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Abstract: With the popularization of the network and the expansion of its application scope, the
problem of abnormal network traffic caused by network attacks, malicious software, traffic peaks, or
network device failures is becoming increasingly prominent. This problem not only leads to a decline
in network performance and service quality but also may pose a serious threat to network security.
This paper proposes a hybrid data processing model based on deep learning for network anomaly
detection to improve anomaly detection performance. First, the Grey Wolf optimization algorithm is
improved to select high-quality data features, which are then converted to RGB images and input
into an anomaly detection model. An anomaly detection model of network dataflow based on a
convolutional neural network is designed to recognize network anomalies, including DoS (Denial of
Service), R2L (Remote to Local), U2R (User to Root), and Probe (Probing). To verify the effectiveness
of the improved Grey Wolf algorithm and the anomaly detection model, we conducted experiments
on the KDD99 and UNSW-NB15 datasets. The proposed method achieves an average detection rate
of 0.986, which is much higher than all the counterparts. Experimental results show that the accuracy
and the detection rates of our method were improved, while the false alarm rate has been reduced,
proving the effectiveness of our approach in network anomaly classification tasks.

Keywords: anomaly detection; feature selection; Grey Wolf algorithm; convolutional neural network

1. Introduction

Network abnormal traffic refers to data streams in a communication network that
deviate from normal traffic behavior patterns. It is usually caused by reasons such as net-
work attacks, malicious software, traffic surges, or network equipment failures. Network
abnormal traffic not only leads to decreased network performance and service quality
but also poses a serious threat to network security. For example, network attackers may
utilize abnormal traffic for denial of service attacks, DDoS attacks, intrusion attempts, or
data breaches. Additionally, abnormal network traffic can result in network interruptions,
data loss, system crashes, and significant damage to critical infrastructure. The detection
and analysis of abnormal traffic to identify anomalous activities has become a hot topic in
current network security research. This research has widespread applications in various
fields, such as smart logistics and intelligent warehouse management. It is also important
for the autonomous vehicle’s data transmission as they are an important step for valid
data preprocessing [1-3]. Research on autonomous driving security has attracted attention
recently [4-6]. For example, Xia et al. [4] proposed a data acquisition and analytics plat-
form for automated driving systems (ADS) to realize connected automated vehicle (CAV)
cooperative perception.

In the field of network security research, because deep learning algorithms can learn
the deep features of large-scale network data, they have been widely used in network space
security. Kim et al. [7] proposed a denial of service (DoS) attack network intrusion detection
system using a convolutional neural network (CNN). They developed a deep learning (DL)
model specifically designed for DoS attacks. The experiments were conducted on the KDD
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dataset. Leveraging an ample number of samples from the KDD dataset, the model was
trained using a convolutional neural network to recognize various types of attacks. To
effectively extract and learn spatio-temporal features, Kanna et al. [8] proposed a high-
precision IDS model using a unified model of optimized CNN and hierarchical multi-scale
to effectively extract and learn spatio-temporal features. Thakkar et al. [9] propose a novel
feature selection technique focused on enhancing the performance of DNN-based IDS,
which selects features by incorporating statistical importance using standard deviation and
mean and median differences. Shahin et al. [10] proposed a deep hybrid learning model to
improve network intrusion detection systems and successfully applied it in the Industrial
Internet of Things (IoT).

Anomaly detection in high-dimensional data is a key research problem with serious
implications for real-world problems [11,12]. Li et al. [13] proposed an intrusion detection
method based on deep learning, which transforms network traffic data into images that
can be processed by CNNs. Subsequently, deep learning models are utilized for anomaly
detection. Wang et al. [14] introduced a method for classifying malicious software traffic
using convolutional neural networks and representation learning. Experimental results
demonstrate that this method exhibits high performance and effectiveness in the classi-
fication of malicious software traffic. To enhance the capabilities of anomaly detection
models, Garg et al. [15] proposed a hybrid data processing model for network anomaly
detection using Gray Wolf Optimization (GWO) and Convolutional Neural Networks
(CNN). This method improves the exploration, exploitation, initial population generation
capabilities, and dropout function. The effectiveness of the proposed model is validated on
benchmarks (DARPA’98 and KDD’99) and synthetic datasets, outperforming other state-
of-the-art models (for network anomaly detection). In order to enhance the reliability of
SDN, Garg et al. [16] proposed a hybrid deep learning-based anomaly detection scheme for
suspicious flow detection in the context of social multimedia. Muneer et al. [17] proposed a
hybrid model based on a five-layer deep autoencoder neural network (DANN) to reduce
the difference between input and output. During the experiments, the class imbalance and
poor performance of the dataset were investigated and resolved to improve the results.

The existing methods [13-17] for real-time detection of network anomalies using large-
scale network log data suffer from low efficiency, computational complexity, and high
false positive rates. By leveraging evolutionary computation methods to improve feature
selection, an optimal trade-off between the two objectives can be achieved, resulting in
reduced error rates and minimized feature sets. The anomaly detection method based on
feature selection holds significant significance in enhancing anomaly detection efficiency
and reducing false positive rates. Commonly used evolutionary computation methods
include genetic algorithms, particle swarm optimization algorithms, ant colony optimiza-
tion algorithms, and artificial immune system algorithms. Mirjalili et al. [18] proposed
the Grey Wolf Optimizer (GWO), which mimics the leadership hierarchy and hunting
mechanism of grey wolves in nature. Four types of grey wolves, namely alpha, beta, delta,
and omega, are utilized to simulate the leadership hierarchy. Additionally, three main steps
are performed: searching for prey, encircling prey, and attacking prey. The effectiveness
of this algorithm has been validated through comparative studies with Particle Swarm
Optimization (PSO), Gravitational Search Algorithm (GSA), Differential Evolution (DE),
Evolutionary Programming (EP), and Evolution Strategies (ES). The results demonstrate
that the algorithm is well-suited for challenging problems with unknown search spaces.
Mirjalili et al. also provided a reviewer of its recent variants and applications in the docu-
ment [19]. Meidani et al. [20] proposed an improved version of the Grey Wolf Optimizer,
which adapted the tuning of the parameters based on the fitness of the candidate solutions
during the optimization. It can automatically converge to a sufficiently good optimum in
the shortest time. Wang et al. [21] proposed an improved Grey Wolf Optimizer (IGWO)
with evolutionary and elimination mechanisms to achieve a proper trade-off between
exploration and exploitation, further enhancing the convergence speed and optimization
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accuracy of GWO. Experimental results demonstrate that the IGWO algorithm exhibits
faster convergence speed and higher optimization accuracy.

Currently, research on network anomaly traffic detection has achieved significant
advancements. Methods and algorithms based on statistical analysis, machine learning,
data mining, and deep learning techniques have been widely applied in network anomaly
traffic detection [22,23]. However, research on network anomaly traffic detection faces
a series of challenges. First, network anomaly traffic exhibits diversity and complexity,
potentially having different features and behavioral patterns, thus necessitating the design
of flexible and robust detection methods. Second, network data typically possess high
dimensionality, high velocity, and large-scale characteristics, requiring efficient algorithms
and technologies to achieve real-time anomaly traffic detection. Additionally, network
anomaly traffic detection must consider the trade-off between false positive and false
negative rates on normal traffic to ensure accuracy and reliability.

Due to the heterogeneous and diverse nature of cloud environments, existing tech-
niques may not be applicable to handle the challenges induced by the existence of virtual-
ized environments and the underlying security risks. Thus, it is meaningful to introduce
hybrid data processing to involve both historical and real-time data streams. This paper
aims to investigate methods and technologies for network anomaly traffic detection and
propose an efficient, accurate, and reliable model for network anomaly detection. Such
a model will be of great significance in the research of real-time video security analysis
technology [24,25], intelligent warehouse management, autonomous driving security, and
other fields.

The remainder of this paper is organized as follows. Section 2 introduces the proposed
method. In Section 3, experimental results are presented. Section 4 discusses our results,
and Section 5 makes some concluding remarks.

2. Materials and Methods

The anomaly detection model of network dataflow based on an improved Grey Wolf
Algorithm and CNN is shown in Figure 1.
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Figure 1. Anomaly detection model of network dataflow based on an improved Grey Wolf algorithm
and CNN.

2.1. Feature Selection Based on the Gray Wolf Optimization Algorithm

The Grey Wolf Optimization (GWO) algorithm draws inspiration from the social be-
haviors exhibited by a pack of grey wolves. This simulation mode effectively explores the
search space, enhancing the likelihood of discovering the global optimal solution. GWO,
which does not necessitate the gradient information of the objective function, is particu-
larly suited for non-smooth and non-convex problems, rendering it well-performing for
intricate scenarios. The algorithm maintains individual diversity during the search process,
diminishing the susceptibility entrapment in local optima. Relative to other evolutionary
algorithms, GWO boasts simpler parameter configurations. It typically achieves com-
mendable solutions within a relatively limited number of iterations, thereby accelerating
convergence rates when seeking global optima.
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2.1.1. Principles of Grey Wolf Optimization Algorithm

In the Grey Wolf Algorithm, a hierarchical structure is formed among grey wolves,
including leaders and followers. Leaders typically have better fitness and advantageous
positions, while followers improve their fitness by learning from and imitating the leaders.
This hierarchical structure and collaborative behavior can be applied to solving optimization
problems. The Grey Wolf algorithm exhibits excellent global search and local optimization
capabilities, making it suitable for various optimization problems, including function opti-
mization, machine learning, and image processing. It is simple to implement and does not
rely on gradient information. In the context of network anomaly classification, the grey wolf
optimization algorithm can be applied to feature selection, model parameter optimization,
and other aspects to enhance the performance and effectiveness of the classifier. The basic
idea of GWO is shown in Figure 2.

Figure 2. Principle of Grey Wolf Algorithm.

The search process of the Grey Wolf Algorithm is as follows:

(1) Initialize the population: In the initial population, randomly select a group of grey
wolves as the population. Each grey wolf represents a potential solution.

(2) Evaluate fitness: Calculate the fitness value of each grey wolf based on a specific fitness
function for the problem. This value is used to assess the quality of the solutions.

(3) Determine the leader: Select the grey wolf with the best fitness value as the leader.
The position of the leader represents the current optimal solution.

(4) Update grey wolf positions: Update the position of each grey wolf based on their
distances and fitness values. The position update is influenced by the leader, as the
better solutions guide the search direction of other solutions.

(5) Handle boundaries: When updating positions, ensure that the grey wolves’ positions
do not exceed the defined boundaries of the problem.

(6) Iterative search: Repeat steps three to five until reaching the predetermined number
of iterations or meeting the stopping criteria.

(7)  Output the result: After completing the iterative search, output the found optimal
solution as the solution to the optimization problem.
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2.1.2. Basic Grey Wolf Optimization Algorithm

(1) A random initial population is generated by creating a certain number of wolves.
Each wolf is represented by a matrix of size i rows and n columns, where i is the number of
wolves and 7 is the number of features. Each column of the matrix is randomly assigned
a value of 0 or 1, where 1 represents the selection of that feature, and 0 represents the
non-selection of that feature. The fitness of each wolf is calculated using a fitness function.
The wolves are then sorted based on their fitness, with lower fitness indicating closer
proximity to the prey. The top three wolves are designated as «, 3, and & wolves, while the
remaining wolves belong to the omega category. The fitness is calculated according to the
following definition:

. FP + FN

Fltl_TP+TN+FP+FI\L/ @
F 3

Fity =y x — + (1 —y) x == 2

1 YXF+( Y) X cF @)

C

where FP, EN, TP, and TN represent false positives, false negatives, true positives, and true
negatives, respectively. y is a random number between [0, 1]. F' represents the number of
selected features, and F represents the total number of features. efl the error rate with the
selected features, and ef is the error rate with all features. Equation (1) aims to minimize
the error rate, while Equation (2) ensures the minimum number of features.

(2) Initialize the system vector using the following formula:

A=2axr—a 3)

C=2xnm (4)

where a is the convergence factor, which linearly decreases from 2 to 0 with the number of
iterations. r; and r, are two random vectors between 0 and 1.

(3) The grey wolves begin their hunting by calculating the distances between each
omega wolf and the «, 3, and 6 wolves. Based on the positions of the «, 3, and 6 wolves,
each € wolf updates its own position to encircle the prey. Each population’s position update
represents an iteration. After each position update, the fitness of each wolf is recalculated,
and new o, 3, and & wolves are selected for the next iteration. This process is repeated
iteratively. The distance formula and position update formula are as follows:

Dy = |C1 x Xq — X] )
Dg = |Gy x Xpg =X (6)
Ds = |C3 x X5 = X| @)
X1 = Xo = A1 % (Do) ®
Xo =Xpg — Ay x (Dp) )
X3 = X5 — A3z x (Ds) (10)
Xy = L2200 )

where Dy, Dg, and Ds represent the distances between the o wolf, 3 wolf,  wolf, and the
current w wolf, respectively. Here, &, 3, and ¢ refer to different wolf populations. X, Xg,
and X; indicate the current positions of the « wolf, 3 wolf, and ¢ wolf, respectively, while
X represents the current position of the w wolf. X;,; denotes the updated position after
the update.

2.1.3. The Improved Grey Wolf Optimization Algorithm

The traditional Grey Wolf Algorithm utilizes vectors A and C for exploration, which
may result in a rapid convergence of the pseudo-Pareto front during the iteration pro-
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cess. The pseudo-Pareto front refers to an approximate Pareto front obtained through an
optimization algorithm in multi-objective optimization but is not the actual Pareto front.

In multi-objective optimization, the Pareto front is a set of non-dominated solutions
representing the solutions that cannot be further improved in one objective without sac-
rificing the others. Each solution in the Pareto front is the best trade-off solution, and
no solution can outperform others on all objectives. However, optimization algorithms
may find a pseudo-Pareto front, which includes some non-dominated solutions but is not
the true Pareto front. The Pseudo-Pareto front may contain redundant or local optimal
solutions, or it may lack certain true Pareto optimal solutions.

The conventional optimization process may get stuck in local optima, wasting consid-
erable time. Therefore, a mutation function is introduced. Through mutation operations,
individuals can randomly jump around the current solution, hoping to escape local optima
and search for the global optimum. To address this issue, a mutation method is employed
to enhance the exploration capability of the Grey Wolf Algorithm. The function Py, is
introduced, and the formula is as follows:

P =057 10T 10,01 (12)

where t represents the current iteration number, and T denotes the total number of iterations,
making it an exponentially decreasing function. At this point, we compare P, with a
random number between 0 and 1; if Py, is greater than the random number, a mutation
operation is performed. The range of mutation is recorded with N, and the mutation

formula is as follows: N
N = max{l, [D — (,’;) X Pm-‘ } (13)

where D represents the total number of features, and v is a random number between
0 and 1. The result obtained is the number of features to be subjected to mutation. The
wolf to be mutated is initialized, and its first feature to the Nth feature is reassigned to
achieve mutation.

2.2. Anomaly Detection Model of Network Dataflow Based on VGG16

Representing network flow data as RGB images and leveraging the image classification
capabilities of convolutional neural networks, we perform network anomaly classification.
This paper builds a classification model based on VGG16 [26], as illustrated in Figure 3.

224 x 224 x 64

112 x 112 x 128 FC 4096 FC 4096

56/x56% 256 Softmax 1000

28 x28 X512 14 14x512 _

g 7X7x512
' a =] B > >

| max pooling @ convolution+ReLU

Figure 3. The architecture of the network anomaly detection model based on VGG16.

(1) Input layer: Receives the pixel values of the input image.
(2) Convolutional layers: The VGG16 model consists of 13 convolutional layers, where
each convolutional layer utilizes a 3 x 3-sized convolutional kernel and employs
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the ReLU activation function for non-linear transformation. The purpose of these
convolutional layers is to extract features from the input image.

(38) Pooling layers: After each convolutional layer, the VGG16 model uses 2 x 2 max-
pooling layers to perform downsampling operations, reducing the spatial dimensions
of the feature maps while retaining the most prominent features.

(4) Fully connected layers: The VGG16 model contains three fully connected layers, each
comprising 4096 neurons. The role of these fully connected layers is to convert the
feature maps into specific class probabilities.

(5) Softmax layer: Following the last fully connected layer is the Softmax layer, which is
used to map the output of the network to a probability distribution over classes.

(6) Output layer: The output layer provides the final classification result.

3. Results
3.1. Datasets
3.1.1. KDD99

KDD99 [27] (Knowledge Discovery in Databases 1999) is a commonly used network
intrusion detection dataset, which was provided in the 1999 International Data Mining and
Knowledge Discovery Competition (KDD Cup). This dataset is widely used to evaluate
and study the performance and algorithms of network intrusion detection systems. The
KDD99 data set is a network traffic data set based on the TCP/IP protocol, which contains
a large number of network connection records, including both normal network connections
and various types of network attacks. These attack types include DoS (denial of service),
R2L (remote to local), U2R (user to root), Probing (detection), etc.

The KDD99 dataset encompasses approximately 494,020 network connection samples
and comprises 41 distinct features. These features encompass various attributes associated
with network connections, such as source IP address, destination IP address, source port,
destination port, connection duration, packet count, and others. These features are utilized
to establish models and algorithms aimed at discerning whether network connections
are benign or indicative of malicious activity. The original data of the KDD99 dataset is
stored in a textual format, where each line represents network traffic data with values
separated by commas and features separated by periods. Therefore, the KDD99 dataset
can be viewed as a matrix with a dimension of 494,020 rows and 42 columns. The number
494,020 represents the total of 494,020 network data entries, with the first 41 columns being
the network data features and the forty-second column representing the type label. The
text-formatted data has been converted into an RGB image format using the Pandas library
and PIL library in Python, as illustrated in Figure 4. To handle the class imbalance in the
dataset during training, we employed data augmentation methods [28] to randomly crop
and flip the training data, generating more training samples to increase data diversity. To
speak concretely, given the image I(x, y), the random crop operation can be implemented
by sub-image cropping. The sub-image is included in the original image, and its center
position is randomly selected. Using this method, our random crop augmentation crops
the original image into a given size sub-image randomly. Then, the cropped images are
scaled up to the original image size by an upsampling technique.

Given the image, the horizontal or vertical flip augmentation flips the input image
along its vertical or horizontal axis randomly with a given probability. The obtained
augmented image I(x’, ) is formulated as follows (left: horizontal, right: vertical):

x! -1 00 x x! 1 0 0 X
yi=10 1 0|=x*|y yvi=10 -1 0| x|y (14)
1 0 01 1 1 0 0 1 1

Related sentences have been added in the updated version.
When employing the KDD99 dataset, customary preprocessing steps are often under-
taken, including data sampling, feature selection, feature value normalization, and class
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balance adjustment. The dataset has been divided into a training set and a test set in a
7:3 ratio, where 70% of the data serves as the training set for model training. The remaining
30% is allocated as the test set for evaluation.

’ o 7 ~< . . . -
’ S 4 S
’ ~o ’ i
’ ~< ’ e
’ ~ ’ ~o

’ S 7’ ~
, ~ / ~
’ ~ / ~
’ ~ % ~
’ ~< / ~o
p <

Figure 4. RGB images of network data.

3.1.2. UNSW-NB15

UNSW-NB15 dataset is an amalgamation of real traffic and generated attack data
from the University of New South Wales (UNSW) [29]. It is a dataset extracted from
100 GB of normal and modern attack traffic by researchers at the Australian Centre for
Cyber Security (ACCS) using the IXIA tool. It contains nine different attacks, including
DoS, worms, Backdoors, and Fuzzers. The dataset contains raw network packets. The
number of records in the training set is 175,341 records, and the testing set is 82,332 records
from the different types, attack and normal.

3.2. Experiment Settings

The experiment was conducted using PyTorch 1.11.0, Python 3.8 (Ubuntu 20.04), and
Cuda 11.3. The GPU selected for the experiment was RTX 4090 (24 GB), and the CPU
chosen was 15 vCPU Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz. The system had
80GB of memory (RAM). We clarify that the hyperparameters of the VGG16 convolution
network are finetuned by using the Adam Optimization Algorithm with a steady learning
rate of 0.03. The batch size is set to 16.

3.3. Evaluation Metrics and Methods

Cross-entropy loss [30] was used as train loss. To assess the model performance, train
loss, accuracy, detection rate (DR), false positive rate (FPR), precision, and F-score were
used, which were defined as follows:

running loss

train loss = : (15)
train steps
accuracy = TP+ 1IN (16)
ceuracy = TP+ IN+FP + FN
R=—— 17
b TP 4+ FN (17)
FPR= ———— 1
FP + %II’) (18)
precision = ——— (19)

Precision x DR
F-— =2X — 20
score % Precision + DR (20)
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where running loss refers to the accumulated training loss during the training process, train
steps represent the number of training steps performed during the training phase, and
TP, TN, FP, and FN are True Positive, True Negative, False Positive, and False Negative,
respectively. TP refers to the situation where normal network traffic is predicted by the
model to be normal. FP refers to situations where other abnormal categories are predicted
as normal. TN refers to the situation where normal categories are misclassified into other
abnormal categories, while FN refers to the situations where abnormal categories are
predicted as abnormal categories. Notably, False Positive Rate and False Negative Rate are
important criteria that show how many standard data are predicted as anomalous and how
many anomalies are, on average, missed by the detector, respectively.

3.4. Experimental Results of Optimizing the Grey Wolf Algorithm

The results of feature selection using the traditional Grey Wolf Algorithm and the
improved Grey Wolf Algorithm are shown in Figure 5.

The change of best fitness The change of best fitness
— GWO 107 — GWO
1073
f10-0
1077
1078 \
10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
number number

(a) The fitness of the traditional Grey Wolf Algorithm (b) The fitness of the improved Grey Wolf Algorithm

Figure 5. The fitness of the traditional Grey Wolf Algorithm and the improved Grey Wolf Algorithm.
The horizontal axis represents the number of iterations, while the vertical axis represents the fitness.
Lower fitness values indicate better optimization performance.

The fitness of the traditional Grey Wolf Algorithm reached the level of 107° after
around 26 iterations, whereas the improved algorithm achieved this level around the 19th
iteration. As a result, the improved algorithm required fewer iterations, accelerating the
feature selection process of the Grey Wolf Algorithm. The fitness of the improved algorithm
after 25 iterations reached the level of 1.078, In comparison the fitness of the traditional
algorithm after 100 iterations remained at the level of 1.0°, which indicates an enhanced
exploration space in the improved Grey Wolf Algorithm, allowing it to escape local optima
and search for global optima.

The selected features are shown in Table 1. The selected features are reduced from
39 to 36 when using the improved Grey Wolf Algorithm.

Table 1. The selected features. 1/ denotes that the corresponding feature is selected in the method,
while - denotes that the corresponding feature is not selected in the method.

The Selected Features

Name Description Traditional Improved
Algorithm Algorithm
1 Duration Connection duration V4 v
2 Protocol type Protocol types for links: TCP, UDP, ICMP v v
3 Service Network service types: HTTP, FTP, SMTP, etc. 4 4
4 Flag Status flags for connections Vv Vv
5 The number of the sent bytes Number of bytes sent by a link V4 -
6 The number of received bytes The number of bytes accepted by a link Vv -
7 Land Is the source IP, port consistent with the target IP, and port? v
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Table 1. Cont.

Name

Description

The Selected Features

Traditional
Algorithm

Improved
Algorithm

Wrong frame
Urgent
Hot

The number of the wrong land

Logged_in
Num_compromised
Root_shell
Su_attempted
Num_root
Num_file_creation
Num_shells
Num_access_file
Num_outbound_cmds
Is_hot_login
Is_guest_login
count

Srv_count
Serror_rate
Srv_serror_rate
Rerror_rate
Srv_error_rate
Sane_srv_rate

Diff srv_rate

Srv_diff_host_rate

Dst_host_count
Dst_host_srv_count
Dst_host_same_srv_rate
Dst_host_diff srv_rate

Dst_host_same_src_port_rate

Dst_host_srv_diff _host_rate

Dst_host_serror_rate
Dst_host_srv_serror_rate
Dst_host_rerror_rate
Dst_host_srv_error_rate

Number of segments with invalid checksums in the connection
Number of emergency segments in the connection

Number of hot metrics related to the current connection
Incorrect login count in a link

Successfully logged in

The total number of errors not found in a link

The root is getting the shell

Whether to try to authenticate as Superuser

Number of users with root privileges in a link

Number of files created in a link

Number of normal user logins

Number of operation control files in a file

Number of outbound commands in FTP sessions

Is the user accessing as root or administrator?

Is it a guest login?

Number of links to the same destination IP

Number of links to the same destination port

The ratio of incorrect links

The rate of incorrect links related to the current service

The rate of rejecting connections

The rate of rejected links related to the current service

The ratio of links that are the same as the current service

The ratio of links different from the current service

The ratio of links from different hosts that are the same as the
current service

The same number of links as the target host

Number of connections to the same port

The ratio of links to the same service as the target host

The ratio of links to different services from the target host
Link ratio with the same source port as the target host

The ratio of links from different hosts with the same service as
the target host

The rate of incorrect links related to the target host

The rate of incorrect links related to the target host service
The rate of rejected links related to the target host

The rate of rejected links related to the service of the target host

L L L R i R R R

L

L 0 0 0 L R R R s R

\/ denotes that the corresponding feature is selected in the method, while - denotes that the corresponding feature
is not selected in the method.

3.5. Experimental Results of Anomaly Detection on the KDD99 Dataset

Figure 6 shows the performance of anomaly detection of our method.

The average detection rate is about 0.986, as seen in Figure 6a. The detection rate
represents the probability that a certain type of data can be detected, which can well reflect
the sensitivity of the model to that type of data. From Figure 6, it can be seen that the model
has a high detection rate for data of normal type, Probe type, and DOS type, all of which are
above 90%. The detection rate for R2L data is also close to 80%. Due to the small number of
original data samples, all performances of U2R are relatively low. The false positive rate
represents the probability of detecting negative samples as positive samples, which reflects
the probability of errors in the detection method. Figure 6b shows that the model has a
low false positive rate for normal, Probe, U2R, and R2L types while a relatively high false
positive rate for DOS types, all of which are below 0.5%. Figure 6¢c shows that the model’s
accuracy for normal, Probe, DOS, and R2L types exceeds 90%, while U2R is relatively low
at about 60%. The F-score represents the fusion of detection rate and accuracy. As shown in
Figure 6d, the model has an overall higher F-score for normal, Probe, DOS, and R2L types,
while U2R is relatively lower.

Comparison results with other methods on the KDD99 dataset are shown in Table 2.
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Figure 6. The performance of anomaly detection.

Table 2. Comparison results with other methods on the KDD99 dataset.

Methods Detection Rate False Positive Rate Precision F-Score
Sharma et al. [31] 93.41 0.275 99.05 93
Pandeeshwari et al. [32] 98 3.05 - 83.20
Guo et al. [33] 91.86 0.78 93.29 -
Proposed Model 98.6 0.278 94.86 92.24

We can see from Table 2 that the proposed method achieves an average detection rate
of 0.986, which is higher than all the counterparts. The false positive rate, precision, and
F-score also achieved good results.

3.6. Experimental Results of Anomaly Detection on the UNSW-NB15 Dataset

We also conducted experiments on UNSW-NB15 and reported the performance of our
proposed method with other similar previous works, as shown in Tables 3 and 4.

Table 3. Results about classifiers.

Attack Class Accuracy Precision Recall F-Score
Exploits 0.921 0.763 0.596 0.669
Generic 0.990 0.990 0.962 0.981

Reconnaissance 0.969 0.812 0.665 0.733
Analysis 0.893 0.899 0.951 0.925
Shellcode 0.794 0.817 0.987 0.890
DosS 0.847 0.799 0.943 0.867
Worms 0.851 0.782 0.891 0.843
Fuzzers 0.789 0.761 0.994 0.862

Backdoors 0.723 0.672 0.855 0.751
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Table 4. Comparison results with other methods on the UNSW-NB15 dataset.

Methods Accuracy (%)
Kasongo and Sun [34] 77.51
Roy and Singh [35] 84.1
Kasongo and Sun [36] 77.16
Eunice et al. [37] 82.1
Moustafa and Slay [38] 81.34
Proposed method 84.5

The confusion matrix is shown in Figure 7. We can see that our method can handle the
different classes of anomaly detection in the UNSW-NB15 dataset, especially for Fuzzers
and Recon cases, and our solution can address the data imbalance effectively.

Dos -| 139 1,806 52 6 35 7
Exploits

112 5,140 94 4 158 58

Fuzzers -| 41 838 1,147 3 874 128

Ture label

Generic - 30 227 26 17

Normal - 32 233 952 1 173
Recon - 5 319 11 1 15 1,397
\;1 8 \;1 (.I) - =}
8 2 g E g g
S 2 E 2
= 5] = ]
= = o z

Predicted label
Figure 7. The confusion matrix.

4. Discussion

This paper first optimizes the GWO algorithm for extracting network traffic features
and achieves network anomaly recognition by visualizing features and establishing a clas-
sification model. This method is different from the existing text feature-based recognition
methods. The experiments were conducted on the KDD99 dataset, and the experimental
results showed that the model achieved high scores in terms of detection rate, accuracy, and
F-score for normal, Probe, and Dose. Table 2 shows that the proposed method achieves an
average detection rate of 0.986, which is higher than all the counterparts. The false positive
rate, precision, and F-score also achieved good results.

Due to the limited samples of U2R and R2L in the dataset, the detection rate, accuracy,
and F-score of U2R and R2L are relatively low. To this end, this paper focuses on the problem
of category imbalance in the KDD99 dataset. It adopts data augmentation methods to
randomly crop and flip the training data, generating more training samples to increase
data diversity. In addition, Dropout is used to randomly inactivate a portion of the data
to prevent overfitting, thereby breaking the dependency relationship between the data
and reducing the situation of collaborative adaptation. In this paper, dropout is set to 0.5,
randomly discarding half of the output. More experiments will be conducted in future
work to demonstrate the robustness of our method.

More experiments on the UNSW-NB15 dataset also demonstrate the effectiveness of
the proposed method. Comparing results with other methods, our method achieves an
accuracy of 84.5%, which is higher than the results of other methods.
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5. Conclusions

This paper proposes an improved Grey Wolf Optimization algorithm for the feature
selection of data sets. The data are then represented by images, and the Convolutional
Neural Network algorithm is used to train the classification model. Experiments are
conducted on the KDD99 and UNSW-NB15 datasets to evaluate the effectiveness of the
model by recording indicators such as accuracy, detection rate, and false alarm rate. The
experimental results show that this method performs well in network anomaly classification
tasks. The improved Gray Wolf Optimization algorithm is used for feature selection, which
makes the selected features have high accuracy and reduces the number of features, thus
improving the accuracy and efficiency of the model. Our approach can improve the
performance by enhancing anomaly detection efficiency and improving the detection rate.

In future research, we plan to use multiple optimization algorithms to further improve
the performance of feature selection and introduce more complex deep learning models,
such as recurrent neural networks, attention mechanisms, etc., to further improve the
performance and generalization ability of the model. In addition, it is possible to con-
sider using larger real network datasets to comprehensively evaluate the robustness and
scalability of the model.
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