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Abstract: Spatial co-location pattern is a subset of spatial features which shows association rela-
tionships based on the spatial neighborhoods. Because the previous prevalence measurements of
a co-location pattern have not considered the visited information of spatial instances, co-location
patterns do not reflect the social connections (such as their spatial instances are constantly visited
by common or similar moving objects) between spatial features. In this paper, a special type of
co-location pattern, “Highly visited co-location patterns”, is proposed, which considers the spatial
proximity and visitor similarity of spatial features at the same time. A new measurement, “Minimum
visitor similarity”, has been proposed to reflect the visitor similarity of co-location patterns. By
discussing the properties of the minimum visitor similarity, we propose an efficient algorithm to
mine the highly visited co-locations and give two pruning strategies to improve the efficiency of the
algorithm. Finally, extensive experiments on YELP and Foursquare datasets prove the practicability
and efficiency of the proposed algorithm, and we define a “Social Entropy” to prove that spatial
features in the co-locations we mined have stronger social connections.

Keywords: spatial data mining; co-location patterns; visitor similarity; visiting information

1. Introduction

As one of spatial knowledge discovery tasks, spatial co-location pattern mining aims
to discover correlations between spatial features. A co-location pattern represents a subset
of spatial features whose instances are frequently located together in spatial neighborhoods.
The feature set {Hospital, Drugstore} may be a real-world example of co-locations since
they are frequently located near each other. Spatial co-location pattern mining is defined as:
Given a spatial feature set F = {f 1, f 2, . . ., fn} and a spatial instances set O = {o1, o2, . . ., om}.
Each spatial instance oi belongs to a spatial feature and consists of the following fields:
instance id, location, and spatial feature, where spatial feature∈F. The problem of discovering
spatial co-location patterns is to find a set of spatial features c = {f 1, f 2, . . ., fk} whose
instances tend to locate together in close spatial regions, and {f 1, f 2, . . ., fk} ⊆ F. Co-location
pattern mining usually uses a support measure (“Participation Index”) to evaluate how
frequently the features in a co-location pattern are located closely. Given a co-location
pattern c = {f 1, f 2, . . ., fk}, a participation index PI(c) is defined as minfi∈c{PR(c, fi)}, where
PR(c, fi) is the participation ratio of spatial feature fi in the pattern c. The Participation Ratio
(PR), PR(c, fi), is calculated by PR(c, fi) = |N(c, fi)|/|N(fi)|, |N(c, fi)| denotes the number
of spatial instances of feature fi that appear in the clique instances of pattern cp (a clique
instance of c is a group of neighbor instances whose spatial features are included in c), and
|N(fi)| denotes the number of instances of spatial feature fi in the spatial data set. Given a
user-specified threshold of participation index min_prev, if PI(c) ≥ min_prev, co-location c is
a prevalent pattern in the spatial dataset. As seen from [1], the PI-based mining algorithm
satisfies “Downward closure”. For example, a spatial dataset S is shown in Figure 1a, the
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clique instances of co-location {A, B} is {{A.1,B.1},{A.2,B.1},{A.3,B.2},{A.4,B.3}}, PR({A, B}, A)
= 4/4 = 1, PR({A, B}, B) = 3/3 = 1,PI({A, B}) = 1. If we set min_prev = 0.6, {A, B} must be a
prevalent co-location pattern.
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Figure 1. A spatial dataset with visited information S. (* represents that there are no moving objects
visited this instance oj at time point tk).

With the increasing popularity of smartphone devices, mobile users can share their
check-in locations with friends (such as restaurants and theaters), which allows spatial
instances to contain information that users have visited. For example, Figure 1b is the
check-in records of the co-location pattern {A, B, C}, the clique instances {A.4, B.3, C.4}
satisfy spatial neighbor relationship. Among them, A.4 is visited by the moving objects v1
and v2 at time point t1, and at different time points, the moving objects are also different.
Compared with traditional spatial datasets, the check-in records of these users can enrich
the association relationships between spatial instances and bridge the gap between real
spatial geographic networks and virtual social networks. The geographical proximity rela-
tionship between spatial instances can be seen as static, while check-in records are dynamic
visited information. Additionally, the similarity of moving objects in different moments
reflects the comprehensive attractiveness of several instances to users. This extraordinary
attractiveness to users indicates that the distance relationship and functional combination
between instances have reached a reasonable state, which can better serve users.

Unfortunately, traditional co-location does not consider the visited information of the
spatial instance. By analyzing the results of existing mining methods, we can find that
some mined co-location patterns are difficult to explain why their instances are always
adjacent. For example, in the spatial co-location pattern <barber shops, restaurants>,
people tend to build barber shops and restaurants in adjacent locations. If only considering
the spatial distance, it seems difficult to explain why barbershops and restaurants are
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often adjacent geographically. In fact, after analyzing the users who visited them, we
found that barber shops and restaurants always have similar visitors. Consumers always
like to eat at nearby restaurants after haircuts, and these consumers always have similar
consumption needs. To provide convenient services to consumers, a spatial co-location
pattern <barber shops, restaurants> has gradually emerged in urban development. It can
be seen that when mining spatial co-location patterns, considering the similarity of visited
information of spatial instances, the spatial co-location patterns mined will have more
semantic information, making it easier to understand.

Based on the above analysis, this paper considers the spatial co-location pattern mining
problem based on visited information. We called this special co-location pattern the Spatial
Highly Visited Co-location Pattern (SHVCP). SHVCP considers both the spatial proximity
and social similarity between spatial instances, with the aim of mining more reasonable
and easily understandable spatial co-locations.

However, a spatial highly visited co-location pattern does not necessarily mean it is
also frequent. The traditional frequent spatial co-location pattern mining method only
considers spatial relationships. It does not reflect the visited similarity between spatial
instances, resulting in the omission of some co-location patterns with high visited sim-
ilarity but not frequent during the mining process. For example, Figure 1a shows the
table instances of co-location {A, B} and {A, B, C}. Assuming the participation threshold
min_prev = 0.5, pattern {A, B} is a frequently co-located pattern with PI({A, B}) = 1 > 0.5,
while {A, B, C} is not frequently co-location pattern with PI({A, B, C}) = 0.25 < 0.5. According
to Figure 1a, it can be obtained that the participating instances of {A, B} are {A.1, A.2, A.3,
A.4, B.1, B.2, B.3}, and the participating instances of {A, B, C} are {A.4, B.3, C.3}. Next, we
analyzed the visited information of each participating instance at three consecutive times
t1, t2, and t3. We found that {A.4, B.3, C.3} were all visited by the moving object {v1, v2,
v3, v4, v5, v6, v7} at different times. Among the seven instances {A.1, A.2, A.3, A.4, B.1,
B.2, B.3}, except for neighboring pairs {A.4, B.3} that have been visited by similar or same
instances, there is not much similarity in the moving objects between other instances that
satisfy spatial proximity. For example, in neighboring pairs {A.1, B.1}, A.1 have been visited
by moving v8 and v12, while the moving object in B.1 is v10. Co-location {A, B, C} are not
frequent patterns, and their frequency is much lower than patterns {A, B}, but the similarity
of moving objects is much greater than patterns {A, B}. According to the similarity of the
visiting users, it can be seen that the attractiveness of {A, B, C} to users is higher than that
of {A, B}. Unfortunately, traditional mining methods based on participation index only
consider the spatial neighbor relationships, so they cannot discover patterns like {A, B, C}.

Due to the consideration of visited information, a highly visited co-location pattern
has its particularity in both pattern measurement and mining algorithms. It is a very
thought-provoking issue to define a measurement method that can reflect both the spatial
proximity and visited similarity between spatial features. To better evaluate the visited
similarity of co-location patterns and make up for the omission of traditional mining
methods, this paper proposes a new metric to measure spatial co-location patterns, called
“Minimum Visited Co-location Similarity”, by combining the visited similarity between
spatial instances after building the spatial proximity relationship in the spatial hierarchy.
Summing up, the contributions of this paper are as follows:

(a) Combining the theory of visited similarity with spatial co-location pattern mining,
the problem of mining high visited spatial co-location patterns is proposed and
formulated.

(b) An effective visitor similarity measure of the spatial neighborhood is proposed, and
the visitor similarity between spatial features in a co-location is also given.

(c) A new mining framework based on visitor similarity is designed for mining the highly
visited co-location patterns, and two pruning strategies are presented to improve the
efficiency of the mining algorithm.

(d) In the experimental evaluation, the differences between minimum visitor similarity
and participation index are analyzed clearly. At the same time, the social entropy
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is defined to compare the social connections of co-location, and extensive experi-
ments on three real-world data sets prove the practicability and efficiency of the
proposed algorithm.

The remainder of this paper is organized as follows. Section 2 presents related works
of spatial co-location mining and social network analysis and mining. Section 3 discusses
the measure index of highly visited co-locations. Section 4 is a basic mining algorithm
and two efficient pruning strategies. Section 5 evaluates the performance of our algorithm
using three real data sets. Section 6 presents a conclusion and suggests future work.

2. Related Work

The spatial co-location pattern mining methods. Since Han et al. laid the foundation
of frequent pattern mining from transaction databases [2], data mining has derived different
kinds of research directions, such as object discovery [3], sequential data mining [4], link
prediction [5], high utility items mining [6] and spatial data mining [7]. Spatial co-location
pattern mining is an important research direction in spatial data mining. The problem of
frequent proximity of spatial instances in geographic areas was first defined in [8]. In ref. [1],
the researchers mainly focus on the mining problem of identifying groups of particular
features that frequently appear close to each other in a geospatial map, and they extend the
co-location pattern model by a constraint graph, which the technique is an extension of a
spatial join algorithm that operates on multiple inputs and counts long pattern instances.
And ref. [1] proposes the minimum participation ratio, i.e., participation index (PI), as an
interesting measure of spatial co-locations. Because PI satisfies the “Downward Closure
Property”, it can effectively mine co-location patterns by Apriori-like methods. Many
PI-based co-location pattern mining algorithms have been proposed, such as the Join-
based algorithm based on join operations [1] and the Join-less algorithm beads on star
neighbors [9]. To better evaluate the proximity and direction between two points [10],
measure the neighborhood relationship between spatial instances based on density weights
to mine different co-location patterns. In addition, considering the sensitivity of mining
results to PI [11] addresses the problem of mining confident co-location rules without
a support threshold. The condensed-tree-based strategy mines the maximal co-location
patterns, and a fast spatial-saving algorithm is proposed in ref. [12] to improve the efficiency
of maximal co-location pattern mining. Considering the importance of uncertain data [13], it
mainly studies the co-location mining problem in uncertain data. It proposes the definition
of probabilistic prevalent co-locations to find all the co-locations that are likely to be
prevalent in a randomly generated possible world. The non-redundant co-location patterns
are defined in ref. [14] based on the concept of semantic distance between patterns. Ref. [15]
uses the MapReduce framework to mine co-location patterns in parallel to cope with the
huge amount of spatial data. Ref. [16] proposes parallel grid-based co-location mining
algorithms on GPUs. To effectively reduce the computational complexity and improve
the efficiency of spatial pattern mining, the efficiency of the original join-less algorithm
is improved by querying cliques [17]. And ref. [18] introduces a range query to improve
the mining efficiency. Ref. [19] shows that existing support measures suffer from various
weaknesses, and thus, the authors propose a new measure called Fraction-Score, which
quantifies the prevalence of candidates properly.

In addition to the above PI-based mining algorithms, researchers also mine co-location
patterns from the perspective of clustering [20] and statistics [21]. The relationship between
pattern mining and clustering is closely related, so ref. [20] proposes a novel framework for
co-location mining using clustering techniques and shows that clustering techniques can be
applied to reveal the rich structure formed by co-located spatial features. At the same time,
ref. [21] designs an algorithm for finding co-location and segregation patterns based on a
statistical test. And ref. [22] focus on the extended objects and design an efficient algorithm.

However, it is noteworthy that the above research is all based on static spatial data
during the mining process without considering the accessed information of spatial instances.
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Therefore, as an extension of co-location pattern mining, the mining of SHVCP in this paper
is worth noting and researching.

The analysis and mining methods are based on social connections. The study of
social connections originated in the social science, anthropology, and business communities.
In recent years, the development of advanced techniques for Social Network Analysis
and Mining (SNAM) has been highly influenced by the internet, the social web, and
other large-scale socio-technical infrastructures, which are widely analyzed using graph
theory, statistics, and data mining and machine learning techniques. People perceive the
Web increasingly as a social medium that fosters interaction among people, sharing of
experiences and knowledge, group activities, and community formation and evolution.
These trends have led to the rising prominence of SNAM in academia, politics, homeland
security, and business. In ref. [23], the authors conducted a sociometric study which
examined the friendship network among 270 city residents, and an inverse relationship
was found between similarity of friends and proximity of residence. The discovery and
analysis of community structure in networks is a topic of considerable recent interest within
the physics community and ref. [24] proposes a hierarchical agglomeration algorithm
for detecting community structure. With the continuous development of location-based
social networks, geography and social relationships are inextricably intertwined. Many
studies combine geographic location information with user’s social information to better
analyze my social networks. Ref. [25] measures the relationship between geography
and friendship and introduces an algorithm that predicts the location of an individual
from a sparse set of located users with performance that exceeds IP-based geolocation.
Based on the historical check-in data, the temporal and spatial impacts of crowd check-in
behavior are analyzed in [26], and a POI recommendation framework is proposed, which
integrates spatial and temporal impacts. Refs. [27,28] focuses on spatial clustering in
location-based social networks, considering the spatio-temporal information and the social
relationships between users who visit clustered places. Ref. [29] proposes a Socio-Spatial
Group Query (SSGQ) to select a group of nearby attendees with tight social relations.
In ref. [30], it combines mobility and network measures and finds that the similarity
between two individuals’ movements strongly correlates with their proximity in the social
network. Given the complexity of social networks, three kinds of social relationships (face-
to-face social relationships, online social relationships, and self-report social relationships)
are discussed in [31]. In recent years, to protect users’ privacy in the discovery process,
ref. [32] detects the social ties by a novel semantic-tree-based algorithm when only obscured
trajectories are provided.

Since current applications are driven by knowledge [33], knowledge-driven informa-
tion on geographic space and social relationships is very important. Combining spatial
information and social connections can lead to more interesting knowledge in the real world.
Although some studies [27–29] have considered spatio-temporal information in data analy-
sis, there is no research that considers social connections in mining co-location patterns. In
this paper, we will take visitor similarity into account when mining the co-location patterns
from spatial datasets with visited information.

3. Definitions

In the spatial dataset with check-in records, spatial relationships between them will not
change for a long time, but the moving objects to visit these spatial instances are constantly
changing. One objective of this paper is to find “High visited Co-location patterns” from
spatial datasets with visited information, which are spatially adjacent and highly visited by
similar visitors. For example, the co-location pattern {Market, City Park} is always visited
by the older men, and the co-location {Beauty snap, Active life, Chinese Restaurant} is
always visited by the young girls. Highly visited co-locations are no longer simple spatial
proximity, but the similarity of visitors makes these spatial adjacent points get more social
information and social connections. The specific definition description is as follows.
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Given a spatial dataset containing visited information S, V = {v1, v2, . . ., vn} is the
set of all moving objects in the dataset, O = {o1, o2, . . ., om} is the spatial instance set,
F = {f 1, f 2, . . ., fg} is the spatial feature set, T = {t1, t2, . . ., th} is the time domain, where each
tk is a time point. The check-in record CK = {〈oi, vj, tk〉|oi∈O, vj∈V, tk∈T}, which contains
all check-in records of the moving object in V. For moving object vi, its check-in location can
be considered as a spatial instance set VH(vi) = {oj|oj∈O Λ 〈oi, vj, tk〉∈CK}, which records
all spatial instances visited by vi at different times. For example, in Figure 1, the check-in
location set VH(v1) of moving object v1 = {A.4, B.3, C.3}. In addition, based on the check-in
records of all moving objects, the visitor set of spatial instance oi at time point tk can be
represented as Voi(tk) = {vj|vj∈V Λ 〈oi, vj, tk〉∈CK}. In Figure 1, v1 and v2 visit the spatial
instance A.4 at time t1, so the set of visitors at time t1 is VA.4(t1) = {v1, v2}.

Definition 1 (Snapshot visitor similarity). Given two spatial instances oi and oj, the visitor set
of oi at time point tk is Voi(tk), and the visitor set of oj at time point ts is Voj(ts). The similarity
between Voi(tk) and Voj(ts) is calculated as follows:

sim
(

Voi (tk), Voj(ts)
)
=

∑va∈Voi (tk),vb∈Voj (ts) wva ,vb

x·y (1)

where x is the number of moving objects in Voi(tk) and y is the number of moving objects in Voj(ts).
wva,vb is the cosine similarity between the moving object va and vb. In this paper, we choose the
cosine similarity proposed in [5] to evaluate the similarity between two moving objects. The specific
calculation method for wva,vb is as follows:

wva ,vb =
∑oi∈O cva ,oi cvb ,oi√

∑oi∈O cva ,oi
2
√

∑oi∈O cvb ,oi
2

(2)

where each moving object is represented by a binary visiting vector over all O, and Cvi,oj takes either 1

or 0 value, we set cvi,oj = 1, if oj ∈ VH(vi), and cvi,oj = 0 otherwise. Obviously, sim
(

Voi (tk), Voj(ts)
)

= sim
(

Voj(ts), Voi (tk)
)

.

To calculate the visitor similarity between spatial instances by the visiting information,
we need to consider visitor similarity at more time points. In this paper, we give a “Visiting
crowd” to collect a sequence of snapshot visitors at consecutive timestamps. Then, we
calculate the average similarity of snapshot visitors in visiting crowds to reflect the visitor
similarity between two spatial instances.

Definition 2 (Visiting crowd). For a spatial instance oi, the visiting crowd of oi is a sequence of
snapshot visitors at consecutive timestamps, and the crowd of oi can be denoted as VCoi = {Voi(t1),
Voi(t2), . . ., Voi(tn)}.

In this paper, the check-in records are dynamic. To better evaluate the visitor similarity
between two spatial instances, we consider the time attribute in computing the similarities
between the different visiting crowds. We can calculate the visitor similarity weight between
spatial instances as Definition 3.

Definition 3 (Visitor similarity weight between spatial instances). Given a neighborhood
pair <oh, ok>, the visiting crowds of oh and ok are VCoi = { Voi(t1), Voi(t2), . . ., Voi(tn)}, VCoj =
{Voj(t1), Voj(t2), . . ., Voj(tn)}, the visitor similarity between oi and oj can be calculated as:

vs
(
oi, oj

)
=

∑Voi (ta)∈VCoi
∑Voj (tb)∈VCoj ,|ta−tb |≤τ sim

(
Voi (ta), Voj(tb)

)
∑Voi (ta)∈VCoi

∑Voj (tb)∈VCoj
µ(|ta − tb|)

(3)
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where µ(|ta-tb|) = 1 if |ta-tb| ≤ τ, and µ(|ta-tb|) = 0 otherwise (τ is the time threshold), vs(oi,
oj) is a number greater than 0 but less than 1, i.e., 0 ≤ vs(oi, oj) ≤ 1. For example, the Visiting
Crown of A.4 and B.3 in Figure 1 is shown in Figure 2. Making τ = 1, the visitor similarity between
A.4 and B.3 can be calculated as vs(A.4, B.3) = (sim(VA.4(t1), VB.3(t1)) + sim(VA.4(t2), VB.3(t2)) +
. . . + sim(VA.4(t3), VB.3(t3)))/7.
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For a spatial co-location c = {f 1, f 2, . . ., fk}, its table-instance insTc can be generated by
the spatial neighborhood relationships, and the visitor similarities of these spatial neigh-
borhoods are also calculated by Definition 3. Thus, we can analyze the social connection
between features in c based on visitor similarity weights of neighborhoods and insTc.

Definition 4 (Visitor similarity weight between spatial features). Spatial features fi and fj
are two features in the co-location pattern c = {f1, f2, . . ., fk}, and insTc is the table instance of c, the
visitor similarity weight between fi and fj can be calculated as

VSc
(

fi, f j
)
=

∑〈ox ,oy〉∈∏〈 fi , f j〉
insTc vs

(
ox, oy

)
|insTc|

(
fi, f j ∈ c ∧ f j > fi

)
(4)

where ∏ is a project operation, ∏<fi,fj> insTc contains all instances where features fi and fj participate
in c, and <ox, oy> is a pair of spatial neighbor relationships in insTc which the spatial feature of
the ox is fi. The spatial feature of oy is fj. The visitor similarity weight between spatial features
reflects the average value of visitor similarity weight of spatial neighbor relationships between fi
and fj. As shown in Figure 3, the table instance length for pattern {A, B} is 4, and the neighboring
pairs of features A and B participating in patterns {A, B} is {A.1, B.1}, {A.2, B.1}, {A.3, B.2}, {A.4,
B.3}. Therefore, the visitor similarity weight between feature A and feature B in patterns {A, B} is
VS{A,B}(A, B) = (vs(A.1, B.1) + vs(A.2, B.1) + vs(A.3, B.2) + vs(A.4, B.3))/4 = 0.12.

Definition 5 (Minimum Visitor similarity of co-location). Given a co-location pattern c = {f1,
f2, . . ., fk}, the visitor similarity of c can be calculated as:

Mvs(c) = min
{

VSc
(

fi, f j
)∣∣ fi, f j ∈ c ∧ f j > fi

}
(5)

As shown in Figure 3, the minimum visitor similarity of {A, B, C} is Mvs({A, B, C}) = min
{VS{A,B,C}(A, B), VS{A,B,C}(A, C), VS{A,B,C}(B, C)} = 0.33.

Minimum visitor similarity (Mvs) is an interesting new metric based on visited infor-
mation constraints. Unlike the counting rule of PI, Mvs counts the participating neighboring
pairs and calculates the average visitor similarity of neighboring pairs in a co-location
pattern. Normally, we set a threshold min_sim to discover interesting patterns and to avoid
blindly setting thresholds. We need to analyze the range of values for the minimum visitor
similarity. Hence, we conducted the following analysis of the properties of Mvs:

Property 1 (Non-negative boundedness). The minimum visitor similarity of spatial co-location
pattern c satisfies non-negative boundedness, i.e., 0 ≤Mvs(c) ≤ 1.
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Proof of Property 1. The visitor similarity weight between the neighborhood is greater than
0 but less than 1. Therefore, based on the definition of visitor similarity between features,
it can be concluded that ∑〈ox ,oy〉∈∏〈 fi , f j〉

insTc vs
(
ox, oy

)
≤ |insTc|. VSc(fi, fj) also satisfies the

condition of greater than 0 but less than 1, thus proving that 0 ≤Mvs(c) ≤ 1. The minimum
visitor similarity of spatial co-location pattern c satisfies non-negative boundedness. �

Property 2 (Does not satisfy the “downward closure” property). The minimum visitor
similarity of co-locations does not satisfy the “downward closure” property, i.e., Mvs(c) may not
necessarily be greater than Mvs(c’), c’ is a super pattern of c.

Proof of Property 2 . Here we prove this by citing counterexamples. Figure 3 shows {A, B,
C} is a super pattern of {A, B}. The minimum visitor similarity of {A, B} is Mvs({A, B}) = 0.12,
while Mvs({A, B, C}) = 0.33 > Mvs({A, B}). The minimum visitor similarity of co-locations
does not satisfy the “downward closure” property. �

Definition 6 (Spatial Highly Visited Co-location Patterns). According to property I, we set a
threshold min_sim within the value range of [0, 1]. For a co-location pattern c, if Mvs(c)≥ min_sim,
then c is a spatial highly visited co-location pattern.

Problem Formulation: Spatial Co-location Patterns Mining based on Instance-visited
Constraint. Given a spatial dataset containing visited information S, V = {v1, v2, . . ., vn} is
the set of all moving objects in the dataset, O = {o1, o2, . . ., om} is the spatial instance set,
F = {f 1, f 2, . . ., fg} is the spatial feature set, T = {t1, t2, . . ., th} is the time domain, where each
tk is a time point. The check-in record CK = {〈oi, vj, tk〉|oi∈O, vj∈V, tk∈T}, which contains
all check-in records of the moving object in V. Given a distance threshold d and the visitor
similarity threshold min_ sim, the spatial high visited co-location pattern mining based on
minimum visitor similarity aims to mine the co-location pattern set SCPs from the dataset
S’, where instances are spatially adjacent to each other (Euclidean distance is greater than
the distance threshold d). Features have high visitor similarity, SCPs = {c1, c2, . . ., ch} where
∀ci∈SCPs, Mvs(c) ≥ min_sim.
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{A    B   C} Visited Records of Moving Objects

PI(A, B, 
C)=0.25 t1 t2 t3

A.4 v1, v2
v3, v4, v5, 

v7
v6

B.3 v3, v4, v5 v1, v6 v7

C.3 v6, v7 v2, v5 v1,v2, v5

{A    B} Visited Records of Moving Objects

PI(A, B)=1 t1 t2 t3

A.1 v8 v12 *

A.2 v11 * v13

A.3 * v9 v14

A.4 v1, v2
v3, v4, v5, 
v7

v6

B.1 v10 v10 v10

B.2 * * v15

B.3 v3, v4, v5 v1, v6 v7

A.1

B.1

A.2

A.3
A.4

C.1

B.2
B.3

C.2

C.3

D.1

D.2 D.3

A       B

A.1 B.1

A.2 B.1

A.3 B.2

A.4 B.3

A    B   C

A.4 B.3 C.3

Co-location pattern: {A, B}
The length of table instance：4

Visitor similarity weight of 
neighborhood

A.1 B.1 vs(A.1, B.1)=0

A.2 B.1 vs(A.2, B.1)=0

A.3 B.2 vs(A.3, B.2)=1/7

A.4 B.3 vs(A.4, B.3)=1/3

Visitor similarity weight between A and B VS{A, B}(A, B)=(1/7+1/3)/4=0.12

Minimum Visitor similarity of {A, B} Mvs({A, B})=VS{A, B}(A, B)=0.12

Co-location pattern: {A, B, C}
The length of table instance：1

Visitor similarity weight of the 
neighborhood

A.4 B.3 vs(A.4, B.3)=1/3

A.4 C.3 vs(A.4, C.3)=1/3

B.3 C.3 vs(B.3, C.3)=1/3

Visitor similarity weight between A and B VS{A, B,C}(A, B)=(1/3)/1=0.33

Visitor similarity weight between A and C VS{A, B, C}(A, C)=(1/3)/1=0.33

Visitor similarity weight between B and C VS{A, B, C}(B, C)=(1/3)/1=0.33

Minimum Visitor similarity of {A, B, C} Mvs({A, B, C})=min{VS{A, B,C}(A, B), 
VS{A, B, C}(A, C), VS{A, B, C}(B, C)}=0.33

Figure 3. Minimum Visitor similarity of co-location patterns. (* represents that there are no moving
objects visited this instance oj at time point tk).
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4. Algorithms and Analysis

In this section, we discuss the process of mining spatial high visited co-location
patterns. The previous section has proven that the minimum visitor similarity does not
meet the property of “downward closure”. Therefore, it is necessary to propose an effective
mining algorithm to compensate for the increased computational complexity. This section
introduces a basic algorithm and two optimization strategies and provides a detailed
analysis of the complexity of the algorithm.

4.1. Baseline Algorithm

Firstly, this section proposes a baseline algorithm (Algorithm 1). To reduce the mining
process’s computational complexity and time cost, we introduced a neighbor instance list
of row instances [19] to accelerate the generation of candidate and pattern table instances.
We can automatically generate co-located spatial features without generating non-clique
candidates at each level. For the spatial instance set O = {o1, o2, . . ., om}, the neighbor
instance list of oi can be denoted as NIL(oi) = {oj|oj∈O ∧ dist(oi, oj) ≤ d ∧ foj > foi} which
means any spatial instance in NIL(oi) has a neighbor relationship with oi. Given a set of
neighbor instance list {NIL(o1), NIL(o2), . . ., NIL(om)}, assuming that <o1, o2, . . ., ok> is a row
instance of co-location c, the can be calculated as NIL(o1) ∩ NIL(o2) and the NIL(<o1, o2, . . .,
ok>) can be calculated as NIL(<o1, o2, . . ., ok−1>) ∩ NIL(ok), in other words, NIL(<o1, o2, . . .,
ok>) = NIL(o1) ∩ NIL(o2) ∩. . .∩ NIL(ok). By the neighbor instance list of a subset, we can
quickly generate the co-location candidates and their table instances. Based on the neighbor
instance list, the idea of the basic algorithm is very simple. BA generates all candidate
patterns step by step, then calculates the minimum visitor similarity for each candidate,
and collects spatial high visited co-location patterns by visitor similarity threshold min_sim.
The advantage of the basic algorithm is that it does not lose any patterns, ensuring the
completeness and correctness of the results.

Algorithm 1. Baseline algorithm based on minimum visitor similarity

Input: Spatial feature set F = {f 1, f 2, . . ., fg}, spatial instance set O = {o1, o2, . . ., om}, moving object
set V = {v1, v2, . . .,vn}, time set T = {t1, t2, . . ., th}, Check_in records CK = {〈oi, vj, tk〉|oi∈O, vj∈V,
tk∈T}, distance threshold d, time thresholdτ, minimum visitor similarity threshold min_sim.
Output: Spatial High Visited Co-location Pattern Set (SCPs)
Begin
1. Calculate spatial neighborhoods table containing visitor similarity;
2. Calculate and collect 2-size spatial high visited co-location patterns;
3. Make k = 3, generate k-size candidate patterns according to NIL and store them in CMk.
4. While CMk! = NULL

4.1 For each c ∈ CMk
4.1.1 Generate the table instance insTc of candidate c based on NIL;
4.1.2 Calculate the minimum visitor similarity of co-location c Mvs(c);
4.1.3 If Mvs(c) ≥ min_sim, c is a spatial highly visited co-location pattern and put c

into SCPs;
4.2 Generate k + 1-size candidates CMk+1 by CMk and NIL, k = k + 1;

5. Put out all spatial high visited co-location patterns SCPs;
End

4.2. Optimization Strategy Based on Table Instance Checking

Lemma 1. For the co-location c and its super set c’, if c is not a high visited co-location pattern,
and |insTc| ≤ |insTc’|, c’ must not be a high visited co-location pattern.

Proof of Lemma 1. Given a k-size co-location pattern c = {f 1, f 2, . . ., fk}, and its super co-location
pattern c’ = { f 1, f 2, . . ., fk, fk+1}, insTc is the table instances of c and insTc’ is the table instances
of c’. Due to ∑〈oh ,ok〉∈∏〈 fi , f j〉

insTc vs(oh, ok) ≥ ∑〈oh ,ok〉∈∏〈 fi , f j〉
insTc′

vs(oh, ok) and |insTc| ≤
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|insTc’|, we can get that
∑〈oh ,ok〉∈∏〈 fi , f j〉

insT c vs(oh ,ok)

|Tins(cp)| ≥
∑〈oh ,ok〉∈∏〈 fi , f j〉

Tins(cp ′) vs(oh ,ok)

|Tins(cp′)| which
means VSc(fi, fj) ≥ VSc’(fi, fj). So, Mvs(c) ≥Mvs(c’), and if co-location c is not a high visited
co-location, the super pattern c’ is also not a high visited co-location. �

Shown as the example in Figure 4, the co-location pattern {A, B} and {A, B, C},
|insT{A,B}| ≤ |insT{A,B,C}| = 4, we can get that Mvs({A, B}) ≥Mvs({A, B, C}).
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Co-location pattern: {A, B}

The length of table instance：4
Visitor similarity weight of neighborhood
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Figure 4. A spatial dataset with visited information S’.

Additionally, in order to speed up the calculation speed, using a clique instance
neighbor set can quickly obtain the number of row instances that the super pattern of c:

Given a k-size co-location pattern c = {f 1, f 2, . . ., fk}, the table instance of c is insTc= {I1,
I2, . . ., In}, the neighbor set of insTc is {NIL(I1), NIL(I2), . . ., NIL(In)}, for the super pattern
c’ = {f 1, f 2, . . ., fk, fk+1}, the number of row instances of c’ can be calculated as follow:

nc′ =

∣∣∣∣∣ n⋂
i=1

(
∏ fk+1

NIL(Ii)
)∣∣∣∣∣ (6)

where ∏ fk+1
NIL(Ii) represents the number of instances of fk+1 in NIL(Ii).

Inference 1 . For a co-location pattern c and its super pattern c’, if nc’ ≥ |insTc| and c is not a
high visited co-location pattern, c’ must not be a high visited co-location pattern.

Proof of Inference 1. According to the theory and method of generating the row instance
by neighbor instance set, we can get that nc’ = |insTc’|. Hence, if c is not a high visited
co-location pattern, c’ is also not a high visited co-location pattern. �

Based on Lemma 1 and Inference 1 described above, we propose a table instance
checking strategy (Lemma 2) to reduce the computation of candidate patterns with low
visitor similarity.

Lemma 2. Given a k-size co-location pattern c1 = {f1, f2, . . ., fk}, c2 = {fi, fj} is 2-size co-location
pattern, c2⊆c1. Assuming that c2 is not a spatial high visited co-location pattern, and |insTc2| ≤
|insTc1|, c1 must not be a high visited co-location pattern.
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Proof of Lemma 2. Since c2 is a 2-size subset of c1, we can get ∑〈oh ,ok〉∈insTc2
vs(oh, ok) ≥

∑〈oh ,ok〉∈∏〈 fi , f j〉
insTc1

vs(oh, ok). Then, according to the conditions of |insTc2| ≤ |insTc1|,

∑〈oh ,ok〉∈∏〈 fi , f j〉
insT c 2

vs(oh ,ok)

|insTc2 |
≥

∑〈oh ,ok〉∈∏〈 fi , f j〉
insT c 1

vs(oh ,ok)

|insTc1 |
also can be obtained. It means

that VSc2(fi, fj) ≥ VSc1(fi, fj) and Mvs(c2) ≥ Mvs(c1). If c2 is not high visited co-location
pattern, Mvs(c2) < min_sim, and Mvs(c1) < min_sim, c1 is not a high visited co-location pattern.
�

For the co-location pattern {A, B} shown in Table 1, the number of row instances of
pattern {A, B, C} can be quickly obtained by searching for the neighbor instance list of
{A, B}: NIL(〈A.1, B.1〉) = {C.1, C.2, C.3} and NIL(〈A.3, B.3〉) = {C.4}. If {A, B} is not a spatial
high visited co-location pattern, because |insT{A,B}|≤ |insT{A,B,C}|, {A, B, C} can no longer
be computed.

Table 1. Neighbor Instance Set.

Co-Location Pattern Clique Instance Visitor Similarity
between Instances Neighbor Instance Set The Number of

Neighbor Instances

〈A, B〉

〈A.1, B.1〉 vs(A.1, B.1) C: C.1, C.2, C.3
C: 4
D: 1

〈A.2, B.2〉 vs(A.2, B.2) D: D.1
〈A.3, B.3〉 vs(A.3, B.3) C: C.4
〈A.4, B.4〉 vs(A.4, B.4) ∅

Optimization Goals: The main purpose of the optimization strategy for table instance
checking is to reduce computational burden by simply and quickly obtaining the number
of row instances of co-location patterns. This optimization strategy simplifies some calcula-
tions of candidates’ visitor similarity in advance. The pseudocode is shown in Algorithm 2.

Algorithm 2: Optimization_Strategy_1

Input: Candidate pattern c, neighbor instance set NIL
Output: True or False
Begin
1. Calculate the 2-size subset C2(c) of pattern c based on NIL;
2. Calculate the number of row instances nc of pattern c;
3. If ∃<fi, fj>∈C2(c) and satisfy Lemma 2, return False;
4. Else return true;
End

4.3. Optimization Strategy Based on Visitor Similarity Checking

We proposed an optimization strategy based on table instance checking in the previous
section. In this section, we will discuss other optimization strategies from the perspective
of visitor similarity. Firstly, by setting the visitor similarity threshold min_sim, the spatial
neighbor relationship can be divided into G-set and L-set.

G-set: The all of neighborhoods in G-set, their visitor similarity weights of neighbor-
hoods are equal or larger than min_sim, ∀<oi, oj>∈G-set, vs(oi, oj) ≥ min_sim.

L-set: The all of neighborhoods in L-set, their visitor similarity weights of neighbor-
hoods are less than min_sim, ∀<oi, oj>∈L-set, vs(oi, oj) < min_sim.

For example, we set min_sim = 0.4. The G-set and L-set in Figure 4 are shown in
Table 2.
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Table 2. The example of G-set and L-set.

Co-Location Patterns G-Set L-Set Co-Location Patterns G-Set L-Set

<A, B> <A.2, B.2>
<A.1, B.1>
<A.3, B.3>
<A.4, B.4>

<B, C>

<B.1, C.1>
<B.1, C.2>
<B.1, C.3>
<B.3, C.4>

<A, C> <A.2, C.3>

<A.1, C.3>
<A.1, C.1>
<A.1, C.2>
<A.3, C.4>

<B, D> <B.2, D.1> <B.5, D.2>

<A, D> <A.2, D.1> <A.4, D.2>

Lemma 3 . For a co-location candidate pattern c, if ∏〈 fi , f j〉 insTc are generated by the neighbor-
hoods in L-set, the candidate c and its super co-locations must not be a high visited co-location pattern.

Proof of Lemma 3. Given a co-location c = {f 1, f 2, . . ., fk} and its super co-location c’ = {f 1,
f 2, . . ., fk, fk+1},. If all of the neighborhoods in ∏〈 fi , f j〉 insTc are generated by the L-set of spa-

tial neighborhoods, VSc
(

fi, f j
)
=

∑〈oh ,ok〉∈∏〈 fi , f j〉
insT c vs(oh ,ok)

|insTc | must less than the threshold

min_sim. And we can get that ∏〈 fi , f j〉 insTc′ ⊆ ∏〈 fi , f j〉 insTc and
∑〈oh ,ok〉∈∏〈 fi , f j〉

insTc′
vs(oh ,ok)

|insTc′ |
is

also less than min_sim. Therefore, the pattern c and its super co-locations must not be a
high visited co-location pattern. �

Optimization Goals: After dividing the spatial neighbor relationship into G-set and
L-set based on visitor similarity, the visitor similarity of some candidates does not need
to be calculated. Because their visitor similarity is significantly lower than the visitor
similarity threshold min_sim, it helps improve the efficiency of mining algorithms. Under
the condition of Lemma 3, Mvs satisfies partial downward closure. Therefore, for this
optimization strategy, the optimization goal is to prune a portion of candidate patterns
without generating their super patterns. Pseudocode is shown in Algorithm 3.

Algorithm 3: Optimization_Strategy_2

Input: Candidate pattern c, Candidates set CMk, L-set
Begin
1. Calculate the 2-size subset C2(c) of pattern c based on NIL;
2. If ∃<fi, fj>∈C2(c) and satisfy Lemma 3, remove c from CMk;
End

Combining the two optimization strategies introduced above, we propose an efficient
mining algorithm: Efficient Spatial High Visited Co-location Pattern Mining Algorithm
(ESHVCM). Pseudocode is shown in Algorithm 4.

4.4. Algorithm Complexity Analysis

• The computational complexity of 2-size co-locations generation. In this paper, the
method of grid scanning is used to calculate spatial proximity relationships. Assuming
every spatial instance has np spatial instances in adjacent grids, the average number
of visitors in Voi(tk) of a spatial instance is nuser. According to the above definitions,
calculating the spatial neighborhoods must take mnp (mnp�np) time complexity (m is
the number of spatial instances), and the maximum time complexity for calculating
the visitor similarity weight of different spatial neighborhoods is h2nuser

2 (h is the
number of time point). Hence, the total complexity of 2-size co-locations generation is
O(mnp + h2nuser

2).
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• The computational complexity of neighbor instance list. According to the neighbor
instance list NIL(c), c = {f 1, f 2, . . ., fk} is a k-size co-location, we can quickly generate
the row-instances of (k + 1)-size co-location c’, which is the super co-location of c. The
spatial features set is F, and the row instances of c can neighbor with the different
spatial instances whose spatial features belong to the set F-c. Assuming that every row
instance I∈c is neighboring with nf spatial instances, and the number of row instances
of c is l. Due to generating the neighbor instance list need to use the intersection
operation, the complexity of row instance generation is l(nf + nf) = 2lnf; hence, the
computational complexity of the neighbor instance list is O(2kNclnf) (Nc is the average
number of any size co-location patterns, and k is the maximum length of co-location
patterns. In the worst case, kNc = 2m).

• The computational complexity of calculating the minimum visitor similarity. For
a k size co-location c, the complexity of calculating minimum visitor similarity is
C2

k l. Assuming the average number of co-location patterns for any size is Nc, cal-
culating the minimum visitor similarities of all co-location patterns should cost
O(C 2

2Ncl + C2
3 Ncl + . . . + C2

k Ncl
)
= O(2kNcl).

• The computational complexity of pruning strategies. Without considering the prun-
ing strategies, we need to consume O(2kNclnf + 2kNcl) (2kNclnf + 2kNcl�mnp +
h2nuser

2) time complexity to collect all of the high visited co-locations. Assuming
each size has an average of Np candidates that can be pruned, we can save 2kNplnf +
2kNpl time complexity using two pruning strategies. The complexity strategy of table
instance checking is O(kNc), and the complexity strategy of visitor similarity weight
checking is O(kNcl). 2kNclnf + 2kNcl�(l + 1)kNc. Hence, the pruning strategy greatly
reduces the time complexity without increasing computation.

Algorithm 4: Efficient Spatial High Visited Co-location Pattern Mining Algorithm

Input: Spatial feature set F = {f 1, f 2, . . ., fg}, Spatial instance set O = {o1, o2, . . ., om}, Moving object
set V = {v1, v2, . . .,vn}, Time domain T = {t1, t2, . . ., th}, Check_in records CK = {〈oi, vj, tk〉|oi∈O,
vj∈V, tk∈T}, distance threshold d, time threshold τ, visitor similarity threshold min_sim;
Output: High visited co-location pattern set (SCPs);
% CMk is k-size candidates set; C2(c) is the 2-size subset of co-location c
Begin
1. Calculate spatial neighborhoods table containing visitor similarity
2. Divide spatial neighbor relationships into G-set and L-set by min_sim;
3. Calculate and collect 2-size spatial high visited co-location patterns;
4. Let k = 3, generate k-size candidate patterns according to NIL and store them in CMk
5. While CMk! = NULL

5.1 for each c ∈ CMk
5.1.1 If Optimization_Strategy_1(c, NIL) = True:

Calculate minimum visitor similarity of c Mvs(c);
If Mvs(c) ≥ min_sim, then c is a spatial high visited co-location.
pattern, which can be put into the set SCPs;
if Mvs(c) < min_sim, execute Optimization_Strategy_2(c, L, CMk);

5.1.2 Else execute Optimization_Strategy_2(c, L, CMk);
5.2 Generate k + 1-size candidates CMk+1 based on CMk and NIL, k = k + 1;

6. Put out all high visited co-location patterns SCPs;
End

5. Experimental Result Analysis
5.1. Experimental Datasets

To evaluate the effectiveness of the EHVSCM algorithm, we use three real datasets for
experiments, they are described in detail below:
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Data set 1: This dataset includes about 12 months of check-in data in MESA (USA)
collected from YELP from 3 January 2017 to 24 December 2017. There are 5736 spatial
instances, 21 spatial features and 33337 visitors.

Data set 2: This dataset includes about ten months of check-in data in New York City
(USA) collected from Foursquare from 12 April 2012 to 16 February 2013. There are 42981
spatial instances, 251 spatial features and 1038 visitors.

Data set 3: This dataset includes about ten months of check-in data in Tokyo (Japan)
collected from Foursquare from 12 April 2012 to 16 February 2013. There are 67667 spatial
instances, 247 spatial features and 2293 visitors.

Download Link: http://sites.google.com/site/yangdingqi/home/foursquare-dataset
(accessed on 1 January 2016). https://www.yelp.com/dataset (accessed on 1 January 2019).

All experiments are compiled in Java and implemented using a PC with 96 GB of main
memory and an i7 CPU.

5.2. Rationality Analysis

In this section, we conducted numerical analysis and similarity evaluation on tradi-
tional PI-based and MV-based algorithms.

• Numerical Analysis

Two measurement indices (PI and Mvs) have different ranges when considering the
same dataset and distance threshold. In most cases, the traditional participation index is
greater than the minimum visitor similarity. Table 3 records the extremum and average
participation index and visitor similarity value for two different measurement indices. The
maximum and average values of the participation index are all greater than those of the
visitor similarity. This is because the PI mainly focuses on the independence of instances in
the row instances of co-location, and these spatial relationships are static.

Table 3. Numerical analysis between PI and Mvs.

PI Mvs

Minimum Maximum Average Minimum Maximum Average

Data set 1 0 0.887 0.2201 0 0.564 0.073
Data set 2 0 0.937 0.325 0 0.5333 0.098
Data set 3 0 0.9131 0.372 0 0.6201 0.104

Moreover, the visitor similarity mainly emphasizes the similarity of visitors between
the spatial instances. The spatial instances don’t change, but visitors can move anytime.
The proximity in geographic space is always more stable than visitor similarity, so PI is
always larger.

We also discussed the impact of distance threshold on minimum visitor similarity. As
shown in Figure 5, we observed the changes in the mean and maximum values of Mvs by
gradually increasing the distance threshold from 10 m to 50 m. The experimental results
show that the changes in the average and maximum values of visitor similarity do not
necessarily vary with distance. This is because the subjectivity of the visited information
and the change in distance have little effect on the visitor similarity of co-location patterns.

http://sites.google.com/site/yangdingqi/home/foursquare-dataset
https://www.yelp.com/dataset
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• Visitor similarity Evaluation

Starting from the mining purpose of highly visited co-location patterns, the visitor
similarity reflected by the co-location patterns extracted by the ESHVCM should be greater
than that of traditional frequent co-location patterns. Therefore, to verify the correctness of
Mvs, we defined the “Similarity Ratio” to compare the visitor similarity of the top-k patterns
mined by the ESHVCM algorithm (Mvs-based) and join-less algorithm(PI-based) [9], the
specific calculation method for Similarity Ratio is as follows.

SR =
∑<oi ,oj>∈Pneigh(CP) vs

(
oi, oj

)
∑oi ,oj∈S

∧
dist(oi ,oj)<d vs

(
oi, oj

) (7)

CP is a pattern set that contains the patterns to be evaluated, while Pneigh(CP) contains
all neighboring instance pairs participating in the patterns in CP, Pneigh(CP) = {<oi, oj>|∃c
⊆ CP ∧ <oi, oj> ∈insTc}. Therefore, ∑<oi ,oj>∈Pneigh(CP) vs

(
oi, oj

)
is the sum of the visitor

similarities of all neighboring instance pairs participating in the co-location patterns in
CP. And ∑oi ,oj∈S′

∧
dist(oi ,oj)<d vs

(
oi, oj

)
is the sum of the visitor similarity of all neighboring

instance pairs in the spatial dataset S, SR is the ratio of the above two values.
Figure 6a shows that the SR values of different sizes among the top 100 co-location pat-

terns mined under two different metrics have been calculated. At this point, the evaluated
co-location pattern set CP is the patterns of different sizes among the top 100 co-location
patterns. The result indicates that the similarity ratio of the top-k mined by the PI-based
method is always lower than the Mvs-based method in different datasets. From Figure 6a,
it can be seen that by calculating the similarity ratio of the top-k co-location pattern under
the two methods (CP pattern set consists of top-k co-location patterns under different k),
it can be found that the similarity ratio of the top-k mined by the PI-based method is
always lower than Mvs-based method. The experimental results verify that the high visited
co-location pattern is superior to the traditional frequent co-location pattern regarding
visitor similarity.

5.3. Quality Evaluation

In this section, like [27], we design a sample social entropy for measuring the quality
of the co-locations based on visitor similarity. Firstly, we suppose CP = {C1, C2, . . ., Cn}
is the set of discovered co-location patterns, UCi be the set of moving objects who visit
co-location Ci, and let UCP be the set of moving objects who visit the spatial instances in CP.
The social entropy of CP is then defined as:
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ε = ∑
Ci∈CP

−
∣∣UCi

∣∣
|UCP|

log

∣∣UCi

∣∣
|UCP|

(8)

A lower social entropy means that the great majority of the visitors of CP visited the same
co-location, indicating that these spatial instances in CP have tighter social connections.

We use social entropy to test our algorithm and Join-based algorithm based on PI from
three aspects: different spatial distance thresholds, different time thresholds and different
thresholds of participation index and social similarity.

1. Changing Spatial Distance Threshold. The spatial distance threshold is a crucial
factor in constructing co-locations. This section mainly discusses the influence of
different distance thresholds on the social entropies of co-location patterns. We set
min_prev = 0.4, and min_sim = 0.3, τ = 5 days. Figure 7 shows the average social
entropies of co-location patterns based on visitor similarity and PI in three datasets.
With the increasing of spatial distance thresholds d from 100 to 350 m, the social
entropies of the co-locations based on visitor similarity are always lower than the co-
locations based on PI because the co-locations mined by our algorithm contain more
social ties than the traditional co-locations which can help us mine more co-locations
visited by similar visitors. Furthermore, as the spatial distance threshold increases,
the number of neighborhood relationships and related mobile objects also increases
since social entropies are increased with the increase of spatial distance thresholds.
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Figure 7. Social entropy evaluation with different spatial distance thresholds.

2. Changing time threshold. When calculating the visitor similarity weight of the neigh-
borhood, the time threshold is a very important factor. In this part, we change the time
threshold to evaluate the social entropy of co-locations. For three data sets, we ran-
domly selected two consecutive months of check-in records for experiments, and we



Electronics 2023, 12, 3961 17 of 23

changed the time threshold from 10 days to 60 days. In Figure 8, we set min_prev = 0.4,
min_sim = 0.3, d = 200 m. With the increasing time thresholds, the social entropies of
all co-locations are also increased because increasing the cardinality of visitors reduces
the visitor similarity weight of the neighborhood. The social entropies of co-locations
based on visitor similarity are always lower than the traditional co-locations in any
datasets, which reflects the co-locations based on visitor similarity carry more social
information and the spatial instances in co-locations are always visited by similar
moving objects.
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Figure 8. Social entropy evaluation with different time thresholds.

3. Changing the thresholds of participation index and minimum visitor similarity. In
this experiment, we change the thresholds of PI and Mvs to evaluate the social
entropies of discovered co-locations. We set the spatial distance threshold d = 200 m,
and we randomly selected ten days of check-in records from three datasets. For
the co-locations based on PI, we change the threshold PI from 0.1 to 0.4. Figure 9
shows that the social entropies of co-locations are decreased with the increase of
PIs. With the increase of PIs, the number of spatial instances that can participate in
co-locations decreases, and the number of visitors who can participate in computing
decreases. So, the proportion of similar visitors increases, and the social entropy
decreases. For the co-locations based on visitor similarity, we change the threshold of
visitor similarity from 0.1 to 0.4. From Figure 9, the social entropies of co-locations
are also decreased with the increase of visitor similarity. The higher the visitor, the
more similar moving objects visited the same co-location since the social entropies of
co-locations are decreased with the increase of the threshold of visitor similarity. By
evaluating social entropy, we can find that the co-locations based on visitor similarity
have more social ties than the traditional co-locations.
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Figure 9. Social entropy evaluation with different thresholds of participation index and minimum
visitor similarity.

4. Comparing with other similarity indices. We proposed visitor similarity weight of
neighborhood to calculate the visitor similarity between two spatial instances, then
the following measures also can be used:
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Jaccard. The Jaccard index [27] is also called the Jaccard similarity coefficient, which
can be used to compare the similarities and differences between finite sample sets. Given
two spatial instances oi and oj with visitors sets Voi and Voj. Jaccard similarity can be
calculated as J(oi, oj) = (|Voi ∩ Voj|)/(Voi ∪ Voj) between the sets of visiting users of spatial
instances oi and oj, the social distance based on Jaccard can be defined as: VSJAC(oi, oj) = J(oi,
oj), which focus on the similarity of visitors, and it don’t consider the friendships between
these users.

Contribution users. Compared with the Jaccard similarity, the method of Contribution
User [27] considers the friendships between these visiting users. Given two spatial instances
oi and oj with visitors sets Uoi and Uoj, and a friendship set E, the contributing users set
CUij for the spatial instances <oi, oj> is defined as:

CUi j =
{

va ∈ Uoi

∣∣∣va ∈ Uoj or ∃ vb ∈ Uoj , (va, vb) ∈ E
}
∪
{

va ∈ Uoj |va ∈ Uoi or ∃ vb ∈ Uoi , (va, vb) ∈ E
}

Specifically, if a moving object va has visited both oi and oj, then va is a contributing
user. And if va has visited spatial instances oi, vb has visited spatial instances oj, va and vb
are friends (va, vb) ∈ E, both va and vb are contributing users. According to CUij, we can

define the visitor similarity as: VSCU(oi, oj
)
=
|CUij|∣∣∣Uoi∪Uoj

∣∣∣ .
Then, we experimented with Data set 1. Firstly, we change the spatial distance

threshold from 200 to 700 m. Figure 10a shows that the social entropy of our visitor
similarity is always better than that of Jaccard and Contribution users. All social entropies
are increased by the increase of spatial distances. In Figure 10b, when changing the visitor
similarity threshold, the performance of our visitor similarity is also much lower than the
other two methods. This shows that our proposed method is more suitable for mining
high visited co-locations. Because it considers both visiting time and the similarity between
different visitors. And when calculating the user similarity between two spatial instances,
our visitor similarity weight of the neighborhood first considers similar users rather than
the same users, so its results are better than Jaccard similarity. Although Contribution users
consider friendship among moving objects, the friendship does not mean that they are
similar users, so in this paper, we use the moving objects’ check-in history to evaluate the
visitors’ similarity, which is better than the results obtained by Contribution users.
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Figure 10. Comparing with other similarity indices.

5.4. Pruning Strategies Evaluation

In this paper, we propose two pruning strategies: table Instance checking and Visitor
Similarity Weight Checking. This section evaluates the proposed pruning strategies regard-
ing running time and pruning rate. We set the visitor similarity threshold min_sim = 0.3,
time threshold τ = five days, and we randomly selected one month of check-in records
for experiments from three datasets. In Figure 11, we compare the computational times
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of the basic algorithm (BA) and the algorithm with pruning strategies. The running time
of the latter is always less than that of the former. We also compare the running times of
the algorithms proposed by this paper with the traditional mining methods, including
join-based [1], join-less [9] and Fraction score [19]. Due to the addition of visited informa-
tion calculation, the algorithm running time of BA is always higher than the traditional
algorithms. After adding two pruning strategies, the running time of ESHVCM is already
lower than the traditional algorithms. Additionally, we compared the runtime of algorithms
ESHVCM, join-based, join-less and Fraction score on three datasets. As shown in Figure 12,
with the distance threshold increased, the execution time of all four algorithms increased,
but the execution time of ESHVCM was always lower than the other three algorithms.
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And in Figure 13, we calculate the pruning ratio to evaluate the efficiency of pruning
strategies. The pruning ratio can be calculated as follows:

Pruning Ratio =
the number o f pruning candidates

the number o f all candidates

Figure 13 shows that the pruning efficiency is the best when using table Instance
checking and Visitor Similarity Weight Checking at the same time. Using Instance table
checking and Visitor Similarity Weight Checking at the same time can prune the candidates
from the spatial level and social level, which can filter out more co-location candidates, so it
has the best pruning efficiency (the maximum pruning ratio in Figure 13 is 18.7%). In Data
Set 1, the pruning efficiency is the worst when using Instance table checking only because
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the relationships of spatial instances in Data Set 1 are very close, and pruning candidates
from the spatial level is very hard. For Data Set 2 and Data Set 3, the existence of many
social ties of the moving objects in these two datasets and pruning co-location candidates
from the social level is very difficult because there are many visitor similarities are greater
than min_sim, so the pruning efficiency is the worst when using Visitor Similarity Weight
Checking only.
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5.5. Visualization Analysis

In the last, we visually compared the co-location patterns found by the EHVSCM and
Join-based algorithms.

Firstly, we chose the New York City check-in data in October 2012 from Data Set 2. We
execute the EHVSCM and Join-based algorithms on this data and select several patterns
from the mining results for analysis. Table 4 shows that the patterns <Residential Building,
Train Station>, <Sporting Goods Shop, Gym/Fitness Center> have a very high participation
index but very low visitor similarity. For these co-locations, they are very frequent adjacency
in geographic space, which will disperse the moving objects, make the types of visitors
very complex, and can’t guarantee that they are often visited by similar users. The PI
and Mvs of <Gym/Fitness Center, Coffee Shop> are very high, showing that its instances
gather frequently in space and contain strong social relations. For another co-location
pattern <Government Building, Cosmetics Shop>, the participation index and visitor
similarity values are very close. This shows that the spatial instances of this pattern are not
frequently adjacent, but they are constantly visited by stablers and similar moving objects.
Compared with the first co-locations, this co-location reflects the social and spatial relations
between spatial instances. Focusing on the last co-location pattern <Office, Bus Station,
Pizza Place> in Table 4, it has a very low participation index, but its visitor similarity is
not very low. Although their instances are not abundantly adjacent in geographic space,
several neighboring spatial instances can always be visited by similar moving objects. This
proves that the co-locations mined by our method consider spatial relationships and social
connections between instances. Based on the above experimental analysis, we can conclude
that the co-location patterns we mined are no longer a static neighborhood relationship
between instances at the spatial level but endows it with more social information and
relationships. The EHVSCM algorithm helps us find some more interesting patterns visited
by similar visitors like <Office, Bus Station, Pizza Place> and <Government Building,
Cosmetics Shop>.

In addition, we analyze the mining results of the three algorithms from the distribution
graph of co-locations’ instances and alternative approaches in the area of Queens in New
York City. Figure 14a–c shows the co-locations by the EHVSCM algorithm (considering the
spatial information and social similarity at the same time), Join-based algorithm (disregard-
ing the social similarity between the spatial instances) and Visitor similarity (disregarding
the spatial information).
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Table 4. Mining results analysis of Data set 2.

Co-Location Patterns in Data Set 2

Co-Locations Participation Index Minimum Visitor Similarity

<Residential Building, Train Station> 0.832 0.377
<Sporting Goods Shop, Gym/Fitness Center> 0.625 0.241

<Gym/Fitness Center, Coffee Shop> 0.725 0.438
<Government Building, Cosmetics Shop> 0.312 0.305

<Office, Bus Station, Pizza Place> 0.225 0.307
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<Gym/Fitness Center, Coffee Shop> 0.725 0.438 
<Government Building, Cosmetics Shop> 0.312 0.305 

<Office, Bus Station, Pizza Place> 0.225 0.307 

In addition, we analyze the mining results of the three algorithms from the distribu-
tion graph of co-locations� instances and alternative approaches in the area of Queens in 
New York City. Figure 14a–c shows the co-locations by the EHVSCM algorithm (consid-
ering the spatial information and social similarity at the same time), Join-based algorithm 
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Figure 14. Instance distribution of <Gym/Fitness Center, Park> with different algorithms.(Yellow 
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Figure 14. Instance distribution of <Gym/Fitness Center, Park> with different algorithms. (Yellow
star represents the Gym/Fitness Center and green Circle represents the Park).

We chose the co-location <Gym/Fitness Center, Park> to show its distribution graph
by different algorithms. The introduction of minimum visitor similarity has an impact on
the whole mining result set, but for a single co-location pattern, its PI remains unchanged
in both the Join-less algorithm and EHVSCM algorithm, which is confirmed by the distri-
butions of <Gym/Fitness Center, Park> are exactly alike in Figure 14a,b. In Figure 14c, only
considering the visitor similarity between spatial instances, we can find that its distribution
is more cluttered, and there is no clustering in the EHVSCM algorithm. It can be seen that
the EHVSCM algorithm mining pattern with high visitor similarity without changing the
degree of participation is obtained.

Thirdly, we chose three co-locations <Jewelry Store, Nail salon>, <Jewelry Store, Art
Gallery> and <the History Museum, Art Gallery>. From Figure 15 (in this figure, red is
the Art Gallery, green is the History Museum, blue is the Jewelry Store, and orange is the
Nail salon), we can find that the number of Art galleries has decreased when using visitor
similarity to measure the co-locations. This is because the co-location pattern <Jewelry Store,
Art Gallery> is not a high visited co-location when considering the spatial information
and social information at the same time, and the method we proposed helps us filter some
co-location patterns with the lower social connection.
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6. Conclusions

This paper studies the problem of mining spatial high visited co-location patterns. Our
mining framework extends the traditional spatial co-location pattern mining method by
considering both the spatial neighborhood relationships and visiting information of spatial
instances. We define a visitor similarity weight to evaluate the visitor similarity between
spatial neighborhoods. Then, we use a new measure index minimum visitor similarity to
reflect the social connections of the spatial features in the co-locations. Additionally, we
propose a basic mining algorithm and design two pruning strategies from the spatial and
social levels, which greatly reduce the time consumption caused by the calculation of social
relations. In our experiments with three real datasets, we design and use the social entropy
for measuring the social quality of the co-locations based on the visitor similarity, which
confirms that the co-location patterns that we mined carry more social information and
relationships than the traditional co-location patterns.

However, the mining framework we proposed in this paper also has room for further
improvement. For example, due to the consideration of spatial relationships and social
ties at the same time, it requires more computational time to mine the co-location patterns
from spatial datasets with visiting information. Although visited time is considered in
calculating visitor similarity between spatial instances, there is no specific analysis of the
impact of time on visitor similarity. Thus, we will consider these problems in future studies.
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