed system with the imple-
mentation results. This is the extension of our preliminary work presented in [16]. The
contributions can be summarized as follows:

• The proposed system relies on a single 1D-CNN model for the purposes of feature
extraction and classification. Relatively few resources are used, as no additional
hardware is explicitly required to perform feature extraction.

• Resource requirement is further reduced by binarizing the 1D-CNN model based
on XNOR-Net [17], and the inference engine [18] is optimized to handle a 1D audio
stream. This engine uses threshold- and pooling-based skipping techniques to skip
redundant operations, thereby achieving a high inference speed.

• The proposed system is implemented using 6895 ALUTs in an Intel Cyclone V FPGA.
The latency of processing a frame is as short as 22 ms. In an environment with a signal-
to-noise ratio (SNR) of 10 dB, the spotting accuracy for Google speech command
dataset version 2 (GSCD v2) [19] is 91.80%.

The remainder of this paper is organized as follows. Section 2 briefly reviews the
conventional KWS system. Section 3 details the proposed system. Section 4 presents
the implementation results of the proposed system and compares its performance with
previous results. Section 5 presents our conclusions.

2. Conventional KWS System

The KWS process is conventionally performed in two stages: feature extraction and
classification. The audio samples are first processed by emphasizing the human-audible
frequency range and grouped into a fixed-length frame for the subsequent KWS process.
The features with the characteristics of the predefined keywords are extracted in the feature
extraction stage. The extracted features are used to determine whether they correspond to
the predefined keyword by computing the probability distribution for the keywords in the
classification stage.

MFCCs are widely used to represent the audio features [2–6,9,10,12,14,20–22]. The
calculation process for the MFCCs can be described as follows. The frequency spectrum for
each of the short ranges in a frame is first calculated based on the Fourier transform. This
spectrum is then processed by using a Mel-scale filter bank, allowing for the extraction of
energy at the specific frequency range, which approximates the human auditory system’s
response. After extracting the energy, the logarithmic functions are applied to these
values to accentuate the magnitude difference. Finally, the discrete cosine transform
is applied to this log-scaled spectrum. The resulting coefficients are then used as features
for the subsequent KWS process. The procedure for calculating the MFCCs described
above is similar to the mechanism that occurs in the human cochlea. Hence, the MFCC-
based features can be efficaciously used to implement the KWS process to achieve high
spotting accuracy.

DNNs are usually employed to perform classification. The DNNs have structures with
several blocks connected in series, where each block is composed of numerous neurons.
The neurons in adjacent blocks are connected via non-linear activation, and the DNNs can
be trained to find non-linear relationships between the features and keywords. Through

Electronics 2023, 12, 3964 3 of 12

this mechanism, the DNNs can be employed to successfully achieve highly accurate classi-
fication. Various kinds of DNNs have been employed for classification in the KWS systems.
The CNN model presented in [22] was used to perform classification with MFCC-based
feature maps. The 1D-CNN model presented in [5] was used to find features to recognize
the specific part of a keyword. The long short-term memory (LSTM) model presented
in [21] was trained to capture long-term information in an audio stream.

Even though the MFCCs and DNNs are effective in achieving high spotting accuracy,
they involve considerable complexity, thus entailing many resources for hardware imple-
mentation. The MFCC-based features are calculated based on complicated operations such
as Fourier and cosine transforms. It has been reported that about 40% of hardware resources
are used to implement the MFCC calculations [4]. The DNN-based classification demands
high memory bandwidth and computational complexity. It has been reported that about
50% of the hardware resources are used to implement the DNN-based classification [4].

3. Proposed KWS System

This section presents the design and implementation of the proposed KWS system.
The proposed system performs the KWS process based only on the 1D-CNN model without
involving complicated processing. The 1D-CNN model is binarized to reduce resource
usage, and a dedicated hardware engine is employed to achieve a high inference speed.

3.1. 1D-CNN-Based KWS Process

In the proposed KWS system, the overall processing is performed in two stages, as
shown in Figure 1. The audio samples are first grouped into frames and then classified into
keywords through 1D-CNN inference. This inference fulfills not only feature extraction but
also classification. The inference process is composed of operations through convolutional
blocks and fully connected blocks. The features are extracted from the convolutional blocks,
whose weights have been trained to map the temporal patterns to the keywords. The 1D-
CNN operation is performed in the time domain, where the convolution can be considered
as the cross-correlation between the audio samples and filters with the trained coefficients.
The keywords are classified in the fully connected blocks with the extracted features.

Microphone

Pre-processing

Framing

Time

Amplitude

Frame1

Frame2

Frame3

16 samples

1s frame

…

Feature extraction & classification

1D-CNN inference

(2 bytes per sample)
Convolutional Fully-connected

…

Spotting

result

Figure 1. Overall process flow in the proposed KWS system.

The proposed system tries to find a keyword within each of the frames. The frames
are formed from the stream data with a constant shift I, as illustrated in Figure 2, where I
denotes the inter-frame shift. The inter-frame shift can be considered by the time budget
given for the system to perform the KWS process for a frame before the next frame. Since I
is set to be less than the length of each frame, the frames partially overlap each other, as
illustrated in the figure. However, these frames may not correspond exactly to the real
audio frame containing the keyword, which causes jitter between them. In the figure, the
amount of the jitter is denoted by J. J is proportional to I and not greater than I/2 since the
frames are formed as described above. Because the jitter contains unrelated information
about a certain keyword, it can have a negative effect on spotting accuracy. It is, therefore,
desirable to minimize the jitter by minimizing the inter-frame shift. However, this leads to
a shorter time budget for the KWS process.

Electronics 2023, 12, 3964 4 of 12

I
1s frame, to be fed into the inference engine

1s frame, corresponds to a real keyword

J Background noise, unrelated with the keyword

Figure 2. Framing in the proposed system, where I and J stand for the inter-frame shift and jitter, respectively.

3.2. Overall System Architecture and Processing Mechanism

The proposed system is designed based on the architecture shown in Figure 3 by
including all the essential components needed to perform the KWS process. The com-
ponents are integrated based on the 32-bit wide Avalon memory-mapped interconnect.
The MCU serves as the host processor. We employed the Nios-II processor, a proprietary
soft processor that is available in the FPGA we used for the implementation. The MCU
contains the two master interfaces, which correspond to the instruction and data memories,
respectively. The MCU controls the overall flow by orchestrating the other components.
The 1D-CNN inference engine is composed of an inference core and scratch-pad buffers.
The inference core inside the inference engine performs the inference process on a block-
by-block basis. The scratch-pad buffers store features (I/O), weights (W), and thresholds
(T), accessed by the core to perform the inference process. The audio CODEC converts
analog to digital, where the audio stream is sampled as 16-bit data at a rate of 16 kHz.
The performance counter precisely measures the processing time, taking the operating
frequency into account, which is used to measure the latency of the KWS process.

The operating mechanism of the proposed KWS system is illustrated in Figure 4. The
audio stream is sampled by the audio CODEC. The continuous data are efficiently grouped
into frames based on the circular buffer, as shown in the figure. A frame is composed of
1024 segments, where each segment is composed of sixteen 16-bit samples and the sampling
rate is 16 kHz; hence, a frame is composed of 16384 samples in 1.024 s. Each frame is copied
into the scratch-pad buffer in the inference engine. The engine loads the parameters from
the MCU’s data memory to the scratch-pad buffer every time a block is computed. The
core in the engine processes each block. The output feature map of each block is stored in
the scratch-pad buffer in the engine and becomes the input feature map for processing the
next block, without any MCU interventions.

3.3. Inference Engine

The 1D-CNN model is binarized based on XNOR-Net [17] and thus is called the 1D-
BCNN model in this work. The 1D-BCNN model has a single dimension for each channel,
as illustrated in Figure 4. As the weight and feature elements of the binarized model
are ±1, the memory footprint for their storage can be significantly reduced compared
to that of the non-binarized models. In addition, the dot-product operations for the
convolution can be performed based on the XNORPopcount (XPOP) operation. The dot-
product operation involves a number of multiply-accumulate operations. Since each of the
operands for the multiplications in the binarized model is represented by a single bit (either
of ±1), the multiplications can be performed on the basis of single-bit logical operations
(XNOR-based) instead of complicated multi-bit arithmetic operations. In addition, because
each multiplication result is also represented by a single bit, the accumulation can be

Electronics 2023, 12, 3964 5 of 12

performed on the basis of counting the population. This XNOR-based multiplication,
followed by the population counting operations, is fused into the so-called XNORPopcount
(XPOP) operation.

Sy
te

m
 In

te
rc

on
ne

ct

FPGA

MCU

Control &
status

register

Inference
Core

1D-CNN engine

S

S

M
M

S

S

S

S Parellel IO

Perf. counter

Audio CODEC
controller

S

S

Inference
Core

Data / instruction
memory

Inference
core

Data / instruction
memory

Feature
memory

(I/O)

Threshold
memory

(T)

Weight
memory

(F)

FPGA

MCU
(Nios II)

Control &
status

register

Inference
Core

1D-CNN inference engine

S

S

S

S

S

S Parellel IO

Perf. counter

Audio CODEC
controller

S

S

Inference
Core

Data/instruction
memory

Inference
core

Data/instruction
memory

Weight
Memory

(W) S

Feature
memory

(I/O)

Threshold
memory

(T)

Sy
st

em
 in

te
rc

on
ne

ct
 (A

va
lo

n
m

em
or

y-
m

ap
pe

d;
 3

2-
bi

t)

MCU
(Nios II)

Audio CODEC
controller

M
M (Data)

(Inst.)
(Data)
(Inst.)

Figure 3. Overall architecture of the proposed system, where M and S stand for the master and slave
interfaces, respectively.

…

1024 segments

Circular buffer

.......
Frame from audio CODEC
Frame to 1D-CNN engine

Tail of incoming frame
Head of incoming frame

Tail of outgoing frame
Head of outgoing frame

16 samples
Pre-processing

Feature extraction

&

classification

MCU

1D-CNN

inference engine

Audio CODEC

Spotting result

Analog to digital

conversion

…

1 frame = 1024 segments

1ms
segment

1ms
segment

1ms
segment

1ms
segment =

… …

16 16-bit samples

(Sample rate = 16kHz)

Figure 4. Processing procedure in the proposed system.

Electronics 2023, 12, 3964 6 of 12

A dedicated inference engine is employed to perform the 1D-BCNN inference pro-
cess. The 1D-BCNN inference engine is optimized to handle 1D audio data, based on the
hardware architecture developed in our previous work [18]. The architecture in [18] was
designed to effectively process 2D images using the operation-skipping technique inherent
to images. The original architecture was modified by simplifying the convolution and
pooling for 1D processing to reduce complexity. The convolution, which extracts 2D spatial
features from images, was dimensionally reduced to extract 1D temporal features. The
pooling, which downsamples 2D spatial features, was modified to downsample 1D tempo-
ral features. These simplifications for 1D processing can significantly reduce resources for
implementation. This is because the counters for the induction variables used in iterating
through dimensions can be eliminated, along with their control logic.

The inference engine processes each of the blocks that make up the model. Figure 5a
shows the overall inference procedure, where the blocks share the same compute structure,
as expressed below:

O = Pool(Sign(I • W, T)) (1)

Here, I and O denote the input and output features, respectively, and W and T denote
the weights and thresholds, respectively. Pool(·) and Sign(·) stand for the pooling and sign-
activation functions, respectively, and • represents the convolution for the convolutional
blocks or multiplication for the fully connected blocks. The thresholds can be precalculated
with the batch normalization parameters and convolutional weights. They can also be
precomputed with the parameters involved in the batch normalization layers and the
average magnitude of the weight parameters, as presented in [18]. The features are extracted
from the first few convolutional blocks, followed by keyword classification performed by
the remaining fully connected blocks. Each pair of the 128-bit wide vectors is loaded from I
and W, the XPOP operation is performed with them, and the result is accumulated. This
processing is devised based on the output-oriented and output stationary dataflow [23], as
shown in Figure 5b. It is processed sequentially and compared to a precalculated threshold,
skipping subsequent tasks if true. In the pooling block, if the output element is 1, the
remaining elements are skipped. This operation-skipping technique proposed in previous
work [18] is employed to achieve high resource efficiency.

The microarchitecture of the inference engine is designed for the processing in Figure 5b.
Figure 6 shows the microarchitecture that has a simple linear pipeline. In the first stage,
addresses are generated with the counter values for accessing the memories. In the second
stage, the data required for the XPOP operation are loaded from the scratch-pad buffers
(corresponding to the I and F memories). In the third stage, the XPOP is computed with
the weight and feature elements. In the fourth stage, the partial sum register is initialized
with the threshold and updated by accumulating the XPOP result. The most significant
bit (MSB) of the cumulative result is selected to implement the sign-activation function,
as shown in Figure 5. The MSB is stored in the shift register. In the fifth stage, the output
elements aggregated in the shift register are finally stored in the scratch-pad buffer (O).
The entire pipeline is controlled by considering the possibilities of skipping operations
according to the techniques described in Figure 5. The operation-skipping techniques can
effectively increase inference speed by skipping 10.72% of the XPOP computations (during
the entire KWS process).

Electronics 2023, 12, 3964 7 of 12

Fully-connected
blocks

: Classification

(a)

(b)

XPOP XPOP XPOP

+

XPOP

+ +

<

Sequentially
Processed <

Threshold

< <

MaxPooling

Input feature (I) Weight (W)

Output feature

128 128 128 128128 128 128 128

If this value is true, skip the
subsequent operations.
(Threshold-based skipping)

c

11

Skip the operation for the
remainint elements.
(Pooling-based skipping)

Can be skipped

Block

Block

Block

Block

Binary
convolution

Max pooling

Sign activation

Batch
normalization

A frame I

W

O

Threshloding
(with T)

Convolutional
blocks

: Feature extraction

Spotting result

Figure 5. (a) BCNN model structure and (b) processing procedure in the inference engine incorpo-
rated in the proposed system.

Weight
memory

(F)

Counters
for

address
generation

Control and Status Register

I addr
Generator

O addr
Generator

F addr
Generator

Feature
memory

(I/O)

Threshold
memory

(T)
Partial sum

Controller

10

16

16

16

Address
generate

Memory
read

Partial sum
calculate 1

Memory
write

Counters
for

address
generation

Control and status register

I addr
generator

O addr
generator

F addr
generator

Controller

||| |
Adder
tree

Pipeline register

System interconnect

MSB
(Sign activation)

128-bit shift register to buffer the
output elements to be written

1 0

First block

Multi-bit feature element
(Usu. in the last block)

Single-bit
feature element

Multi-bit feature element
(Usu. in the first block)

Adder
tree

Adder
tree

Adder
tree

Adder
tree

1 0
1 0

Adder
tree

Bitwise concat.

XPOP

Partial sum
calculate 2

128

128

1

1

1

1

1

1

1

1

1

1

1

1 1 0

1 0

1

16

128

Figure 6. Microarchitecture of the inference engine in the proposed system.

Electronics 2023, 12, 3964 8 of 12

4. Implementation Results and Discussion

The 1D-BCNN model used in the proposed system was evaluated by training for
GSCD v2. GSCD v2 is composed of 65,000 frames, where the sampling rate is 16 kHz
with 16-bit samples. The proposed KWS system considered the keywords “Yes”, “No”,
“Up”, “Down”, “Left”, “Right”, “On”, “Off”, “Stop”, “Go”, and “Unknown” for spotting. A
KWS task with ten + unknown classes was also adopted in previous studies, such as [20],
ensuring a fair comparison between other results and those of the proposed system.

The 1D-BCNN model used in the proposed system was designed based on the struc-
ture shown in Table 1. By binarizing the parameters, it only required 506 Kbits of memory
to store the parameters. This was small enough to fit into the on-chip memory The model
was trained using the ADAM optimizer, with the exponential moving average coefficient of
the momentum estimated in the beta tuple set to 0.9 and the exponential moving average
coefficient of the squared slope set to 0.999. The model was trained for 600 epochs with a
batch size of 256, and the training curve is shown in Figure 7. The initial learning rate was
set to 0.01, and if the validation accuracy did not improve for 50 epochs, the learning rate
was reduced by a factor of 1/10 to optimize the model’s performance.

Table 1. BCNN model structure designed for GSCD v2.

Block a Input Channel Input Size Kernel Pooling Stride

CV1 1024 16 3 2

CV2 512 128 3 2

CV3 256 128 3 2

CV4 128 128 3 2

CV5 64 128 3 2

CV6 32 128 3 2

CV7 16 128 3 2

CV8 8 128 3 2

FC9 512 1 1 1

FC10 128 1 1 1

FC11 128 1 1 1
a CVn and FCn stand for the n-th convolutional and fully connected blocks, respectively.

To achieve high spotting accuracy even in a noisy environment, noise was added to
the training dataset, resulting in an SNR between −5 dB and 10 dB. The test accuracy was
measured by adding noise of varying SNRs to the test data, and the results are summarized
in Table 2. The spotting accuracy was 92.94% when the SNR was 20 dB and 90.33% when the
SNR was 0 dB. The confusion matrix in Figure 8 shows that the proposed system achieved
high spotting accuracy even in noisy environments. Additionally, the test accuracy was
measured by considering the jitter, and the results are summarized in Table 2. As shown in
the table, the spotting accuracy decreased with a jitter of over 20 ms, based on which the
inter-frame shift was determined to be 40 ms.

The proposed system was synthesized using Quartus Prime v18.1 targeting an Intel
Cyclone V FPGA whose part name was 5CSEMA5F31C6N. The Terasic DE1-SoC board was
employed for the implementation. We employed this board because the board is equipped
with the components necessary for the realization of the KWS process (e.g., audio CODEC).
The resource efficiency and real-time operation achieved by the system were not solely due
to the merits of the board or device. The overall system was implemented with 6895 ALUTs,
1957 Kbits of on-chip memory, and 0 digital signal processor (DSP). Among these, the MCU
and inference engine used 1569 Kbits and 388 Kbits of the on-chip memory, respectively,
where the MCU’s data memory was used for the storage of the parameters for inference.
The latency required to perform the KWS process for a frame was 22 ms at an operating

Electronics 2023, 12, 3964 9 of 12

frequency of 50 MHz, which was within the 40 ms inter-frame shift. Figure 9 illustrates the
environment used to verify the functionality of the proposed system.

0k 20k 40k 60k 80k 100k

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Training step

V
al

id
at

io
n

 a
cc

u
ra

cy

Figure 7. Training curve of the BCNN model for GSCD v2.

Table 2. Spotting accuracy for jitter and SNR.

Max Jitter/SNR −5 dB 0 dB 10 dB 20 dB

0 ms 86.12% 90.33% 91.80% 92.94%

20 ms 80.70% 84.73% 86.51% 87.56%

50 ms 67.16% 72.85% 74.06% 74.21%

100 ms 64.81% 65.66% 66.33% 66.43%

500 ms 62.41% 62.86% 63.38% 63.46%

(a) (b)

Predicted label

T
ru

e
la

b
el

Predicted label

yes

up

stop

right

on

off

no

left

down

go

unknown

T
ru

e
la

b
el

yes

up

stop

right

on

off

no

left

down

go

unknown

Figure 8. KWS results for the test set in GSCD v2, where the results were obtained under SNRs of
(a) 20 dB and (b) −5 dB by the model trained with random noise.

Electronics 2023, 12, 3964 10 of 12

Audio CODEC

Spotting result Proposed FPGA-
based KWS system

Cyclone V SoC
(5CSEMA5F31C6N)

Terasic
DE1-SoC

Figure 9. Demonstration environment setup. The demonstration video can be seen at https://abit.
ly/kws (accessed on 18 September 2023).

The implementation results of the proposed system are compared with the previous
results in Table 3. The KWS system in [5] demonstrated high spotting accuracy in an
environment where the SNR was 10 dB, based on 1D-CNN-based classification with MFCC-
based features. However, compared to the proposed system, it exhibited high resource
usage, especially in the use of DSP. Assuming that one DSP is equivalent to 200 LUTs [24],
the proposed system consumes about 60% fewer LUTs than the system in [5]. The KWS
system proposed in [9] also showed high resource usage due to the MFCC calculation.
It is noteworthy that such low resource usage in the proposed system may lead to low-
leakage power consumption. The systems proposed in [6,10,11] were implemented in ASIC
and consumed very low power, but their spotting accuracies were inferior to that of the
proposed system but with longer latencies.

Table 3. Implementation results of the KWS systems.

KWS System This Work [5] [9] [11] [10] [6]

Implementation
technology

Cyclone V Zynq 7000 Zynq UltraScale+ MP 22 nm CMOS 28 nm CMOS 40 nm CMOS
(28 nm FPGA) (28 nm FPGA) (40 nm FPGA) (ASIC) (ASIC) (ASIC)

Processing 1D BCNN
MFCC

1D CNN
MFCC

DS CNN 1D CRNN
MFCC

DS CNN
MFCC
LSTM

Latency 22 ms 81 ms 22 ms 30 ms 64 ms 32 ms

GSCD v2 acc.
@ SNR

91.8% @ 10 dB 92.4% @ 10 dB 90.5% @ n.a. 91.7% @ 10 dB 91.7% @ n.a. 90.6% @ n.a.90.3% @ 0 dB 84.5% @ 0 dB 88.2% @ 0 dB

of keywords 11 12 10 5 4 10

Operating freq. 50 MHz 50 MHz 170 MHz 250 kHz 40 kHz 400 kHz

Power cons. 159.9 mW a 209.0 mW n.a. 1.4 µW 0.51 µW 2.5 µW

Resource usage b 6895 (2384) LUTs, n.a. (5575) LUTs, 27,315 (11,270) LUTs,
0.788 mm2 0.23 mm2 0.16 mm2

0 (0) DSPs n.a. (64) DSPs c 31 (26) DSPs

a This is the power consumption of the entire system. b The number inside the parentheses corresponds to the
usage of the inference engine and the number outside the parentheses corresponds to that of the entire system. c

One DSP is known to be comparable to 200 LUTs [23].

Compared to previous works, the merits of the proposed system are reflected in the
resource efficiency, as shown in Table 3. This high resource efficiency can be attributed to a
few reasons. First, complicated processing for feature extraction, such as the MFCC-based
features, was effectively eliminated as the convolutional blocks were trained to replace
them. Second, the 1D-CNN model was binarized into a 1D-BCNN model to reduce the
memory footprint required to store features and parameters and to efficiently implement the
multiply-accumulate operations through XPOP operations. Third, some of the redundant

https://abit.ly/kws
https://abit.ly/kws

Electronics 2023, 12, 3964 11 of 12

operations in the 1D-BCNN inference process were skipped by an efficient inference engine,
which was modified from our previous work. Each of these techniques, contributing
to the high resource efficiency, originated from previous studies and were employed
independently; however, we applied them in practice for designing and implementing the
KWS system, successfully demonstrating their validity.

5. Conclusions

This paper proposes a resource-efficient KWS system. The proposed system performs
the entire KWS process relying on a single 1D-BCNN inference process. A resource-efficient
engine executes the inference process with the operation-skipping techniques. As a result,
the proposed system demonstrates 60% less resource usage than the previous state-of-the-
art work, while its processing latency is as short as 22 ms per frame. The proposed system
achieves a spotting accuracy of 91.80% for GSCD v2 in an environment with an SNR of
10 dB.

In future research, the proposed system can be extended to handle larger-scale tasks
with more classes. To achieve high spotting accuracy for such tasks, it would be necessary
to employ a more advanced DNN model with a complex data flow and/or multi-bit
quantization instead of the linear data flow and binarization utilized in this work. This
may require further improvement of the inference engine to support these enhancements.
In addition, power consumption could be reduced by detecting non-active situations and
disabling all or part of the system when no spoken keywords are detected.

Author Contributions: Conceptualization, J.Y., N.K., D.L., and T.-H.K.; methodology, J.Y., N.K., D.L.,
and T.-H.K.; software, J.Y., N.K., D.L., S.-J.L., G.-H.K., and T.-H.K.; validation, J.Y., N.K., D.L., and
T.-H.K.; formal analysis, J.Y. and T.-H.K.; investigation, J.Y., N.K., D.L., and T.-H.K.; writing—original
draft preparation, J.Y. and T.-H.K.; writing—review and editing, J.Y. and T.-H.K.; visualization, J.Y.
and T.-H.K.; supervision, T.-H.K.; project administration, T.-H.K.; funding acquisition, T.-H.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by ABOV Semiconductor (202200840001, Study of a micro NPU
for a tiny MCU (Institute of Information and Communications Technology Planning and Evalu-
ation (IITP)) grant) funded by the Korean government (MSIT) (2017-0-00528, The Basic Research
Lab for Intelligent Semiconductor Working for the Multi-Band Smart Radar), and the Basic Science
Research Program through the National Research Foundation of Korea (NRF) funded by the Ko-
rean government (MSIT) (2021R1F1A1059536). The EDA tools were supported by the IC Design
Education Center.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. López-Espejo, I.; Tan, Z.H.; Hansen, J.H.; Jensen, J. Deep spoken keyword spotting: An overview. IEEE Access 2021, 10, 4169–4199.

[CrossRef]
2. Han, W.; Chan, C.F.; Choy, C.S.; Pun, K.P. An efficient MFCC extraction method in speech recognition. In Proceedings of the IEEE

International Symposium on Circuits and Systems, Kos, Greece, 21–24 May 2006; IEEE: Toulouse, France, 2006; p. 4.
3. Giraldo, J.S.P.; Verhelst, M. Laika: A 5 µW programmable LSTM accelerator for always-on keyword spotting in 65 nm CMOS. In

Proceedings of the European Solid State Circuits Conference 2018—IEEE 44th, Dresden, Germany, 3–6 September 2018; IEEE:
Toulouse, France, 2018; pp. 166–169.

4. Shan, W.; Qian, J.; Zhu, L.; Yang, J.; Huang, C.; Cai, H. AAD-KWS: A sub-µW keyword spotting chip With an acoustic activity
detector embedded in MFCC and a tunable detection window in 28-nm CMOS. IEEE J. Solid-State Circuits 2022, 58, 867–876.
[CrossRef]

5. He, K.; Chen, D.; Su, T. A configurable accelerator for keyword spotting based on small-footprint temporal efficient neural
network. Electronics 2022, 11, 2571. [CrossRef]

6. Chong, Y.S.; Goh, W.L.; Nambiar, V.P.; Do, A.T. A 2.5 µW KWS engine with pruned LSTM and embedded MFCC for IoT
applications. IEEE Trans. Circuits Syst. II Express Briefs 2021, 69, 1662–1666. [CrossRef]

http://doi.org/10.1109/ACCESS.2021.3139508
http://dx.doi.org/10.1109/JSSC.2022.3197838
http://dx.doi.org/10.3390/electronics11162571
http://dx.doi.org/10.1109/TCSII.2021.3113259

Electronics 2023, 12, 3964 12 of 12

7. Krichen, M. Convolutional neural networks: A survey. Computers 2023, 12, 151. [CrossRef]
8. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE

Trans. Neural Netw. Learn. Syst. 2022, 33, 6999–7019. [CrossRef]
9. Bae, S.; Kim, H.; Lee, S.; Jung, Y. FPGA implementation of keyword spotting system using depthwise separable binarized and

ternarized neural networks. Sensors 2023, 23, 5701. [CrossRef] [PubMed]
10. Shan, W.; Yang, M.; Wang, T.; Lu, Y.; Cai, H.; Zhu, L.; Xu, J.; Wu, C.; Shi, L.; Yang, J. A 510-nW wake-up keyword-spotting

chip using serial-FFT-based MFCC and binarized depthwise separable CNN in 28-nm CMOS. IEEE J. Solid-State Circuits 2020,
56, 151–164. [CrossRef]

11. Liu, B.; Cai, H.; Zhang, Z.; Ding, X.; Wang, Z.; Gong, Y.; Liu, W.; Yang, J.; Wang, Z.; Yang, J. More is less: Domain-specific speech
recognition microprocessor using one-dimensional convolutional recurrent neural network. IEEE Trans. Circuits Syst. Regul. Pap.
2021, 69, 1571–1582. [CrossRef]

12. Yan, Y.; Stewart, T.C.; Choo, X.; Vogginger, B.; Partzsch, J.; Höppner, S.; Kelber, F.; Eliasmith, C.; Furber, S.; Mayr, C. Comparing
Loihi with a SpiNNaker 2 prototype on low-latency keyword spotting and adaptive robotic control. Neuromorphic Comput. Eng.
2021, 1, 014002. [CrossRef]

13. Ceolini, E.; Anumula, J.; Braun, S.; Liu, S.C. Event-driven pipeline for low-latency low-compute keyword spotting and speaker
verification system. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton,
UK, 12–17 May 2019; IEEE: Toulouse, France, 2019; pp. 7953–7957.

14. Prabhavalkar, R.; Alvarez, R.; Parada, C.; Nakkiran, P.; Sainath, T.N. Automatic gain control and multi-style training for robust
small-footprint keyword spotting with deep neural networks. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, South Brisbane, QLD, Australia, 19–24 April 2015; IEEE: Toulouse, France, 2015; pp. 4704–4708.

15. Huang, Y.A.; Shabestary, T.Z.; Gruenstein, A. Hotword cleaner: Dual-microphone adaptive noise cancellation with deferred filter
coefficients for robust keyword spotting. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, Brighton, UK, 12–17 May 2019; IEEE: Toulouse, France, 2019; pp. 6346–6350.

16. Yoon, J.; Lee, D.; Kim, N.; Lee, S.J.; Kwak, G.H.; Kim, T.H. A real-time keyword spotting system based on an end-to-end binary
convolutional neural network in FPGA. In Proceedings of the IEEE Symposium on Low-Power and High-Speed Chips, Tokyo,
Japan, 19–21 April 2023; IEEE: Toulouse, France, 2023; pp. 1–3.

17. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. XNOR-Net: Imagenet classification using binary convolutional neural
networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016;
Springer: Berlin/Heidelberg, Germany, 2016; pp. 525–542.

18. Lee, S.J.; Kwak, G.H.; Kim, T.H. TORRES: A resource-efficient inference processor for binary convolutional neural networks
based on locality-aware operation skipping. Electronics 2022, 11, 3534. [CrossRef]

19. Warden, P. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv 2018, arXiv:1804.03209.
20. López-Espejo, I.; Tan, Z.H.; Jensen, J. Exploring filterbank learning for keyword spotting. In Proceedings of the European Signal

Processing Conference, Amsterdam, The Netherlands, 18–21 January 2021; IEEE: Toulouse, France, 2021; pp. 331–335.
21. Wang, Y.; Chong, Y.S.; Goh, W.L.; Do, A.T. Noise-aware and lightweight LSTM for keyword spotting applications. In Proceedings

of the International SoC Design Conference, Gangneung-si, Republic of Korea, 19–22 October 2022; IEEE: Toulouse, France, 2022;
pp. 135–136.

22. Mohanty, P.; Nayak, A.K. CNN based keyword spotting: An application for context based voiced Odia words. Int. J. Inf. Technol.
2022, 14, 3647–3658. [CrossRef]

23. Sim, J.; Lee, S.; Kim, L.S. An energy-efficient deep convolutional neural network inference processor with enhanced output
stationary dataflow in 65-nm CMOS. IEEE Trans. Very Large Scale Integr. Syst. 2019, 28, 87–100. [CrossRef]

24. Chang, S.E.; Li, Y.; Sun, M.; Shi, R.; So, H.K.H.; Qian, X.; Wang, Y.; Lin, X. Mix and match: A novel FPGA-centric deep neural
network quantization framework. In Proceedings of the IEEE International Symposium on High-Performance Computer
Architecture, Seoul, Republic of Korea, 27 February–3 March 2021; IEEE: Toulouse, France, 2021; pp. 208–220.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/computers12080151
http://dx.doi.org/10.1109/TNNLS.2021.3084827
http://dx.doi.org/10.3390/s23125701
http://www.ncbi.nlm.nih.gov/pubmed/37420866
http://dx.doi.org/10.1109/JSSC.2020.3029097
http://dx.doi.org/10.1109/TCSI.2021.3134271
http://dx.doi.org/10.1088/2634-4386/abf150
http://dx.doi.org/10.3390/electronics11213534
http://dx.doi.org/10.1007/s41870-022-00992-z
http://dx.doi.org/10.1109/TVLSI.2019.2935251

	Introduction
	Conventional KWS System
	Proposed KWS System
	1D-CNN-Based KWS Process
	Overall System Architecture and Processing Mechanism
	Inference Engine

	Implementation Results and Discussion
	Conclusions
	References

