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Abstract: Due to the vastly different energy consumption between up-slope and down-slope, a path
with the shortest length in a complex off-road terrain environment (2.5D map) is not always the
path with the least energy consumption. For any energy-sensitive vehicle, realizing a good trade-off
between distance and energy consumption in 2.5D path planning is significantly meaningful. In
this paper, we propose a deep reinforcement learning-based 2.5D multi-objective path planning
method (DMOP). The DMOP can efficiently find the desired path in three steps: (1) transform the
high-resolution 2.5D map into a small-size map, (2) use a trained deep Q network (DQN) to find the
desired path on the small-size map, and (3) build the planned path to the original high-resolution
map using a path-enhanced method. In addition, the hybrid exploration strategy and reward-shaping
theory are applied to train the DQN. The reward function is constructed with the information of
terrain, distance, and border. The simulation results show that the proposed method can finish
the multi-objective 2.5D path planning task with significantly high efficiency and quality. Also,
simulations prove that the method has powerful reasoning capability that enables it to perform
arbitrary untrained planning tasks.

Keywords: 2.5D path planning; deep reinforcement learning; deep Q learning; reward shaping;
ground vehicles

1. Introduction

The use of energy is a important topic of interest in the field of ground vehicles
(GVs) [1]. GVs such as exploration robots and space probes mostly operate in the complex
off-road terrain environment (2.5D environment), and energy consumption can become a
problem that restricts their working range and time. So far, scholars have studied battery
technology [2], motor control technology [3], and gas engine technology [4] in order to
improve energy efficiency.

In this paper, an energy-saving method from the perspective of path planning for GVs
is studied. A GV going uphill always consumes a lot of energy to overcome its gravity,
which means a path with less up-slope but a bit longer may save more energy than that of
the shortest path, which covers many up-slopes. Hence, there will always be some energy-
saving paths on the 2.5D map. Meanwhile, some of these paths with longer distances may
significantly increase the traveling time, which is also unacceptable. Overall, this yields a
multi-objective path planning problem: to find paths on a terrain environment with a good
trade-off between energy consumption and distance.

The traditional methods such as violent search [5], heuristic-based search [6] and
probabilistic search [7], etc., can solve this multi-objective path planning problem to some
extent. However, all of them encounter some shortcomings on this task. The violent search
methods have to search a large area with low efficiency. The heuristic-based methods
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suffer the difficulty of modeling the heuristic function for 2.5D path planning (it is hard
to estimate the cost of a path on the terrain map). The probabilistic search methods show
unstable performance in the off-road environment.

Lately, deep reinforcement learning (DRL) has emerged as a highly promising ap-
proach for tackling path planning problems [8]. Therefore, in this paper, we employ DRL to
establish a multi-objective 2.5D path planning method (DMOP) that focuses on improving
planning efficiency while ensuring a good balance between energy consumption and the
distance of the planned path. The contribution of this work is listed as below:

• Novel topic: A deep reinforcement learning-based multi-objective 2.5D path planning
method (DMOP) is proposed for GVs, realizing a good trade-off on distance and
energy consumption on off-road terrain environments.

• Useful findings: (1) The DMOP plans paths with significant high efficiency in com-
parison with other methods. (2) The DMOP has powerful reasoning capability that
enables it to perform arbitrary untrained planning tasks.

• Solved two technical problems: (1) The convergence problem of DQN in high state space
is solved by using a hybrid exploration strategy and reward-shaping theory. (2) To tackle
the multi-objective 2.5D path planning problem using DRL, an exquisite reward function
is designed, incorporating terrain, distance, and border information for modeling.

The remainder of this paper is structured as follows: Section 2 provides a review
of the current research status on 2.5D path planning algorithms. The preliminaries of
the 2.5D path planning task are given in Section 3. Then, the detailed description of the
DMOP is introduced in Section 4. Section 5 describes the experiments conducted to verify
the effectiveness of DMOP and exhibits and analyzes the experimental results. Finally,
Section 6 summarizes this paper and outlines future research directions.

2. Related Works

Path planning methods that consider slope (on 2.5D map) have been studied for years,
and researchers are concentrating on finding suitable paths for GVs in complex terrain
environments [9–11]. In early research, most studies focused on single-object optimization
problems, such as traversability or avoiding obstacles. Therefore, scholars are concerned
about vehicle dynamics to ensure motion stability [7,12,13]. For instance, a probabilistic
road map (PRM)-based path planning method considering traversability is proposed for
extreme-terrain rappelling rovers [7]. Linhui et al. [12] present an obstacle avoidance
path-planning algorithm based on a stereo vision system for intelligent vehicles; such an
algorithm uses stereo matching techniques to recognize obstacles. Shin et al. [13] propose a
path planning method for autonomous ground vehicles (AGVs) operating in rough terrain
dynamic environments, employing a passivity-based model predictive control. Obviously,
these planning methods place less emphasis on the global nature of the path.

As research on 2.5D path planning deepens, scholars are prone to create multi-objective
path planning methods that take complex characteristics of 2.5D terrain into account,
especially the issues of operational efficiency, energy consumption, and the difficulty of
mechanical operation. These works aim to find paths that are energy efficient and easy to
pass [14,15]. Ma et al. [16] propose an energy-efficient path planning method built upon
an enhanced A* algorithm and a particle swarm algorithm for ground robots in complex
outdoor scenarios. This method considers the slope parameter and friction coefficient,
which can effectively assist ground robots in traversing areas with various terrain features
and landcover types. Based on the hybrid A* method, Ganganath et al. [17] present a
algorithm by incorporating a heuristic energy-cost function, which enables the robots to
find energy-efficient paths in steep terrains. Even though A*-based methods are likely to
find the optimal or near-optimal path, their performance in terms of search time tends to
be poor due to the search mechanism. Moreover, Jiang et al. [18] investigate a reliable and
robust rapidly exploring random tree (R2-RRT*) algorithm for the multi-objective planning
mission of AGVs under uncertain terrain environment. However, this kind of method has
an unavoidable weaknesses, local minimum, which means it cannot guarantee the quality
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of the path. Despite the fact that existing research has made notable achievements, the 2.5D
path planning method considering energy consumption and the distance of the global path
has not been widely studied.

Regarding this topic, our team has previously proposed a heuristic-based method
(H3DM) [19]. In this method, a novel weight decay model is introduced to solve the
modeling problem of the heuristic function, and then the path planning with a better trade-
off of distance and energy consumption is realized. Nonetheless, the solutions obtained
by this method are not good enough regarding the path’s global nature and the search
efficiency. Thus, the multi-objective path planning method, which considers the path’s
global nature and time efficiency, should be further researched.

With the merit of solving complex programming problems, DRL has achieved much
success in Go [20], video games [21], internet recommendation systems [22], etc. Scholars
have also proved that DRL has the potential to solve N-P hard problems [23], such as
the traveling salesman problem (TSP) [24] and the postman problem [25]. Since the path
planning problem is also a kind of N-P hard problem [26,27], researchers have begun to
apply DRL theory to solve path planning problems. Ren et al. [28] create a two-stage DRL
method, which enables the mobile robot to navigate from any initial point in the continuous
workspace to a specific goal location along an optimal path. Based on the double deep
Q network, Chu et al. [29] propose a path planning method for autonomous underwater
vehicles under unknown environments with disturbances from ocean currents. These
methods have powerful reasoning capabilities and show the great potential of DRL in the
field of path planning.

In order to develop a computationally efficient method with a better trade-off of
distance and energy consumption, we present the DMOP method using the DRL theory
in this paper. The DMOP is composed of a deep Q network (DQN), which can finish the
planning task with higher efficiency in comparison with other methods.

3. Preliminaries
3.1. Environment for Path Planning

The planning task is regarded as an Atari-like game, and we have built an environment,
namely, “Mario Looks for Mushroom”. The goal of this game is to control Mario to find
the path from an initial position to the target where the mushroom is located. In this game,
the controller is given eight actions corresponding to eight directions (see Figure 1). Then,
this planning task is understood as making the agent learn to find the mushroom with less
energy consumption and travel time. In addition, 2.5D off-road maps are used in this paper.
All of them are digital elevation maps (DEMs) in which the Z-axis denotes the altitude and
the XOY plane represents the horizontal plane. DEMs assume that each sampling pixel
(x, y, z) can be reached in the planning process.

Figure 1. DQN for 2.5D path planning task.
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3.2. Distance Calculation Model

In this paper, the distance D from point to point is calculated via the straight line
distance equation,

D(Pn,Pn+1) =
√
(xn − xn+1)2 + (yn − yn+1)2 + (zn − zn+1)2 (1)

where (xn, yn, zn) is the 3D coordinate of Pn and (xn+1, yn+1, zn+1) is the 3D coordinate
of Pn+1.

Hence, the distance of a specified path can be acquired as:

Dtotal =
d−1

∑
i=1

D(Pi, Pi+1) (2)

where d denotes the number of sampling points in a path.

3.3. Energy Consumption Calculation Model

Based on the above distance calculation model, the energy consumption between two
points is modeled as:

E(Pn, Pn+1) =

{
D(Pn, Pn+1) · Eus, zn ≤ zn+1

D(Pn, Pn+1) · Eds, zn ≥ zn+1
(3)

where Eus and Eds are the up-slope and down-slope energy consumption estimation [19].
Then, these two variables can be modeled as:

Eus = β/
π

4
· ηus (4)

Eds = 1 − β/
π

4
· ηds (5)

where ηus and ηds denote the up-slope and down-slope estimated energy consumption per
meter when β = 30◦, respectively. β is calculated as:

β = arctan(
zn − zn+1√

(xn − xn+1)2 + (yn − yn+1)2
) (6)

where (xn, yn, zn) and (xn+1, yn+1, zn+1) are the co-ordinates of two reference point Pn and
Pn+1. In addition, the unit of Eus and Eds is set as u in this paper. The unit of u is Joule, and
its value can be determined via test for a specific GV. Here, ηus and ηds are set as 25 u/m
and 0.25 u/m, respectively.

Based on this model, the energy consumption of a path is calculated as:

Etotal =
d−1

∑
i=1

E(Pi, Pi+1) (7)

4. Dqn-Based Multi-Objective 2.5D Path Planning

In this section, we first present the problem statement, followed by the design of DQN,
including the structure of the convolutional neural network (CNN), the modeling of the
reward function, and the training strategy, as well as the path-enhanced method. The
DMOP method built from these components ultimately solves the multi-objectives 2.5D
path planning problem.
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4.1. Problem Statement

Though the DQN has the great potential to solve the path planning problem, two
technical problems should be solved here: (1) the convergence problem of DQN in high
state space; (2) the multi-objective path planning problem.

• The convergence problem of DQN in high state space presents a challenge. The
construction of the 2.5D map at a relatively high resolution results in a large map size,
further exacerbating the issue as the DQN struggles to converge due to the extensive
state space. Even for a size of 20*20, the DQN may fail to converge sometimes.

• The multi-objective path planning problem involves the goal of finding not only a
path from a given start point to a target but also a globally optimal path with a short
length and low energy consumption.

4.2. Background and Structure of DQN

DQN is a reinforcement learning technique that combines deep neural networks with
Q-learning to tackle complex decision-making tasks [21]. It leverages deep neural networks
to estimate the Q-values of different actions in various states [30].

As shown in Figure 1, the adopted DQN is a convolutional neural network that
is composed of three parts: the input layer, the convolutional backbone, and the fully
connected layers.

The input layer is the observation state of the DQN, while the state is a 50*50*3
image (transforming the 100*100*3 map into a 50*50*3 image using the pixel skipping
technique) in which Mario, mushroom, and the 2.5D map are drawn on the different
channels, respectively.

The convolutional backbone is built with 2 convolutional layers: the size of the
convolutional kernel for the first layer is 8*(3*3*3), and the second is 16*(3*3*8). The
activation function is ReLu. It should be mentioned that Mario and mushroom are used to
replace the single pixel of the current and target point, to allow the network to more easily
recognize the current location of agent and target, thus accelerating the learning process. In
addition, no pooling layers are used here. According to numerous experiments, using the
pooling layer in this structure can lead to a severe convergence problem. The reason may
be that too much information is lost after the pooling process.

The fully connected layers consist of three layers. The first layer connects to the output
of the last convolutional layer. The second one has 256 nodes; both this layer and the former
layer also use ReLu as the activation function. The last layer has 8 nodes that represent the
Q value of actions, and it takes a linear function as the activation function.

4.3. Design of Reward Function

The reward function plays a key role in training the DQN. When the size of the map
becomes bigger and bigger, the DQN will be more difficult to converge. If the agent only
gets the reward at the target, the DQN will hardly converge through random exploration,
let alone realize the multi-objective planning. To solve this problem, an exquisite reward
function is designed for the 2.5D multi-objective path planning task. Based on the reward-
shaping theory [21], this function is built from the following points:

• The DQN aims to find a policy that maximizes the discounted accumulated reward
(score), and the goal of this game is to find a path with a good trade-off between
distance and energy consumption; hence, the reward for Mario’s step should be
negative (penalty), otherwise the DQN will tend to plan a path that maximizes the
reward, even if it means making the path as long as possible.

• To guide Mario to find the mushroom, a suitable distance-based reward should be
provided. In addition, the agent can receive a bigger reward as it gets closer to
the target.

• Considering the energy consumption in path planning, a slope-based penalty should
be given.
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• To prevent the agent from cheating to obtain a higher score by hitting the wall, the
hit-wall penalty should be relatively strong.

• A relatively big reward should be given to encourage the agent to remember the
experience when reaching the target.

Based on the above ideas, the reward function is modeled as:

r = rd + rs + rw + rt (8)

where rd is the distance penalty, rs is the slope penalty, rw denotes the hit-wall penalty, and
rt stands for the reached reward.

4.3.1. Distance Penalty Model

The model of the distance penalty includes two parts:

rd = rd1 + rd2 (9)

where rd is a global distance penalty, and rd1 is a step distance penalty that is modeled as:

rd1 = −D(Pn, Pn+1)/Db1 (10)

where D(Pn, Pn+1) is a step distance in 2.5D aspect, Db1 is a factor of the intensity, and
Db1 = 10 according to a bunch of tests.

rd1 alone is not enough as it neglects the terrain information, so the second part rd2
is introduced to compensate for the penalty. rd2 heuristically penalizes the action that
leads the next current position too far away from the destination in the 2D aspect. It is
modeled as:

rd2 = −D2(Pn+1, Pd)/Db2 (11)

where D2(Pn+1, Pd) means the 2D distance between the next current position and the
destination, and Db2 is an intensive factor (its value is set according to the size of the map).
Here, Db2 = 50.

4.3.2. Slope Penalty Model

The slope penalty can be calculated based on Equation (3). Here, the slope penalty is
defined as:

rs = −E(Pn−1, Pn) · k (12)

where k is the intensity factor. k is set as 5 according to many training experiment. It is easy
to understand that the penalty is proportional to energy consumption.

Here, a case is given to illustrate the slope penalty term. For a path depicted in
Figure 2a, the up-slope motion consumes lots of energy (see Figure 2b). Moreover, we can
control the intensity of the slope penalty with a different factor k (see Figure 2c). From
Figure 2d, we can see that when k becomes bigger, the planned path is more sensitive to
the slope and tries to avoid going up-slope. Ultimately, we choose k = 5 as it produces a
balanced trade-off between energy consumption and distance in the planned paths.
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Figure 2. The function of slope penalty term. (a) depicts a path for demonstration. (b) shows the
curves of energy consumption compared with the path. (c) gives the energy consumption with
different factor k. (d) is the corresponding planned results.

4.3.3. Hit-Wall Penalty Model

The wall penalty term rw is used to prevent the agent from hitting the boundary of the
maps for the higher reward and thus from cheating in game. rw is modeled as:

rw = min((rwx + rwy), b) · γ; (13)

where b is the upper bound, and b = 6. This parameter is set to prevent excessive penalties
when the agent is positioned in the four corners of the map, namely, the top-left, bottom-left,
top-right, and bottom-right corners. rwx and rwy are corresponding penalties to the x and y
axes, respectively. γ denotes the penalty intensity, and γ = 5. rwx and rwy are defined in a
similar way:

rwx =


(l1 − Px) · 2, Px ≤ l1
(Px − l2) · 2, Px ≥ l2

0, others

(14)

rwy =


(l1 − Py) · 2, Py ≤ l1
(Py − l2) · 2, Py ≥ l2

0, others

(15)

where l1 and l2 are the specific lines that trigger the wall penalty, and l1 = 3, l2 = 97. Px
and Py are the corresponding coordinates on the XOY plate.

4.3.4. Reached Reward Model

The reached reward rt is used to encourage the agent to remember the experiences it
has encountered.

rt = 5 · k (16)

where k is the same factor used in Equation (18). The coefficient “5” is tuned manually
according to the training results.
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4.4. Hybrid Exploration Strategy

Since the state space is too big, the DQN is difficult to converge through random
exploration, even when a well-designed reward function is used. Here, a hybrid exploration
strategy is applied to improve the training performance. We design a hybrid exploration
strategy that uses the heuristic method to generate useful experience for training the DQN.

The traditional training strategy for DQN initially involves selecting actions with a
certain probability, either through random exploration or using DQN’s output, to guide the
agent to successfully reach the target and gain valuable experiences for learning. However,
in complex 2.5D path planning tasks, this method can lead to difficulties in reaching the
target during the exploration process, resulting in a lack of successful experiences to learn
from. To obtain more successful experiences and improve the learning efficiency, the
exploration strategy has transitioned from pure random exploration to a blend of heuristic
methods and random exploration. The heuristic method involves comparing the distances
between each neighboring point and the target, with the action corresponding to the
minimum distance being selected as the recommended action. In the early stages of training,
there is a 60% probability of employing a hybrid exploration strategy, where 50% probability
is assigned to selecting random actions and 10% probability is assigned to selecting heuristic
actions. The remaining 40% probability is devoted to using actions generated by the DQN
(see Figure 3). As the training goes further, the exploration probability will decrease to a
relatively small value (the figure 60% will decrease to 1%, and 40% will increase to 99% at
the end). Eventually, the agent acquires the knowledge of how to plan paths.

Figure 3. Action selection in exploration.

4.5. Path-Enhanced Method

The planned path on a lower resolution map includes many straight segments that
should be curves on the higher resolution map; these segments can be recovered. Here, a
path-enhancing method is proposed to transform a lower resolution path (50*50) into a
higher one (100*100, or even higher).

The proposed method includes three steps: (1) map the planned path into the corre-
sponding high resolution map, (2) extract the tuning points using the slope information of
the path, and (3) connect the extracted points using the cubic spline interpolation method.
Figure 4 shows an example of a smooth process using the path-enhanced method. It shows
that the green curve becomes smoother than the red curve.
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Figure 4. Example of path-enhanced. (a) is the comparison on the 2.5D perspective. (b,c) are,
respectively, the original path and the processed path from the 2D perspective.

4.6. Hyperparameters Setting and Training Result

The DMOP method is trained with multitask, which means that the start point and
the target are set randomly in different episodes. The hyperparameters are listed in Table 1.

Table 1. Hyperparameters.

Hyperparameters Value

Learning rate 0.0001
Discount factor 0.99

Batch size 64
Batch number per training 20

Maximum episodes 6000
Maximum planning step per episode 150

Training interval 5
Initial probability of random action 0.5
Initial probability of heuristic action 0.1

Initial probability of DQN action 0.4
Energy factor 4

In Figure 5, the curves of reward in many cases are depicted. This result reveals that
the convergence problem of DQN with high state space [21] can be solved via our method.
When the DQN is converged, it learns how to recognize Mario and mushroom. In addition,
we found an interesting phenomenon: that the bottom of valleys (see the yellow circuits in
Figure 5b) is regarded as the peak by DQN, which means the agent takes as much energy
to cross a valley as it does to cross a mountain.

Figure 5. Result of training. (a) The curves of reward. (b) Feature map of CNN.
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5. Simulation and Analysis
5.1. Setting and Results

The 2.5D map used in this section is set as: both of its x and y axes range in [1, 100], and
its z-axis ranges in [0, 2]. This map can be regarded as it is zoomed from a 10 km * 10 km
area with a maximum altitude of 200 m. Furthermore, the proposed method is compared
with the H3DM method [19], an improved RRT method [31], the Dijkstra method [32], and
the A∗ method [33]. H3DM is a purely heuristic-based algorithm; at its core, it adds a
distance weight decay model to the heuristic function to estimate energy consumption and
distance. Based on the idea of H3DM, we apply the identical heuristic function model to
the A* algorithm. The A* algorithm used in the 2.5D scenario employs a search mechanism
the same as that in the 2D case. It evaluates and sorts nodes in the map based on the total
cost function, selecting the node with the lowest cost to expand the search path. Dijkstra
utilizes the same search mechanism as A*, with the only difference being that it lacks a
heuristic function in its total cost function. As for the RRT algorithm, its search strategy is
similar to that in 2D, and we enhance the guidance towards the target direction [34]. After
planning the path, we calculate energy consumption data. All these methods are planning
for multi-objective, where the energy consumption and path distance are using the same
weights in comparison. All the methods run on a computer with NVIDIA GTX 3060 GPU,
AMD Ryzen 5600 CPU, and 16G RAM, and the codes are implemented with python. It
should be mentioned that the DQN in the DMOP method is trained with multitask, and
the tested tasks have not all been used in the training process.

To compare the performance of the DMOP statistically, we conducted 200 path plan-
ning experiments with random starting points and destinations and then choose five
representative cases to demonstrate the effectiveness of the method. The plots in Figure 6
illustrate the simulation result for each algorithm. In Figure 6a, the points represent the
performance of various algorithms in terms of time, energy consumption, and path distance
in the planning task. For ease of data visualization, we have taken the logarithm of time
values, making the scatterplot distribution more concentrated. Furthermore, points closer
to the lower-right corner indicate lower energy consumption, shorter path distance, and
search time. In this three-dimensional graph, it is easy to observe that, overall, DMOP
significantly reduces search time, exhibiting low energy consumption and short path length.
In Figure 6b, the vertical axis represents the sum of path length and energy consumption,
where a smaller value indicates higher path quality in the search. Due to its breadth-first
search mechanism, Dijkstra’s algorithm can find the global optimum path in this task.
However, its search mechanism also results in much longer search time. In contrast, DMOP
manages to significantly reduce search time while maintaining path quality similar to that
of the Dijkstra’s algorithm. From a large volume of numerical statistics, we can observe
that the DMOP method demonstrates excellent stability and performance.

Figure 6. Numerical statistical graph. (a) Results show in three-dimensional graph. (b) Results show
in two-dimensional graph.

The five cases are shown in Figures 7–11. Meanwhile, the quantified results are shown
in Tables 2–6.
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Figure 7. Case 1 of experiments. (a) Results of H3DM, Dijkstra and DMOP in 2.5D view. (b) Results
of RRT and A* in 2.5D view. (c) Results of H3DM, Dijkstra and DMOP in top view. (d) Results of
RRT and A* in top view. (e) Searching area of Dijkstra method. (f) Searching area of A* method.
(g) Searching area of RRT method.

Table 2. Quantitative result of Case 1.

Method Distance (m) Energy (u) Sum Time (s)

DMOP 10,686.96 13,027.12 23,714.08 0.32
H3DM 10,956.94 13,832.42 24,789.36 10.49
Dijkstra 10,195.35 13,073.70 23,269.05 133.63

A* 10,195.08 13,076.01 23,271.09 53.28
RRT 15,337.99 18,897.25 34,235.25 2415.35

Figure 8. Case 2 of experiments. (a) Results of H3DM, Dijkstra and DMOP in 2.5D view. (b) Results
of RRT and A* in 2.5D view. (c) Results of H3DM, Dijkstra and DMOP in top view. (d) Results of
RRT and A* in top view. (e) Searching area of Dijkstra method. (f) Searching area of A* method.
(g) Searching area of RRT method.
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Table 3. Quantitative result of Case 2.

Method Distance (m) Energy (u) Sum Time (s)

DMOP 9453.30 11,197.33 20,650.63 0.33
H3DM 9358.24 11,884.20 21,242.44 11.92
Dijkstra 9251.96 11,357.54 20,609.50 100.83

A* 9251.81 11,393.83 20,645.64 38.38
RRT 12,388.25 16,331.19 28,719.44 3271.31

Figure 9. Case 3 of experiments. (a) Results of H3DM, Dijkstra and DMOP in 2.5D view. (b) Results
of RRT and A* in 2.5D view. (c) Results of H3DM, Dijkstra and DMOP in top view. (d) Results of
RRT and A* in top view. (e) Searching area of Dijkstra method. (f) Searching area of A* method.
(g) Searching area of RRT method.

Table 4. Quantitative result of Case 3.

Method Distance (m) Energy (u) Sum Time (s)

DMOP 10,355.95 12,398.70 22,754.65 0.32
H3DM 10,786.18 14,104.28 24,890.46 9.77
Dijkstra 10,371.01 12,308.39 22,679.40 100.97

A* 10,371.01 12,308.39 22,679.40 53.48
RRT 14,490.30 19,435.67 33,925.97 958.51

Figure 10. Case 4 of experiments. (a) Results of H3DM, Dijkstra and DMOP in 2.5D view. (b) Results
of RRT and A* in 2.5D view. (c) Results of H3DM, Dijkstra and DMOP in top view. (d) Results of
RRT and A* in top view. (e) Searching area of Dijkstra method. (f) Searching area of A* method.
(g) Searching area of RRT method.
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Table 5. Quantitative result of Case 4.

Method Distance (m) Energy (u) Sum Time (s)

DMOP 9500.19 11,754.78 21,254.97 0.34
H3DM 9890.28 12,049.37 21,939.66 12.97
Dijkstra 9246.16 11,444.45 20,690.61 100.97

A* 9246.16 11,444.45 20,690.61 40.37
RRT 11,378.68 14,074.97 25,453.65 2614.11

Figure 11. Case 5 of experiments. (a) Results of H3DM, Dijkstra and DMOP in 2.5D view. (b) Results
of RRT and A* in 2.5D view. (c) Results of H3DM, Dijkstra and DMOP in top view. (d) Results of
RRT and A* in top view. (e) Searching area of Dijkstra method. (f) Searching area of A* method.
(g) Searching area of RRT method.

Table 6. Quantitative result of Case 5.

Method Distance (m) Energy (u) Sum Time (s)

DMOP 9017.33 12,892.16 21,909.49 0.29
H3DM 9116.10 13,127.90 22,244.23 10.48
Dijkstra 8917.89 12,470.11 21,387.99 97.07

A* 8835.11 12,629.49 21,464.60 39.91
RRT 11,244.09 16,680.88 27,924.98 2784.60

From the results, we can see that the planning speed of DMOP is extremely fast,
which is around 0.32 s, and the quality of its results is very close to those of the Dijkstra
method. The Dijkstra method can obtain the global optimal paths but needs about 100 s or
more; thus, its efficiency is low. The A* method often takes dozens of seconds to complete
the planning. The RRT is very slow and unstable (Case 2 takes 3271 s to find the target,
while Case 3 takes 958 s), the global nature of the planned results is average, and the path
smoothness is poor. The time required for H3DM to complete the planning task is around
10 s, and the global nature of the paths it plans is a bit worse than that of DMOP. Though
DMOP does not find the global optimal solution, its path quality is close to that of the A*
method. Considering the search speed and the path quality, the efficiency of DMOP is the
best among all the methods.

Overall, if we assume that the paths planned by the DMOP, A*, and H3DM are all
acceptable, then the DMOP is over 100 times faster than the A* method and about 30 times
faster than the H3DM.
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5.2. Discussion

The simulation results show that although the Dijkstra method can find the global
optimal path, it always searches almost the whole map to obtain the result. The A* method
is recognized as the most efficient method for the single-objective path planning task on
2D maps, which takes less time and has a high quality of solution because of the added
heuristic function. In the 2.5D multi-objective path planning task, the A* method still
maintains high efficiency. However, we made a special design of the heuristic function
of the A* method according to the planning task of this paper to achieve relatively stable
results. The special design is that we model its heuristic function with linear distance,
curvilinear distance, and energy consumption estimation and set appropriate parameters.
For the RRT algorithm, there are blindness and randomness in its search, which leads to its
inefficiency and the poor smoothness of the planned paths. From the figures of the results,
we can see that RRT searches fewer points compared to the Dijkstra method, but its search
area basically covers the whole map.

Whether it is the Dijkstra method, A*, or RRT, they all need to search a certain area,
causing the method to take a significant amount of time. The H3DM is built on the idea of
pure heuristics, and the algorithm tends to be pure greedy search, with the least number of
search points for path planning, so its efficiency is much higher than the previous methods,
and the method takes only about 10 s. Due to the extreme compression of the search space,
it sacrifices the quality of the solutions to some extent. However, in general, the solution
obtained from H3DM does not undergo significant sacrifices, and the time required to plan
the path is further reduced, thus indicating an improvement.

Compared with these previous methods, a large number of statistical data show that
the DMOP method has a relatively high quality of solution and a very short search time.
For the global nature of the solution of DMOP, during the training process DQN learns to
judge the peaks and valleys, and it always sees the global view (the whole map as input),
which allows it to achieve global path planning from another perspective. Furthermore,
through many training tasks, DQN learns to assess the cost of each point in the planning
process from a global perspective and thus plan paths that are better globally. For the search
time, theoretically, the DMOP method searches the same region as the H3DM method does,
and both methods perform greedy selection planning from neighbor points each time.
However, due to the complexity of the heuristic function model in the H3DM, it takes
a significant amount of time to estimate the cost of each neighbor point. On the other
hand, the DMOP requires only simple forward operations, and the calculations inside the
network are straightforward, which makes the method very fast.

Furthermore, DMOP is tested on the tasks that it has never seen before. Another
important conclusion we can draw from the simulation is that this method possesses robust
reasoning capabilities and adaptability to various planning tasks, allowing it to perform
any untrained planning task on a given map. On this basis, for exploration robots working
on a specific terrain area, the DMOP method can learn to plan paths on this area in advance
and quickly generate the navigation path for robots while they are working.

6. Conclusions and Prospect

In this paper, a deep reinforcement learning-based multi-objective 2.5D path planning
method is investigated for the energy-saving of ground vehicles. Such a method can
efficiently plan paths that have a good trade-off for distance and energy consumption.
In the implementation, we solved two technical problems: the convergence problem of
DQN in high state space, and realizing multi-objective path planning. Unlike traditional
algorithms, the DMOP method does not have a search area, and it directly generates the
planned path after loading the map, which has high efficiency and path quality. Simulation
shows the proposed method is over 100 times faster than the A* and about 30 times faster
than the H3DM method. Also, simulation proves the method has powerful reasoning
capability that enables it to perform arbitrary untrained planning tasks on the map where
the ground vehicles are required to operate.
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Future work will involve the following: (1) studying a new deep reinforcement learn-
ing method that converges more quickly than the DQN; and (2) exploring the application
of deep reinforcement learning in solving other path planning problems.
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Nomenclatures

Pn The nth point in the planned path
Pd The destination (mushroom position)
D(·) Straight-line distance between two points
Dtotal Distance for a 2.5D path
E(·) Energy consumption between two points
Etotal Energy consumption for a 2.5D path
s Observation of DQN (agent)
a Actions given by DQN (agent)
ah Actions given by heuristic method
rw Wall penalty term in the reward function
rs Slope penalty term in the reward function
rt Reward term when Mario obtains the mushroom
rd Distance penalty term in the reward function
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