
Citation: Zhang, W.; Zhou, Q.; Guo,

L.; Zhao, D.; Gou, X. Performance

Analysis of Several Intelligent

Algorithms for Class Integration Test

Order Optimization. Electronics 2023,

12, 3733. https://doi.org/

10.3390/electronics12173733

Academic Editor: Antonio Brogi

Received: 14 August 2023

Revised: 28 August 2023

Accepted: 1 September 2023

Published: 4 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Performance Analysis of Several Intelligent Algorithms for
Class Integration Test Order Optimization
Wenning Zhang 1,2,*, Qinglei Zhou 3, Li Guo 2, Dong Zhao 2 and Ximei Gou 2

1 State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450000, China
2 Software College, Zhongyuan University of Technology, Zhengzhou 450000, China
3 School of Information Engineering, Zhengzhou University, Zhengzhou 450000, China
* Correspondence: zhangwn@zut.edu.cn

Abstract: Integration testing is an essential activity in software testing, especially in object-oriented
software development. Determining the sequence of classes to be integrated, i.e., the class integration
test order (CITO) problem, is of great importance but computationally challenging. Previous research
has shown that meta heuristic algorithms can devise class integration test orders with lower test
stubbing complexity, resulting in software testing cost reduction. This study focuses on the compa-
rable performance evaluation of ten commonly used meta heuristic algorithms: genetic algorithm
(GA), particle swarm optimization (PSO), cuckoo search algorithm (CS), firefly algorithm (FA), bat
algorithm (BA), grey wolf algorithm (GWO), moth flame optimization (MFO), sine cosine algorithm
(SCA), salp swarm algorithm (SSA) and Harris hawk optimization (HHO). The objective of this study
is to identify the most suited algorithms, narrowing down potential avenues for future researches
in the field of search-based class integration test order generation. The standard implementations
of these algorithms are employed to generate integration test orders. Additionally, these test orders
are evaluated and compared in terms of stubbing complexity, convergence speed, average runtime,
and memory consumption. The experimental results suggest that MFO, SSA, GWO and CS are the
most suited algorithms. MFO, SSA and GWO exhibit excellent optimization performance in systems
where fitness values are heavily impacted by attribute coupling. Meanwhile, MFO, GWO and CS
are recommended for systems where the fitness values are strongly influenced by method coupling.
BA and FA emerge as the slowest algorithms, while the remaining algorithms exhibit intermediate
performance. The performance analysis may be used to select and improve appropriate algorithms
for the CITO problem, providing a cornerstone for future scientific research and practical applications.

Keywords: integration testing (IT); object-oriented testing (OOT); meta heuristic algorithms; class
integration testing order (CITO); performance analysis

1. Introduction

Software testing is an important and labor-intensive process carried out to ensure
software quality, accounting for about 40–50% of the overall project cost [1]. Effective
integration testing helps to verify that the interface implements the desired functions.
Traditional integration testing strategies include non-incremental one-time integration
methods and bottom-up or top-down incremental integration methods [2]. With the wide
application of object-oriented technology and the improvement of requirement complexity,
the number of classes in a system increases. Consequently, the intricate control and depen-
dency interrelations among classes are complex and pose challenges in precise delineation.
Conducting object-oriented integration testing by conventional approaches becomes im-
practical. How to decide the order of classes that are developed independently is called the
class integration test order problem (CITO). The CITO problem is computationally difficult,
making accurate solutions very difficult to obtain [3].

Generally, people are required to construct test stubs for target classes to emulate their
necessary functionalities, an important factor that impacts the cost of integration testing.

Electronics 2023, 12, 3733. https://doi.org/10.3390/electronics12173733 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12173733
https://doi.org/10.3390/electronics12173733
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12173733
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12173733?type=check_update&version=1

Electronics 2023, 12, 3733 2 of 30

Although several test tools (such as JUnit) can reduce the test stub cost, the stub construction
remains complex and cumbersome with the risk of introducing new defects. Theoretically,
CITO is a NP complete problem, rendering the identification of globally optimal class
integration test orders impractical. However, Kung et al. proved that the number of test
stubs and the corresponding construction complexity are different for various CITO [4].
Reasonable class integration test orders can reduce the test stub cost [5].

In the literature, various approaches and strategies for the CITO problem have been
proposed. Most of the approaches are based on graph theory, focusing on breaking class
dependency cycles, and determining orders via reverse topological sorting. However,
graph-based approaches have difficulties in identifying strongly connected components,
especially when a system contains numerous dependency cycles. In the field of software
engineering, some popular meta heuristic algorithms such as genetic algorithm, particle
swarm optimization algorithm, and firefly algorithm have been used to automate the
process of test data generation with the goal of covering target paths [1]. Due to the
computational complexity, the CITO problem has become a subject of the search-based
software engineering (SBSE) [6]. Researchers have transformed the CITO problem into
an optimization problem. More recent approaches for CITO are search-based methods by
using meta heuristic algorithms.

In recent years, many new algorithms have emerged because of their simplicity and
robustness. A survey conducted by Hussain [7] collected 1222 publications from 1983 to
2016 and revealed around 140 meta heuristic algorithms applied in a diverse range of fields
broadly in the area of science and technology, economics, and daily life. The famous No
Free Lunch (NFL) theorem states that the performance of all algorithms is equal across
all possible optimization problems. To identify the most appropriate algorithms for CITO
problem and streamline forthcoming research in the field of search-based class integration
test order generation, we conducted a comparative performance analysis.

The remainder of this paper is structured as follows. Section 2 describes the past
literature on CITO problem. Section 3 describes the entire research methodology with
detailed information of algorithm selection, problem representation and the optimization
process. Section 4 analyzes and discusses the experimental results, including stubbing
complexity, attribute complexity, method complexity, convergence performance, average
runtime, and memory consumption. Section 5 summarizes the internal validity and external
validity of the experiment. Section 6 presents the conclusion as well as the theoretical and
practical contributions for the study.

2. Literature Review

Object-oriented software engineering is the application of object-oriented method in
the field of software engineering. The object relationship graphs and class design models
provide a solid working foundation for generating class integration test orders. Several
papers have proposed various strategies to derive test orders.

Kung et al. [4] were the first researchers to address the CITO problem. They put
forward the graph-based method to minimize the number of test stubs. If there was
no cycle in an object relationship graph, reverse topology sorting was used to generate
class integration test orders. If there were cycles, the cycles were destroyed by deleting
associated edges with the smallest number of test stubs. Based on Kung’s work, Tai and
Daniels [8] created the primary integration test order in strong inheritance and aggregation
dependencies, and then constructed the secondary integration order by deleting edges
with the largest weight. Traon et al. [9] measured class relationships based on the leaf
edge counts and deleted loops containing nodes with the maximum weights. Briand
et al. [10] used Tarjan’s algorithm to explore object relationship graph in depth. Based on
recursive identification of strong connected components, they calculated the weight of each
association dependency, and then deleted the edges with the largest weight to break cycles.

All the aforementioned endeavors employed graphs models to portray class depen-
dencies, subsequently applying graph-based algorithms to break cycles. The objective of

Electronics 2023, 12, 3733 3 of 30

these graph-based approaches is to minimize the number of test stubs, as perceived as a
major cost factor in integration testing.

Subsequent studies indicated that the test order with the fewest stubs may not be the
best choice [11]. Briand et al. [12] pointed out that the solutions based on graph theory
would be difficult or impossible to fully solve CITO problem especially when assuming
equal development cost for each stub. Consequently, various meta heuristic algorithms,
such as genetic algorithm and particle swarm optimization, were employed to solve the
CITO problem, yielding promising performance and efficiency outcomes.

Briand et al. [12] first proposed the search-based method to obtain appropriate test
orders. They proposed the concept of stubbing complexity based on attribute coupling and
method coupling. Under the constraint of not breaking strong dependencies, they combined
the inter class stubbing complexity and genetic algorithm to minimize the stubbing effort
and formulate optimal class integration orders. The results on five real-world applications
were encouraging and reliable.

Borner et al. [13] presented an approach to measure the test focus of a given integration
test order. They selected the fault prone dependencies as the test focus, integrated the
test focus in early integration steps, and then applied the simulated annealing algorithm
to minimize the effort to simulate not yet integrated components of the system. They
pointed out that the disadvantage of simulated annealing and genetic algorithm was the
long duration for deriving test orders.

Cabral et al. [6] pointed out the existing graph-based approaches failure to consider
various factors or metrics, leading to suboptimal solutions. They proposed a multi-objective
optimization representation of CITO problem and implemented the Pareto ant colony
algorithm to strike a balance between different metrics.

Based on Cabral’s work, Vergilio et al. [14] introduced a multi-objective optimization
approach and implemented three different multi-objective optimization algorithms to
generate a set of good solutions: Pareto ant colony, multi-objective tabu search and non-
dominated sorting genetic algorithm. The experimental results showed that meta heuristic
algorithms were suitable for addressing software engineering complex problems, like CITO.

Mariani et al. [15] proposed an offline hyper-heuristic algorithm named GEMOITO to
reduce efforts in choosing, implementing, and configuring of search algorithms. Grammati-
cal evolution was used to automatically generate a multi-objective evolutionary algorithm.
These generated optional algorithms were distinguished by components and parameters
values to solve CITO problem.

Czibula et al. [16] proposed an improved genetic algorithm with stochastic accep-
tance to optimize class integration test orders. In the proposal, the complexity of stub
construction was estimated by assigning weights to various types of dependencies in object
relation diagram.

Given the successful application and validation of particle swarm optimization in
addressing complex optimization problems within search-based software engineering,
Zhang et al. [17] reformulated the CITO problem into a one-dimensional optimization
problem and introduced the standard particle swarm optimization algorithm to devise
optimal test orders.

Zhang et al. [18] proposed an improved particle swarm optimization algorithm that
incorporates an individual’s dream ability, thereby improving population diversity, opti-
mization accuracy, and convergence speed. The proposed algorithm could converge slowly
and avoid falling into local optimum too early.

Zhang et al. [3,19] assessed test stub cost from two aspects: data coupling and control
coupling. Based on the extended object relationship diagram, they calculated testing costs
and test profits to set class selection priorities. Furthermore, they proposed a strategy
for combining similar classes, reducing class count and thereby greatly simplifying the
optimization complexity.

Zhang et al. [20] extended the search-based class integration test order approach to the
context of service-oriented architecture. They employed integration priority to denote the

Electronics 2023, 12, 3733 4 of 30

importance of service software and proposed an improved genetic algorithm to generate
integration test sequence between service software.

Zhang et al. [21] adopted coupling-based complexity to gauge test stub cost. They pro-
posed a hybrid algorithm of grey wolf optimizer and arithmetic optimization algorithm to
provide a proper balance between exploration and exploitation, improving the convergence
speed and optimization accuracy.

It is meaningful to conduct performance analysis in a certain research field, which helps
follow-up researchers to quickly understand the research status, research results, and the
effectiveness of corresponding solutions. Harman and Mcminn [22] conducted theoretical
and practical research on test data generation, analyzed the applicability and effectiveness
of local search algorithm, global search algorithm and hybrid search algorithm. Harman
et al. [23] summarized the existing achievements in the field of search-based software testing
and put forward the problems or challenges in this field. Khari et al. [24] analyzed and
summarized the research results of search-based software testing from 1996 to 2016. Zhang
et al. [25] comprehensively analyzed the technical characteristics and research status of
graph-based and search-based methods for the CITO problem. Zhang et al. [26] conducted
a convergence analysis for some related algorithms from the perspective of Markov chain
theory. Khari et al. [1] analyzed and compared the effectiveness and efficiency of several
meta heuristic algorithms over the automatic test suite generation.

3. Research Methodology

The research methodology and main processes are defined for this comparative study,
as shown in Figure 1. The main steps undertaken for this study include algorithm selection,
problem representation, CITO optimization and comparative performance evaluation.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 31

Zhang et al. [3,19] assessed test stub cost from two aspects: data coupling and control

coupling. Based on the extended object relationship diagram, they calculated testing costs

and test profits to set class selection priorities. Furthermore, they proposed a strategy for

combining similar classes, reducing class count and thereby greatly simplifying the opti-

mization complexity.

Zhang et al. [20] extended the search-based class integration test order approach to

the context of service-oriented architecture. They employed integration priority to denote

the importance of service software and proposed an improved genetic algorithm to gen-

erate integration test sequence between service software.

Zhang et al. [21] adopted coupling-based complexity to gauge test stub cost. They

proposed a hybrid algorithm of grey wolf optimizer and arithmetic optimization algo-

rithm to provide a proper balance between exploration and exploitation, improving the

convergence speed and optimization accuracy.

It is meaningful to conduct performance analysis in a certain research field, which

helps follow-up researchers to quickly understand the research status, research results,

and the effectiveness of corresponding solutions. Harman and Mcminn [22] conducted

theoretical and practical research on test data generation, analyzed the applicability and

effectiveness of local search algorithm, global search algorithm and hybrid search algo-

rithm. Harman et al. [23] summarized the existing achievements in the field of search-

based software testing and put forward the problems or challenges in this field. Khari et

al. [24] analyzed and summarized the research results of search-based software testing

from 1996 to 2016. Zhang et al. [25] comprehensively analyzed the technical characteristics

and research status of graph-based and search-based methods for the CITO problem.

Zhang et al. [26] conducted a convergence analysis for some related algorithms from the

perspective of Markov chain theory. Khari et al. [1] analyzed and compared the effective-

ness and efficiency of several meta heuristic algorithms over the automatic test suite gen-

eration.

3. Research Methodology

The research methodology and main processes are defined for this comparative

study, as shown in Figure 1. The main steps undertaken for this study include algorithm

selection, problem representation, CITO optimization and comparative performance eval-

uation.

Literature Review
Algorithms

Selection

Problem

Representation

CITO

Optimization

Comparative

Analysis

Graph Based

Approach

Search Based

Approach

other Approach

Most Popular Algorithm

for CITO

Most Widely Applied

Algorithms for Software

Engineering

Most Recent Algorithms

Since 2015

Most Widely Applied

Algorithms for

Scheduling Problem

Individual Encoding

Fitness Function

Design

Dependency

Analysis

CITO Generation

and Optimization

Results Collection

Test Stubbing

Complexity

Comparison

Attribute/Method

Complexity

Comparison

Convergence

Behavior Analysis

Runtime Analysis

Attribute

dependency

Method dependency

Stubbing

complexity

Figure 1. Research methodology.

The first phase involves conducting a comprehensive literature review on the CITO

problem, outlined in Section 2. Both graph-based and search-based approaches have been

widely used to obtain class integration test orders. Differently from the reverse topological

sorting used in graph-based approaches, search-based approaches are flexible and practi-

cal. Researchers have pointed out that the CITO problem, which is very much related to

the so-called routing or scheduling problem, is a multi-objective optimization problem.

Figure 1. Research methodology.

The first phase involves conducting a comprehensive literature review on the CITO
problem, outlined in Section 2. Both graph-based and search-based approaches have been
widely used to obtain class integration test orders. Differently from the reverse topological
sorting used in graph-based approaches, search-based approaches are flexible and practical.
Researchers have pointed out that the CITO problem, which is very much related to
the so-called routing or scheduling problem, is a multi-objective optimization problem.
Theoretically, the search space for the CITO problem encompasses all possible integration
test orders, and the optimization process could be fraught with numerous local minima in
which a stepwise algorithm may get stuck. These unique characteristics of CITO may have
a significant impact on the optimization ability of meta heuristics algorithms to converge
towards optimal test orders.

After the step of meta heuristic algorithms selection, the reformulation of the CITO
problem is presented with mapping strategies between a test order and an individual
location. The subsequent step is the execution of each meta heuristic algorithm to search
class integration test orders following a set of rules, which are the core of each algorithm.
This iterative process is repeated hundreds of times and the stubbing complexity, method

Electronics 2023, 12, 3733 5 of 30

complexity, attribute complexity, average time, etc., are recorded for each execution. After
this, the optimization performance is analyzed and discussed.

3.1. Algorithms Selection

According to their popularity and how recently they were developed, we selected
ten algorithms: genetic algorithm (GA), particle swarm optimization algorithm (PSO),
cuckoo search (CS), firefly algorithm (FA), bat algorithm (BA), grey wolf optimizer (GWO),
moth flame algorithm (MFO), sine cosine algorithm (SCA), salp swarm optimization
algorithm (SSA), and Harris hawk optimization algorithm (HHO). The primary rationale
for the selection is based on their simplicity, flexibility, and capability of preventing the
optimization process from getting trapped into local optimum. The detailed reasons are
as follows.

(1) Genetic algorithm and particle swarm optimization algorithm are widely recognized
and commonly employed for generating integration test orders.

(2) Cuckoo search algorithm, firefly algorithm, and bat algorithm have been widely used
to automate the process of test data generation with the goal of covering target paths
in the research field of search-based software engineering [1,27].

(3) Grey wolf optimization algorithm, moth flame algorithm, sine cosine algorithm, salp
swarm algorithm, and Harris hawk optimization algorithm have emerged as more
efficient solutions since 2015. They have been successfully applied to scheduling or
routing problems and various combinatorial optimization problems with a huge and
noisy search space [7]. The relevance of these problems to the test order problem
makes these algorithms suitable candidates in the CITO context.

A brief introduction of each algorithm is described below.
Genetic algorithm [12] is a global optimization techniques that mimic biological evolu-

tion. Each chromosome evolves under the influence of natural selection and recombination.
Natural selection determines which individuals are selected, survive, and reproduce. Re-
combination ensures the chromosome will be mixed to form a new one. In the context
of genetic algorithm, the encoding scheme, crossover, and mutation operators should be
designed for a special optimization problem.

Particle swarm optimization [28] is a meta heuristic algorithm proposed by Kennedy
in 1995 to simulate the predatory behavior of birds. Each particle represents a candidate
solution with its own velocity and spatial position. In the process of evolution, a particle
improves its quality under the guidance of individual historical optimal solution p and the
global optimal solution g. At the t + 1 iteration, the velocity and position update equations
of the dth dimension of individual x are shown in Equations (1) and (2), where w represents
the inertia weight, c1 and c2 are learning factors, r1 and r2 are random numbers between
0 and 1.

vt+1
id = wtvt

id + c1r1
(

pt
id − xt

id
)
+ c2r2

(
gt

id − xt
id
)

(1)

xt+1
id = xt

id + vt+1
id (2)

The cuckoo search algorithm [29] is a meta heuristic algorithm proposed by Yang in
2009, inspired by the hatching parasitism characteristic of cuckoo. Each bird nest improves
its quality through random walk. The optimization process discards poor solutions with a
certain probability. The position update formula of the ith nest of cuckoo at t + 1 iteration is
shown in Equation (3), where ⊕ represents point-to-point multiplication, α represents the
step size subject to normal distribution and L(λ) represents the random step size following
to Levy distribution.

xt+1
i = xt

i + α⊕ L(λ) (3)

The firefly algorithm [30] is a meta heuristic algorithm proposed by Yang in 2010 in-
spired by the attracting and information exchanging behavior of fireflies. In the process of
evolution, fireflies are attracted by brighter ones. In the t + 1 generation, the dth dimen-

Electronics 2023, 12, 3733 6 of 30

sional update formula of firefly x is defined in Equation (4), where β represents the relative
attraction between two fireflies, α represents the step factor, ε represents a random number
following the uniform distribution.

xid(t + 1) = xid(t) + β
(

xjd(t)− xid(t)
)
+ αi(t)ε (4)

The bat algorithm [31] is a meta heuristic algorithm proposed by Yang in 2010 to simu-
late the precise search and prey hunting behavior of bats using ultrasound. In the process
of evolution, the best bat locates the accurate prey position through ultrasonic pulse. The
speed and position update formula for each individual are given in Equations (5) and (6),
where x∗ represents the global best position and fi represents the search pulse frequency.

vt
i = vt−1

i +
(
xt

i − x∗
)
· fi (5)

xt
i = xt−1

i + vt
i (6)

The grey wolf optimization algorithm [32] is a meta heuristic algorithm proposed
by Mirjalili in 2014 to simulate the hierarchical structure and hunting behavior of grey
wolves. The social groups of wolves are divided into α wolves, β wolves, δ wolves and
ω wolves, representing the leader, assistant decision-maker, executor, and lowest level of
wolves, respectively. Each ω wolf represents a candidate solution and moves to a new
position under the guidance of α, β and δ wolf, as shown in Equations (7) and (8), where D
represents the distance between the wolf and the prey, C represents the swing factor, Xp(t)
represents the prey position, and A represents the convergence factor.

D =
∣∣C·Xp(t)− X(t)

∣∣ (7)

X(t + 1) = Xp(t)− A·D (8)

The moth flame algorithm [33] is a meta heuristic optimization algorithm proposed
by Mirjalili in 2015 to simulate the spiral flight path of moths at night. In the process
of evolution, the individual position is updated based on its nearby flames, as shown in
Equations (9) and (10), where Di represents the distance between the moth and prey, Fj
represents the flame j, Mi represents the moth i, and b is the constant coefficient defining
the logarithmic spiral shape, and θ is the random path coefficient in [−1, 1].

Di =
∣∣Fj −Mi

∣∣ (9)

Mi = S
(

Mi, Fj
)
= Di·ebθ ·cos(2πt) + Fj (10)

The sine cosine algorithm [34] is a meta heuristic algorithm proposed by Mirjalili in
2016. Candidate solutions fluctuate towards the best solution using a mathematical model
based on sine and cosine functions. At the t + 1 iteration, the position update equation
of the individual x is shown in Equation (11), where r2, r3, and r4 are random numbers.
In order to balance the exploration and exploitation ability, r2 is viewed as the control
parameter of linear decreasing according to (12), in which ∝ is a constant.

xt+1
id =

{
xt

id + r1 × sin(r2)×
∣∣r3Pt

id − xt
id

∣∣, r4 < 0.5
xt

id + r1 × cos(r2)×
∣∣r3Pt

id − xt
id

∣∣, r4 ≥ 0.5
(11)

r1 =∝ ×(1− t/T) (12)

The salp swarm algorithm [35] is a meta heuristic algorithm proposed by Mirjalili in
2017 to simulate the navigation and foraging chain behavior of salp swarm. The group is

Electronics 2023, 12, 3733 7 of 30

divided into leaders and followers, representing the exploration and exploitation ability
separately. In the process of evolution, leaders guide followers to move toward the target
food, and each follower interacts with the before and after individuals. The position update
formula of dimension d of leader x1 is shown in Equation (13), where Fd represents the food
position, ub and lb represent the upper and lower bounds of corresponding dimensions,
respectively. C2 and C3 are random numbers in [0, 1]. C1 is the convergence factor shown
in Equation (14), where t represents the current iterations and T is the max iterations. The
update formula of the follower xi is shown in Equation (15).

x1
d =

{
Fd + c1(c2(ub− lb) + lb), c3 ≥ 0.5
Fd − c1(c2(ub− lb) + lb), c3 < 0.5

(13)

c1 = 2e−(4t/T)m
(14)

Xi
d = (Xi

d − Xi−1
d)/2 (15)

The Harris hawk optimization [36] is a meta heuristic algorithm proposed by Heidari
in 2019 to simulate the cooperative behavior and chasing style of Harris’ hawks in nature. In
view of its large number of position update equations, only the workflow of the algorithm is
briefly presented here. The algorithm selects exploration or exploitation stage according to
the comparison result between escape energy of prey and the random number set. Further,
according to the escape behavior of prey and the chase strategy of the Harris hawk, the
algorithm can carry out the process of soft and hard siege and timely switch between soft
and hard siege.

3.2. Problem Representation
3.2.1. Stubbing Complexity

Due to complex dependencies among classes, a lot of effort is required to build stubs
to simulate services required by the tested object. However, stubs are not a real part of
the software and will not be used in the final software. Naturally, people hope that the
fewer stubs constructed in the process of class integration testing the better, and the lower
construction cost the better. Thus, the cost of a class integration test order can be evaluated
by test stub cost.

However, in many cases, the number of stubs is not directly proportional to the test
stub cost; hence, the accuracy of using the number of stubs to evaluate the test stub cost
is low. Since the stubbing effort cannot be directly measured or estimated, we adopt the
coupling-based fitness function, which captures coupling relationships in object-oriented
systems, in a fashion similar to the previous studies.

There are various dependencies among classes in the object-oriented software de-
velopment. Inheritance and composition include not only control coupling but also data
coupling, constituting strong dependencies [2]. Breaking such strong relationships would
likely lead to complex stubs with high cost. For instance, if B is a subclass of A, A should
be integrated before B. Usage, association, and simple aggregations are considered to be
weak dependencies with low cost. Two simple and intuitive measures of coupling are used
to quantify weak dependencies:

Attribute complexity [12] is quantified as follows: The number of attributes locally
declared in the target class when references/pointers to instances of the target class appear
in the argument list of some methods in the source class, as the type of their return value,
in the list of attributes of the source class, or as local parameters of methods. The number
of attributes between target class i and source class j that would be handled in a stub is
called attribute complexity A (i, j).

Method complexity [12] is quantified as follows: The number of methods locally
declared in the target class which are invoked by the source class methods. The number of

Electronics 2023, 12, 3733 8 of 30

methods between target class i and source class j that would be handled in a stub is called
method complexity M (i, j).

After the static analysis of the system under test, the attribute complexity matrix A
and method complexity matrix M among classes can be constructed. Taking account both
attribute complexity and method complexity, we can define stubbing complexity between
class i and class j through linear scalarization method.

Further, in order to avoid the strong influence of any complexity measure unit on
the stubbing complexity, any complexity measure Cplx(i, j) is normalized according to
Equation (16), expressed as Cplx(i, j).

Cplx(i, j) = Cplx(i, j)/(Cplxmax − Cplxmin) (16)

where Cplxmax and Cplxmin represent the maximum and minimum value of matrix el-
ements, respectively. When there is no coupling between two classes, the value of the
matrix element is specified as 0, that is, the minimum value of the matrix is 0. Therefore,
Equation (16) can be simplified to Equation (17).

Cplx(i, j) = Cplx(i, j)/Cplxmax (17)

For a pair of classes (i, j) with dependency linking, the stubbing complexity SCplx(i, j)
can be defined and computed as a weighted geometric average of the two normalized
complexity measures, as shown in Equation (18).

SCplx(i, j) =
(

WA ∗ A(i, j)
2
+ WM ∗M(i, j)

2)1/2
(18)

where WA and WM represent the weights of attribute complexity and method complexity,
respectively, and WA + WM = 1.

3.2.2. CITO Formulation

For a class integration test order o containing n classes, its fitness function can be
expressed as the stubbing complexity of the total class dependency pairs (i, j) contained in
the testing order o, as shown in Equation (19).

f itness(o) = Ocplx(o) = ∑ n
i=1,j=1SCplx(i, j) (19)

Assuming that the classes are represented as a set C = {C1, . . ., Cm} to be integrated,
then the CITO problem can be viewed as the problem of constructing a permutation π of {1,
2, . . ., m} that minimizes the stubbing complexity when classes are integrated in the order
given by π: Cπ1,. . . ,m = (Cπ1, Cπ2, . . ., Cπm).

The search space to the CITO problem is the set of all possible integration test orders.
Therefore, the optimization process of generating class integration test orders is to search
one or a group of testing orders that can minimize the test stub cost under the guidance of
the fitness function, as shown in Equation (20).

min f itness(Cπ1,...,m) = min ocplx(Cπ1, Cπ2, . . . , Cπm) (20)

3.3. CITO Optimization

This is the main step wherein each selected meta heuristic algorithm is implemented
to generate a set of optimal test orders. The main difference between heuristic algorithm
and meta-heuristic algorithm is that the heuristic algorithm needs to be modified according
to actual problems, while meta heuristic algorithm can solve most kinds of optimization
problems without modification [1]. So we use the standard form of these algorithms to
solve the CITO problem. The general search-based CITO optimization process is shown in
Figure 2.

Electronics 2023, 12, 3733 9 of 30

Electronics 2023, 12, x FOR PEER REVIEW 9 of 31

to solve the CITO problem. The general search-based CITO optimization process is shown

in Figure 2.

Random class

integration test

orders

Mapping CITOs to

Individual positions

Population

initialization

Fitness Computing
Individual position

updation

Stopping

condition

Fitness Computing

No

Mapping individual

positions to CITOs
Yes

Class integration

test orders

Start

End

Figure 2. The general flow of search-based CITO optimization process.

There are three modules in the general flow of search-based CITO optimization pro-

cess. Firstly, a group of class integration test orders are generated randomly. By following

the mapping algorithm as shown in Section 3.3.1, each test order is mapped to an individ-

ual position in one dimensional space. Secondly, the position of each individual is calcu-

lated and improved under the guidance of fitness function as described in Section 3.2,

following the optimization rules of different algorithms. Finally, the algorithm stops and

the optimum individual position is obtained, and mapped to the optimal class integration

test order as described in Section 3.3.2.

3.3.1. Mapping CITO to Individual Position

The search space to the CITO problem is the set of all possible integration test orders

for the system under test. Referring to the approach proposed by Zhang [17], any class

integration test order can be regarded as an individual in one-dimensional space, while

different test orders correspond to different positions in one dimensional space. The map-

ping pseudo code from a class integration test order to individual position is shown in

Algorithm 1.

Algorithm 1: Map a class integration test order to individual position

Input: class integration testing order o

list of classes in descending order list

number of classes n

Output: position

1. BEGIN

2. Initialize the individual position = 0;

3. FOR (int i = 0; i < n; i++)

4. temp_class = o.get(i);/*get ith class in o*/

5. index = list.getIndex(temp_class);

6. position = position + index *(n-i-1)!

7. END FOR

8. END

Given a class integration test order o, the classes list in descending order based on the

sum of method and attribute coupling list, and the number of classes n, Algorithm 1 can

generate the corresponding individual position for o in one dimensional space, position.

Algorithm 1 begins with the initialization step (line 2) where the output position is

initialized and set to 0. Every class in a given test order o would be traversed and the

individual position of these n classes in test order o would be determined (lines 3–7). For

each class in o, the class information and its index in the ordered list are obtained (lines 4–

Figure 2. The general flow of search-based CITO optimization process.

There are three modules in the general flow of search-based CITO optimization process.
Firstly, a group of class integration test orders are generated randomly. By following the
mapping algorithm as shown in Section 3.3.1, each test order is mapped to an individual
position in one dimensional space. Secondly, the position of each individual is calculated
and improved under the guidance of fitness function as described in Section 3.2, following
the optimization rules of different algorithms. Finally, the algorithm stops and the optimum
individual position is obtained, and mapped to the optimal class integration test order as
described in Section 3.3.2.

3.3.1. Mapping CITO to Individual Position

The search space to the CITO problem is the set of all possible integration test orders
for the system under test. Referring to the approach proposed by Zhang [17], any class
integration test order can be regarded as an individual in one-dimensional space, while
different test orders correspond to different positions in one dimensional space. The
mapping pseudo code from a class integration test order to individual position is shown in
Algorithm 1.

Algorithm 1: Map a class integration test order to individual position

Input: class integration testing order o
list of classes in descending order list
number of classes n

Output: position

1. BEGIN
2. Initialize the individual position = 0;
3. FOR (int i = 0; i < n; i++)
4. temp_class = o.get(i);/*get ith class in o*/
5. index = list.getIndex(temp_class);
6. position = position + index *(n-i-1)!
7. END FOR
8. END

Given a class integration test order o, the classes list in descending order based on the
sum of method and attribute coupling list, and the number of classes n, Algorithm 1 can
generate the corresponding individual position for o in one dimensional space, position.

Algorithm 1 begins with the initialization step (line 2) where the output position is
initialized and set to 0. Every class in a given test order o would be traversed and the
individual position of these n classes in test order o would be determined (lines 3–7). For
each class in o, the class information and its index in the ordered list are obtained (lines 4–5),
then its location can be calculated (line 6). By summing locations of these n classes, we
can get the position in one dimensional space for a class integration test order through the
above steps.

Electronics 2023, 12, 3733 10 of 30

3.3.2. Mapping Individual Position to CITO

Any individual in search space can be converted to a class integration test order, as
shown in Algorithm 2. In the process of evolution, the algorithm generates new class
integration test orders by constantly changing their own spatial positions. At the end of the
iteration, the algorithm obtains the optimal individual position, which would be further
mapped into a class integration test order. The mapping pseudo code from an individual
position to a class integration test order is shown in Algorithm 2.

Algorithm 2: Map individual position to a class integration test order

Input: position
list of classes in descending order list
number of classes n

Output: a class integration test order o

1. BEGIN
2. FOR (int i = 0; i < n; i++)
3. index = position/(n-i)!
4. temp_class = list.get(index)
5. o.add(temp_class)
6. list.remove(temp_class)
7. position = position % (n-i)!
8. END FOR
9. o.add(list.get(0))
10. END

Given a position of an individual in one dimensional space position, the sorted classes
list in descending order based on the sum of method and attribute coupling list, and the
number of classes n, Algorithm 2 determines the class integration test order o.

Algorithm 2 calculates the class integration test order that the individual corresponds
to, in the form of adding each class in the test order one by one (lines 2–8). The position of a
class in list can be calculated through the location information divided by the permutations
number of classes at this location (line 3). Then, a class is added to o and removed from list
(lines 5–6). After circular computations, the remaining classes can be added to o (lines 2–8).
When there is only one class in list, the last class is added to o finally (line 9).

3.3.3. Constraints

A number of dependencies can be found among classes in the object-oriented software
development. Different dependencies may lead to stubs of widely varying complexity [12].
Among these various relationships, inheritance and composition relationships usually entail
tight attribute coupling or method coupling between child/parent and container/contained
classes, constituting strong dependencies. Breaking such strong relationships would likely
lead to complex stubs with high cost.

According to the coupling level involved and fitness function designed in Section 3.2,
our strategy does not construct stubs for inheritance and composition dependencies. This
implies that the parent/container classes must precede child/contained classes in any class
integration order.

Based on the static analysis of software under test, a precedence table outlines the con-
ditions requisite for an individual to be accepted. Under these constraints, any integration
test order that violates the inheritance and composition dependency relations would be
rejected and regenerated until the order fulfills the constrains in the precedence table.

3.4. Comparative Analysis

The execution process of each meta heuristic algorithm to search class integration
test orders is done hundreds of times repeatedly to make sure the consistent optimization

Electronics 2023, 12, 3733 11 of 30

results. Once the end criteria are achieved, the stubbing complexity, method complexity,
etc., are stored for each execution.

Then, the comparative optimization performance is analyzed and discussed to com-
pare the algorithms relative to each other. Here, the metrics of stubbing complexity, method
complexity, attribute complexity, average runtime and memory are compared to deduce
the suited algorithms for the CITO problem.

4. Experimentation

Taking the stubbing complexity as the fitness function, we design two questions to
focus on the performance analysis of these ten meta heuristic algorithms for the CITO problem.

Q1: Which algorithms can devise class integration test orders with low stubbing
complexity?

The performance metrics for hundreds executions of each meta heuristic algorithm are
collected, analyzed, and compared, including stubbing complexity, attribute complexity,
and method complexity. The smaller value of the stubbing complexity, the lower the test
stub cost required.

Q2: How efficient are the algorithms for generating class integration test orders?
Different algorithms have different convergence speeds and different iteration runtime.

Therefore, this paper attempts to analyze the convergence speed, runtime and memory
required of each algorithm to find which algorithms can obtain the same or better class
integration test order with less computational resource.

4.1. Experiment Subjects

In order to verify the performance of these meta heuristic algorithms for the CITO
problem, ten classic benchmark systems are selected for testing [3,11,17–19,21]. These case
studies are real-world systems with varying complexities written in Java. Elevator is an
elevator operation simulation system. SPM is a patrol monitoring simulation system. ATM
is an automated teller machine simulation system. Daisy is a network file system. ANT is a
Java program update and build tool supplied by the open source Apache project, which
is a part of the Jakarta project. DEOS is a detection error system for concurrency bugs of
multi-threaded programs. Email is a supporting system for email operations. BCEL is a
byte code engineering library, a part of Jakarta project too. DNS is a domain name service
system, and Notepad_SPL (Notepad for short) is a source code editor.

For SPM, ATM, ANT, BCEL and DNS, the same benchmark used by Briand et al. [12]
is employed. We take the inter class relationship as input, but not source code. The
class information, dependency information are identified and analyzed based on reverse
engineering of object relation diagram.

For Elevator, Daisy, DEOS, Email and Notepad, the source code is analyzed by using
the open source tool SOOT for detailed relationships among classes. Using the information
of variable, method, class name and package name, etc., we can obtain the object relation
diagram, attribute complexity, method complexity and precedence relationship. Different
from the SPM, ATM, ANT, BCEL and DNS, we have not re-implemented the graph-based
algorithm for Elevator, Daisy, DEOS, Email and Notepad, and therefore, we do not know
the number of cycles, which is expressed by “N/A” in Table 1.

The detailed information about these systems is shown in Table 1. Column 2 shows the
total class numbers, Columns 3–9 give the number of usages, associations and aggregations,
compositions, inheritance, the total dependencies, the total elementary circuits, and code
lines, respectively. These systems come from various application fields and have different
functions. The number of classes ranges from 21 to 65, the cycles from 4 to 416,091, and the
code lines from 934 to 6710, making these cases representative.

Electronics 2023, 12, 3733 12 of 30

Table 1. Detailed information of the ten systems.

System Classes Usages Associations &
Aggregations Compositions Inheritance Dependencies Cycles #LOC

Elevator 12 8 3 16 0 27 N/A 934
SPM 19 24 34 10 4 72 1178 1198
ATM 21 39 9 15 4 67 30 1390
Daisy 23 31 2 3 0 36 N/A 1148
ANT 25 54 16 2 11 83 654 4093
DEOS 25 52 15 6 5 78 N/A 2215
Email 39 44 5 12 2 63 N/A 2276
BCEL 45 18 226 4 46 294 416,091 3033
DNS 61 211 23 12 30 276 16 6710

Notepad 65 122 8 11 0 141 N/A 2419

In order to further describe the detailed coupling distribution, the attribute and
method coupling values between classes are summarized in Table 2. Recall that the CITO
optimization process should satisfy the inheritance and composition dependency, the value
of attribute coupling and method coupling in Table 2 are the coupling value of associations,
simple aggregations, and usage dependencies. Column 2 and column 5 are the max values,
column 3 and column 6 are the average values, and the sum values are shown in column 4
and column 7.

Table 2. Coupling summary of the ten systems.

System
Attribute Coupling Method Coupling

Total
Max Average Sum Max Average Sum

Elevator 3 1.62 21 25 6.33 158 179
SPM 21 7.97 462 8 2.41 135 597
ATM 13 6.02 283 7 2.33 84 367
Daisy 11 3.78 34 16 4.22 135 169
ANT 31 9.14 585 14 2.9 177 762
DEOS 4 2.04 26 15 3.28 223 249
Email 22 3.13 72 40 4.18 222 204
BCEL 8 2.52 454 4 1.55 369 823
DNS 10 4.35 766 8 1.92 328 1094

Notepad 8 1.88 102 37 1.74 181 283

4.2. Parameters Settings

Ten intelligent algorithms, genetic algorithm, particle swarm optimization algorithm,
cuckoo search algorithm, firefly algorithm, bat algorithm, grey wolf optimization algorithm,
moth flame algorithm, sine cosine algorithm, salp swarm algorithm and Harris hawk
optimization algorithm, are selected for performance analysis.

Since genetic algorithm and particle swarm optimization algorithm have been em-
ployed to generate CITO in the literature, the values of their relevant parameters in the
literature are used. While other algorithms have not been applied to the CITO problem,
their standard implementation form and corresponding parameter values are adopted to
minimize the parameters dependence. Although there are many variants of the remaining
eight algorithms, most of them were designed to solve certain special engineering problems.
Essentially, the standard form of each algorithm embodies the core optimization principles
with excellent stability and performance [7]. Additionally, for the NP complete CITO prob-
lem, we have not conduct in-depth theoretical research on its mathematical characteristics,
hence we use the standard form of these algorithms to generate test orders.

The detailed parameter settings for these ten meta heuristic algorithms are shown in
Table 3.

Electronics 2023, 12, 3733 13 of 30

Table 3. Parameter settings for various algorithms.

Algorithm Parameters Reference

GA pm = 0.01, pc = 0.5 Briand 2002 [12]
PSO wmax = 0.9, wmin = 0.4, c1 = 2, c2 = 2 Zhang 2018 [17]
CS p = 0.02, α = 0.15, λ = 1.5 Yang 2009 [29]
FA α = 0.2, β0 = 1, γ = 1 Yang 2010 [30]
BA α = 0.9, γ = 0.7, fmin = 0, fmax = 2 Yang 2010 [31]

GWO αfirst = 2, αfinal = 0 Mirjalili 2014 [32]
MFO b = 1, θ ∈ [−1, 1] Mirjalili 2015 [33]
SCA α = 2, r2 ∈ [0, 2π], r3 ∈ [−2, 2], r4 ∈ [0, 1] Mirjalili 2016 [34]
SSA m = 2, c2, c3 ∈ [0, 1] Mirjalili 2017 [35]

HHO β = 1.5, E0 ∈ [−1, 1], J ∈ [0, 2] Heidari 2019 [36]

4.3. Experiment Design

The experiment environment is Intel i7 CPU 2.6 GHz. RAM 8 GB. The software used is
Windows 10 with minconda3 and Pycharm development environment. For each algorithm,
the detail steps are implemented as follows to obtain optimal test orders.

Step 1. Randomly initialize the population, where each individual represents an
integration test order.

Step 2. Map each individual in the initialized population into a individual location of
one dimensional space, hence each position is used to represent an integration test order
instead, as designed in Section 3.3.1.

Step 3. Update the individual location according to the evolve strategy designed by
each algorithm, and gain the optimal individual location once achieving the end criteria, as
described in Section 3.1.

Step 4. Map the output individual locations to class integration test orders, as designed
in Section 3.3.2.

Considering the recommended value of population size rang of 25 to 100, the popula-
tion size is set to 100 and the maximum iteration is set to 200 to maintain the population
diversity in this paper. Additionally, the values of WA and WM in the fitness function
are both set to 0.5, referring to previous research findings. To mitigate the impact of
randomness, the experimental results are averaged over 20 independent runs.

For Q1, the stubbing complexity is used to measure the test stub cost as defined in
Section 3.2. In order to understand the effectiveness of search-based approaches for CITO,
we analyze the relationship between optimization results and the number of dependencies,
as well as the relationship between optimization results and coupling distribution. Subse-
quently we conduct statistical Wilcoxon analysis for performance comparison. Furthermore,
we discuss the optimization capability on attribute complexity and method complexity
separately, to determine which algorithms perform better in attribute coupling guided
systems and which algorithms fare better in method coupling guided systems.

For Q2, the convergence behavior, average runtime and memory consumption are used
to measure the efficiency of these meta heuristic algorithms. For the convergence behavior
analysis, we discuss the influence of dependency cycle on optimization performance. In
terms of computational resource, the values of average runtime and memory of each
algorithm are stored and analyzed.

4.4. Effectiveness Analysis
4.4.1. Stubbing Complexity

As described in Section 3.2, the fitness function value Ocplx(o) for a given test order o
is the sum of a set of weighted geometric average of the normalized attribute complexity
A(i, j) and method complexity M(i, j), computed according to Equation (17), respectively,
ensuring that the resulting stubbing complexity is insensitive to the two measurement units.

During the experiment, each algorithm ran independently 20 times, and the minimum,
maximum and average values of the stubbing complexity were recorded. The resulting

Electronics 2023, 12, 3733 14 of 30

stubbing complexity implemented by the genetic algorithm, particle swarm optimization
algorithm, cuckoo search algorithm, firefly algorithm, bat algorithm, grey wolf optimization
algorithm, moth flame algorithm, salp swarm algorithm, sine cosine algorithm and Harris
hawk optimization algorithm is shown in Table 4 and Figure 3. In Table 4, for each system
under test, the first and second rows represent the best and worst value, the third row
provides the average stubbing complexity value, the fourth row represents the standard
deviation of the optimization results, then the fifth row represents the ranking of the
average optimization results. In Figure 3, the horizontal axis indicates the systems under
test and the vertical axis indicates the average stubbing complexity of the CITO generated
by each algorithm.

Table 4. Stubbing complexity values of the ten systems.

System Stats. GA PSO CS FA BA GWO MFO SSA SCA HHO

Elevator

best 1.76 1.79 1.76 1.85 1.97 1.76 1.76 1.76 1.76 1.94
worst 1.85 1.95 1.89 2.27 2.37 1.91 1.82 1.88 1.93 3.91
mean 1.81 1.86 1.84 2.03 2.20 1.84 1.79 1.79 1.85 3.52
Stdev 0.02 0.05 0.04 0.09 0.13 0.04 0.02 0.03 0.04 0.54
rank 3 7 4 8 9 5 1 2 6 10

SPM

best 3.05 3.40 2.99 3.35 4.05 3.04 2.45 2.55 3.58 2.99
worst 3.96 4.16 3.80 4.99 6.37 3.80 3.54 3.77 4.19 4.08
mean 3.51 3.75 3.37 4.03 4.88 3.45 2.97 3.19 3.82 3.61
Stdev 0.28 0.22 0.27 0.46 0.62 0.21 0.23 0.32 0.19 0.30
rank 5 7 3 9 10 4 1 2 8 6

ATM

best 2.32 2.17 2.29 2.26 3.02 2.29 2.17 2.17 2.32 2.27
worst 3.18 2.82 2.74 3.52 4.90 2.77 2.55 2.94 2.94 2.98
mean 2.74 2.53 2.54 3.00 3.83 2.50 2.37 2.42 2.65 2.69
Stdev 0.25 0.16 0.12 0.17 0.44 0.12 0.09 0.16 0.18 0.21
rank 8 4 5 9 10 3 1 2 6 7

Daisy

best 0.32 0.32 0.35 0.43 0.55 0.22 0.19 0.48 0.26 0.39
worst 0.59 0.74 0.61 1.68 1.22 0.51 3.86 0.77 0.67 0.67
mean 0.46 0.54 0.48 0.65 0.94 0.43 0.72 0.61 0.50 0.54
Stdev 0.09 0.13 0.07 0.28 0.18 0.09 1.00 0.09 0.13 0.08
rank 2 6 3 8 10 1 9 7 4 5

ANT

best 2.12 2.16 2.14 2.13 2.69 1.86 1.75 1.93 2.17 2.31
worst 2.83 2.79 2.65 2.92 4.36 2.61 2.34 2.68 2.57 2.82
mean 2.51 2.59 2.45 2.99 3.41 2.44 2.03 2.30 2.39 2.55
Stdev 0.21 0.15 0.14 0.21 0.48 0.19 0.16 0.22 0.12 0.15
rank 6 8 5 9 10 4 1 2 3 7

DEOS

best 3.42 3.28 3.20 3.96 4.18 3.24 2.84 3.20 2.92 3.33
worst 4.06 4.18 4.02 4.84 5.39 3.85 3.73 3.68 4.05 4.46
mean 3.74 3.81 3.63 4.32 4.94 3.57 3.18 3.47 3.71 3.86
Stdev 0.17 0.28 0.24 0.62 0.36 0.20 0.29 0.15 0.33 0.28
rank 6 7 4 9 10 3 1 2 5 8

Email

best 0.70 0.66 0.65 1.10 1.05 0.73 0.56 0.75 0.70 0.62
worst 0.86 0.89 0.81 1.85 1.43 0.91 0.80 1.10 0.91 0.92
mean 0.78 0.81 0.73 1.33 1.20 0.82 0.69 0.90 0.78 0.81
Stdev 0.05 0.06 0.05 0.20 0.11 0.06 0.07 0.10 0.06 0.07
rank 3 5 2 10 9 7 1 8 4 6

BCEL

best 10.19 10.90 10.45 11.00 11.98 10.35 11.98 10.00 10.71 10.33
worst 11.65 11.98 11.95 13.63 11.98 11.47 11.98 11.85 11.59 11.98
mean 10.89 11.62 11.29 11.75 11.98 10.79 11.98 10.83 11.14 11.16
Stdev 0.56 0.51 0.40 0.60 0.00 0.44 0.00 0.63 0.26 0.47
rank 3 7 6 8 9 1 10 2 4 5

Electronics 2023, 12, 3733 15 of 30

Table 4. Cont.

System Stats. GA PSO CS FA BA GWO MFO SSA SCA HHO

DNS

best 6.31 7.34 7.20 6.53 8.63 6.97 6.30 6.68 7.34 6.95
worst 9.45 9.63 9.11 10.27 12.80 8.95 8.37 8.71 10.05 9.65
mean 7.98 8.63 8.14 9.31 10.39 8.06 7.33 7.70 8.94 8.64
Stdev 0.92 0.73 0.70 0.86 1.57 0.69 0.81 0.67 0.76 0.75
rank 3 6 5 9 10 4 1 2 8 7

Notepad

best 1.75 1.83 1.77 1.76 1.90 1.53 1.65 1.43 1.80 1.77
worst 1.93 2.17 1.96 2.41 3.09 1.97 1.85 2.21 1.94 2.17
mean 1.84 1.98 1.85 2.07 2.50 1.77 1.73 1.92 1.85 1.90
Stdev 0.05 0.10 0.07 0.24 0.30 0.13 0.06 0.20 0.04 0.15
rank 3 8 4 9 10 2 1 7 5 6

Electronics 2023, 12, x FOR PEER REVIEW 15 of 31

DEOS

best 3.42 3.28 3.20 3.96 4.18 3.24 2.84 3.20 2.92 3.33

worst 4.06 4.18 4.02 4.84 5.39 3.85 3.73 3.68 4.05 4.46

mean 3.74 3.81 3.63 4.32 4.94 3.57 3.18 3.47 3.71 3.86

Stdev 0.17 0.28 0.24 0.62 0.36 0.20 0.29 0.15 0.33 0.28

rank 6 7 4 9 10 3 1 2 5 8

Email

best 0.70 0.66 0.65 1.10 1.05 0.73 0.56 0.75 0.70 0.62

worst 0.86 0.89 0.81 1.85 1.43 0.91 0.80 1.10 0.91 0.92

mean 0.78 0.81 0.73 1.33 1.20 0.82 0.69 0.90 0.78 0.81

Stdev 0.05 0.06 0.05 0.20 0.11 0.06 0.07 0.10 0.06 0.07

rank 3 5 2 10 9 7 1 8 4 6

BCEL

best 10.19 10.90 10.45 11.00 11.98 10.35 11.98 10.00 10.71 10.33

worst 11.65 11.98 11.95 13.63 11.98 11.47 11.98 11.85 11.59 11.98

mean 10.89 11.62 11.29 11.75 11.98 10.79 11.98 10.83 11.14 11.16

Stdev 0.56 0.51 0.40 0.60 0.00 0.44 0.00 0.63 0.26 0.47

rank 3 7 6 8 9 1 10 2 4 5

DNS

best 6.31 7.34 7.20 6.53 8.63 6.97 6.30 6.68 7.34 6.95

worst 9.45 9.63 9.11 10.27 12.80 8.95 8.37 8.71 10.05 9.65

mean 7.98 8.63 8.14 9.31 10.39 8.06 7.33 7.70 8.94 8.64

Stdev 0.92 0.73 0.70 0.86 1.57 0.69 0.81 0.67 0.76 0.75

rank 3 6 5 9 10 4 1 2 8 7

Notepad

best 1.75 1.83 1.77 1.76 1.90 1.53 1.65 1.43 1.80 1.77

worst 1.93 2.17 1.96 2.41 3.09 1.97 1.85 2.21 1.94 2.17

mean 1.84 1.98 1.85 2.07 2.50 1.77 1.73 1.92 1.85 1.90

Stdev 0.05 0.10 0.07 0.24 0.30 0.13 0.06 0.20 0.04 0.15

rank 3 8 4 9 10 2 1 7 5 6

Figure 3. Histogram for test stubbing complexity comparison.

The stubbing complexity is affected by many factors, such as the number of classes,

the dependency distribution, the coupling distribution, etc. Some typical influencing fac-

tors on performance result are analyzed as follows.

(1) Dependencies Distribution Factor Analysis

The relationship between the optimization results and the number of dependencies

is analyzed as follows:

⚫ Systems with few dependencies

0

2

4

6

8

10

12

Elevator SPM ATM Daisy ANT DEOS Email BCEL DNS Notepad

GA PSO CS FA BA

GWO MFO SSA SCA HHO

Figure 3. Histogram for test stubbing complexity comparison.

The stubbing complexity is affected by many factors, such as the number of classes, the
dependency distribution, the coupling distribution, etc. Some typical influencing factors
on performance result are analyzed as follows.

(1) Dependencies Distribution Factor Analysis

The relationship between the optimization results and the number of dependencies is
analyzed as follows:

• Systems with few dependencies

For the Elevator and Daisy with few class dependencies, the difference of optimization
results among various algorithms is not obvious.

• Systems with mid-sized dependencies

Systems with mid-sized dependencies between 61 and 83 include SPM, ATM, ANT,
DEOS and Email.

For SPM with 72 dependencies, the algorithms with better optimization results in
order are moth flame algorithm, salp swarm algorithm, grey wolf optimization algorithm
and particle swarm optimization algorithm.

For ATM with 67 dependencies, the algorithms with better optimization results are
moth flame algorithm, salp swarm algorithm, cuckoo search algorithm and grey wolf
optimization algorithm in order.

For ANT with 83 dependencies, the algorithms with better optimization results are
moth flame algorithm, salp swarm algorithm, sine cosine algorithm and grey wolf opti-
mization algorithm, respectively.

Electronics 2023, 12, 3733 16 of 30

For DEOS with 73 dependencies, the algorithms with better optimization results are
moth flame algorithm, salp swarm algorithm, grey wolf optimization algorithm and cuckoo
search algorithm in order.

The algorithms with better optimization results are moth flame algorithm, cuckoo
search algorithm, genetic algorithm, and sine cosine algorithm in order for Email with
61 dependencies.

From the perspective of ranking results, it can be seen that moth flame algorithm and
salp swarm algorithm rank first and second in SPM, ATM, ANT and DEOS, respectively.
Grey wolf optimization algorithm appears four times in these five systems, cuckoo search
algorithm three times and sine cosine algorithm two times. These data fully illustrate
the effectiveness of moth flame algorithm, salp swarm algorithm, grey wolf optimization
algorithm and cuckoo search algorithm in the software with medium number of class
dependencies.

• Systems with large-sized dependencies

For BCEL, DNS and Notepad with large-sized class dependencies, moth flame algo-
rithm continues to rank high in DNS and Notepad. However, it shows obvious stagnation
and obtains the worst result in BCEL. Grey wolf optimization algorithm is the best algo-
rithm with the highest precision of optimization results for BCEL. Additionally, it is the
better algorithm with the higher precision of optimization results in Notepad. Additionally,
it performs well in DNS system.

(2) Coupling Distribution Factor Analysis

The relationship between the optimization results and the coupling distribution is
analyzed as follows.

Systems with relatively low stubbing complexity include Daisy, Email and Notepad.
The reason behind is that the sum of method coupling and attribute coupling of these
systems is low. It is worth noting that although Notepad contains the most classes, the
stubbing complexity is small because of its max value 37 of method coupling and lots of
simple attribute and method coupling. BCEL contains 45 classes with 823 coupling which
reflects the high coupling of classes, hence its stubbing complexity is also the highest. While
61 classes and 276 dependencies with total 1094 attribute and method coupling in DNS
increases the difficulty of test stub construction, the average stubbing complexity is high.
The higher coupling degrees in a system, the higher the stubbing complexity.

Among all optimization results for these ten systems, the stubbing complexity of class
integration test orders generated by bat algorithm and firefly algorithm is high. Most
notably, the standard deviation of bat algorithm is the largest, which indicates the unstable
iterative optimization process. The fact that individuals in bat algorithm lack the ability
to mutate reduces the population diversity and makes the search process easy to fall
into stagnation.

(3) Wilcoxon Analysis

Taking the experimental results of 20 times of independent running with 200 maximum
iteration each time as training samples, we conduct the statistical tests for performance
comparison. Due to the small sample size, the stats.shapiro() method in python was
used to perform the Shapiro–Wilk normality test on the sample data. The normality
test result shows that the sample data does not meet the normality condition, thus we
can apply the non-parametric Wilcoxon test on the average stubbing complexity value
between any two algorithms. At a significance level of 0.05, the null hypothesis (H0) states
that the two algorithms at the row and column have equivalent performance and the
alternative hypothesis (H1) states that the two algorithms have significant performance. If
the p-value < 0.05, then H0 cannot be valid.

The detailed results of Wilcoxon signed rank test with a p-value threshold of 0.05 are
reported in Table 5. Columns and rows represent different meta heuristic algorithms to
generate integration test orders. Each cell contains the p-value obtained between the

Electronics 2023, 12, 3733 17 of 30

two algorithms at the row and column of this cell. While the values in last column
indicate the number of cases where p-value < 0.05. In those cases, significant p-values
denote that the algorithms identified by their associated rows are significantly better
than the other algorithms being compared. From Table 5, we can observe that grey wolf
optimization algorithm is significantly better than 6 algorithms, salp swarm algorithm is
significantly better than 5 algorithms, whereas cuckoo search algorithm and moth flame
algorithm are significantly better than 4 algorithms. Therefore, we conclude that grey wolf
optimization algorithm, salp swarm algorithm, moth flame optimization algorithm and
cuckoo search algorithm are the four algorithms achieving better optimization results for
the CITO problem of all these ten systems under test.

Table 5. Wilcoxon analysis results.

Algorithm GA PSO CS FA BA GWO MFO SSA SCA HHO
Cases Where

p-Value
< 0.05

GA - 0.053 0.722 0.001 0.001 0.958 0.920 0.947 0.239 0.042 3
PSO 0.958 - 0.999 0.001 0.001 0.999 0.976 0.993 0.813 0.528 2
CS 0.313 0.002 - 0.001 0.001 0.858 0.920 0.947 0.096 0.010 4
FA 1.000 1.000 1.000 - 0.002 1.000 0.997 1.000 1.000 0.968 1
BA 1.000 1.000 1.000 0.999 - 1.000 0.997 1.000 1.000 0.976 0

GWO 0.042 0.002 0.171 0.001 0.001 - 0.903 0.784 0.010 0.002 6
MFO 0.097 0.032 0.097 0.005 0.005 0.116 - 0.096 0.065 0.042 4
SSA 0.065 0.010 0.065 0.001 0.001 0.216 0.922 - 0.042 0.014 5
SCA 0.797 0.216 0.922 0.001 0.001 0.993 0.947 0.968 - 0.161 2
HHO 0.968 0.528 0.993 0.042 0.032 0.999 0.968 0.990 0.862 - 2

Combined with the above analysis, moth flame algorithm, salp swarm algorithm,
grey wolf optimization algorithm and cuckoo search algorithm algorithms can obtain
high-precision solutions for most systems under test. Among them, moth flame algorithm
and salp swarm algorithm show good optimization performance for systems with small
search space, low dependence, and low complexity. However, they are prone to large
optimization errors and unstable performance with the expansion of search space and
complex improvement of classes coupling. The optimization performance of grey wolf
optimization algorithm and cuckoo search algorithm is exciting for SPM, ATM, ANT,
DEOS and Email. With the increment of classes and dependencies, grey wolf optimization
algorithm performs more and more prominently. In general, firefly algorithm and bat
algorithm have poor optimization performance for the CITO problem and their iterative
optimization process is unstable.

4.4.2. Attribute Complexity and Method Complexity

The CITO optimization problem is a multi objective problem with two objectives:
attribute complexity and method complexity. According to multi objective researches [15],
the linear weights combination approach could not ensure find Pareto front (formed by
non-dominated solutions) points of interest. Furthermore, the aggregation fitness function
we used is in fact a multiple cost function. Thus, it is impossible to obtain the detailed
optimization results of the two single objectives from the normalized weighted average
fitness value.

How the two factors, attribute complexity and method complexity, influence the
stubbing complexity need to be discussed. In this section, we focus on the attribute
complexity A (i, j) and method complexity M(i, j) of test orders generated to find out which
algorithms perform better in attribute coupling guided systems and which algorithms
perform better in method coupling guided systems.

Observing the coupling distribution information described in Table 2, the systems
under test are deemed to be of varying coupling. Some systems have more method coupling

Electronics 2023, 12, 3733 18 of 30

while some have more attribute coupling. In order to further analyze the influence of
the two factors on stubbing complexity, the range of attribute complexity and method
complexity for a given class integration test order are collected and discussed.

The detailed attribute complexity and method complexity for each system are sum-
marized in Tables 6 and 7, where columns 2–11 are the attribute complexity or method
complexity of class integration test orders generated by genetic algorithm, particle swarm
optimization algorithm, cuckoo search algorithm, firefly algorithm, bat algorithm, grey
wolf optimization algorithm, moth flame algorithm, salp swarm algorithm, sine cosine
algorithm and Harris hawk optimization algorithm. Each cell contains the complexity
intervals as the optimization results for each system are not consistent across the repeated
executions of each algorithm.

Table 6. Attribute complexity values of the ten systems.

System Stats. GA PSO CS FA BA GWO MFO SSA SCA HHO

Elevator

min 9 8 9 9 9 9 9 9 9 9
max 9 9 9 10 11 9 9 9 10 19

mean 9.00 8.90 9.00 9.30 10.40 9.00 9.00 9.00 9.40 15.70
Stdev 0.00 0.30 0.00 0.57 0.66 0.00 0.00 0.00 0.40 3.03
rank 2 1 2 3 5 2 2 2 4 6

SPM

min 52 58 49 60 68 54 45 47 52 63
max 71 89 72 103 132 76 63 74 111 128

mean 61.60 68.18 61.20 83.73 100.27 63.13 53.60 56.47 86.36 95.45
Stdev 5.38 9.21 7.89 12.05 17.89 6.63 4.67 8.27 18.64 19.78
rank 4 6 3 7 10 5 1 2 8 9

ATM

min 31 30 31 35 44 31 30 30 40 31
max 51 38 39 52 74 38 34 35 138 149

mean 36.30 33.40 33.45 43.70 55.00 33.10 31.15 31.35 81.91 70.27
Stdev 5.52 2.33 2.33 4.26 7.48 1.80 1.18 1.27 37.03 43.29
rank 6 4 5 7 8 3 1 2 10 9

Daisy

min 0 0 0 1 0 0 0 0 0 0
max 3 1 1 21 4 2 1 2 23 28

mean 0.36 0.75 0.50 9.91 1.27 0.40 0.18 0.91 8.45 8.82
Stdev 0.92 0.46 0.53 5.68 1.27 0.70 0.41 0.70 7.59 10.33
rank 2 5 4 10 7 3 1 6 8 9

ANT

min 45 48 47 63 55 42 34 37 70 50
max 66 76 74 95 111 69 55 82 105 124

mean 57.53 64.4 56.93 73.60 85.07 57.73 42.20 53.73 89.00 91.36
Stdev 6.20 7.86 7.67 8.62 15.61 7.93 5.21 10.79 8.89 21.10
rank 4 6 3 7 8 5 1 2 9 10

DEOS

min 6 6 7 14 8 6 6 8 13 10
max 12 12 13 31 15 11 9 10 29 32

mean 8.8 8.7 9.1 21.1 12.9 8.9 7.4 8.9 20.5 19.8
Stdev 1.87 1.89 2.08 6.91 2.08 1.73 1.17 0.88 5.21 7.91
rank 3 2 5 9 6 4 1 4 8 7

Email

min 5 7 6 8 7 9 7 5 11 11
max 13 13 10 34 21 13 11 16 57 44

mean 9.64 9.33 8.57 24.73 14.27 11 8.33 11 28.18 30.64
Stdev 2.21 2 1.62 8.25 4.47 1.41 1.51 3.5 14.13 9.48
rank 4 3 2 7 6 5 1 5 8 9

BCEL

min 66 78 53 72 93 65 78 44 116 128
max 102 100 111 155 140 98 93 106 281 347

mean 83.72 90.39 86.37 107.73 111.64 78.54 81.91 67 151.36 168.72
Stdev 8.82 6.05 17.04 25.20 11.74 5.73 13.71 19 21.52 22.73
rank 4 6 5 7 8 2 3 1 9 10

Electronics 2023, 12, 3733 19 of 30

Table 6. Cont.

System Stats. GA PSO CS FA BA GWO MFO SSA SCA HHO

DNS

min 69 68 73 113 122 76 70 69 121 154
max 107 116 112 154 170 100 99 99 502 318

mean 89.13 92.5 93.2 131.63 140.75 88.88 83 81 218.36 203.27
Stdev 11.67 15.37 14.62 13.11 17.88 10.25 12 7.3 31.71 49.58
rank 4 5 6 7 8 3 2 1 10 9

Notepad

min 5 6 5 14 9 5 5 6 10 13
max 9 12 7 66 20 11 6 13 26 64

mean 5.91 8.2 6.2 35.64 12.73 7.9 5.36 9.4 17.8 31.71
Stdev 1.14 2.35 0.84 22.45 3.52 2.51 0.51 2.5 5.18 22.30
rank 2 5 3 10 7 4 1 6 8 9

Table 7. Method complexity values of the ten systems.

System Stats. GA PSO CS FA BA GWO MFO SSA SCA HHO

Elevator

min 17 18 17 20 25 17 17 17 17 27
max 23 33 25 30 34 24 22 22 32 125

mean 20.30 22.30 21.50 27.34 28.70 21 18.90 18.60 24.70 76.70
Stdev 1.87 4.01 2.81 3.75 3.28 2.20 2.12 2.06 4.82 26.8
rank 3 6 5 8 9 4 2 1 7 10

SPM

min 22 22 20 24 30 21 18 19 26 30
max 31 32 31 37 48 31 27 28 45 56

mean 27.33 28.09 25.26 28.93 37.93 25.60 22.06 24.13 35.27 40.73
Stdev 2.74 2.74 2.89 3.45 4.63 3.02 3.08 2.51 5.29 7.32
rank 5 6 3 7 9 4 1 2 8 10

ATM

min 11 11 11 13 13 12 11 11 14 13
max 20 19 15 23 27 15 14 17 45 36

Stdev 14.05 13.75 13.50 17.65 19.4 13.20 12.70 13.25 24.82 20.09
mean 2.09 1.89 1.15 2.66 3.93 1.01 0.75 1.33 9.26 8.85
rank 6 5 4 7 8 2 1 3 10 9

Daisy

min 10 10 9 13 17 7 6 13 48 24
max 18 21 19 81 34 16 17 22 83 78

mean 13.82 15.5 14 54 27.09 12.9 12.20 17.46 61.36 47.55
Stdev 2.48 4.00 2.75 18.12 5.48 3.14 3.28 2.66 13.03 16.40
rank 3 5 4 9 7 2 1 6 10 8

ANT

min 32 30 33 34 36 30 29 30 47 40
max 47 42 42 51 70 42 36 40 74 73

mean 38.27 37.07 36.67 42.60 48.53 36.47 32.53 34.53 58.20 58.09
Stdev 3.94 3.41 2.79 3.78 8.94 2.88 2.47 2.88 9.07 12.22
rank 6 5 4 7 8 3 1 2 10 9

DEOS

min 42 48 43 66 55 40 39 37 73 64
max 60 61 67 126 84 54 53 52 109 118

mean 52.8 54 50.8 92.9 70.2 48.9 45.5 46.9 90.2 89.9
Stdev 6.27 4.74 7.31 18.75 8.55 4.18 4.93 4.68 14.71 15.76
rank 5 6 4 10 7 3 1 2 9 8

Email

min 22 24 22 38 34 26 20 22 71 62
max 34 39 34 145 57 34 33 46 131 129

mean 30 32.11 28.57 105.64 46.36 29.33 26.3 34 96.64 102.36
Stdev 3.61 4.48 4.16 30.96 9.71 3.08 4.32 6.8 20.85 20.28
rank 4 5 2 10 7 3 1 6 8 9

Electronics 2023, 12, 3733 20 of 30

Table 7. Cont.

System Stats. GA PSO CS FA BA GWO MFO SSA SCA HHO

BCEL

min 87 92 96 102 109 86 91 89 104 99
max 109 109 109 121 123 106 109 109 198 241

mean 91.55 103.28 101.10 113.36 117.45 90.63 105.82 100.72 150.64 160.18
Stdev 4.85 5.57 4.01 10.99 4.63 5.74 22.32 6.89 26.71 38.37
rank 2 5 4 7 8 1 6 3 9 10

DNS

min 50 59 53 80 75 52 47 54 92 88
max 77 84 74 100 114 85 67 79 163 152

mean 64.25 68.38 61.6 87.75 95.13 62.6 59 66.5 116.64 127.91
Stdev 8.92 7.39 7.70 6.48 13.82 10.7 7.54 9.4 20.90 21.10
rank 4 6 2 7 8 3 1 5 9 10

Notepad

min 69 60 73 67 61 53 56 56 80 63
max 80 82 78 119 94 73 77 80 100 100

mean 76.10 74.3 76 92.73 82.27 64.1 70.3 66 89.2 90.14
Stdev 3.59 8.08 1.87 17.24 10.68 7.42 7.48 9.4 7.55 13
rank 6 4 5 10 7 1 3 2 8 9

Overall, the optimization results of attribute complexity and method complexity are
consistent with the coupling distribution information in Table 2. Generally, for systems with
more attribute coupling, the attribute complexity value and its interval are large. While for
systems with more method coupling, the method complexity value and its interval are large.
From the two types of coupling, the characteristics of optimization process for systems
with more attribute coupling and more method coupling are analyzed, respectively.

(1) Attribute Coupling Factor Analysis

According to the coupling distribution information in Table 2, the attribute and method
coupling of SPM are 462 and 135, respectively, ATM are 283 and 84, respectively, ANT
are 585 and 177, respectively, and DNS are 766 and 328, respectively. The number of
attributes coupling in these systems far exceeds the number of methods coupling, thus the
optimization process of each algorithm is guided mainly by attribute coupling.

Based on the analysis result of stubbing complexity in Section 4.4.1, the first four
algorithms are grey wolf optimization algorithm, salp swarm algorithm, cuckoo search
algorithm and moth flame algorithm. As for SPM, ATM, ANT, DNS, moth flame algorithm
and salp swarm algorithm perform best in these four systems, grey wolf optimization
algorithm appears four times in different order, cuckoo search algorithm, particle swarm
optimization algorithm, sine cosine algorithm and genetic algorithm appear once, respec-
tively. Additionally, the method complexity intervals of CITO generated by all algorithms
for these systems are relatively small. The attribute complexity intervals of moth flame
algorithm, salp swarm algorithm and grey wolf optimization algorithm are narrow, while
the attribute complexity intervals of salp swarm algorithm in SPM and ANT are wide,
indicating the unstable optimization process.

(2) Method Coupling Factor Analysis

Similarly, the attribute and method coupling of Elevator are 21 and 158, respectively,
Daisy are 34 and 135, respectively, DEOS are 26 and 223, respectively, and Email are 72 and
222, respectively. The method coupling of these systems are much greater than the attribute
coupling, thus the optimization process is greatly affected by method coupling.

For Elevator, Daisy, DEOS and Email, the first four algorithms with excellent per-
formance can be counted. Moth flame algorithm, grey wolf optimization algorithm and
cuckoo search algorithm algorithms appear four times, salp swarm algorithm and sine
cosine algorithm appear twice, and genetic algorithm appears once. The ranking of grey
wolf optimization algorithm is higher than that of optimization process guided by at-
tribute coupling, showing its good optimization ability. As seen from Table 6, there is
little difference among attribute complexity intervals of CITO generated by all algorithms.

Electronics 2023, 12, 3733 21 of 30

Further, the method complexity intervals of moth flame algorithm, grey wolf optimization
algorithm, cuckoo search algorithm and salp swarm algorithm for these four systems are
narrow, as shown in Table 7. Meanwhile, the method complexity intervals of sine cosine
algorithm for Daisy, DEOS and Email are wide. Combined with the standard deviation
of sine cosine algorithm’s fitness function value in Table 4, we can see the instability of its
optimization performance.

To sum up, the optimization process guided by the coupling-based fitness function can
generate encouraging class integration test orders. When using OCplx with WA = WM = 0.5
to measure the stub cost, the designed fitness function can give a proper balance between
attribute complexity and method complexity.

For systems with great attribute coupling, moth flame algorithm, salp swarm algorithm
and grey wolf optimization algorithm are recommended. However, the intervals of salp
swarm algorithm are wide because of SSA’s unstable optimization process.

For systems with great method coupling, moth flame algorithm, grey wolf optimiza-
tion algorithm, cuckoo search algorithm and sine cosine algorithm are recommended, but
the optimization result of sine cosine algorithm is unstable.

4.5. Efficiency Analysis
4.5.1. Convergence Behavior Analysis

Generally, more dependency cycles indicate high coupling among classes. In the
context of search-based approaches, optimization involves searching for test orders that
minimizes the coupling-based fitness function. Due to the highly non-linear nature of this
fitness function, the search space exhibits a curvy, noisy landscape with numerous local
minima. In this section, we focus on the ability of these algorithms to avoid getting stuck
and discuss how dependency cycles influence the optimization performance.

In order to observe the convergence behavior to devise test orders for systems in the
presence of dependency cycles, we select the systems with dependency cycles, SPM, ATM,
ANT, BCEL and DNS. We collect their stubbing complexity values obtained at the 10th,
20th, until 200th iteration, respectively. Then, the average value is calculated across
20 executions. The search history and convergence curve of the optimal results obtained
by each algorithm are illustrated in Figure 4. The horizontal axis indicates the number of
iterations, and the vertical axis indicates the average value of stubbing complexity.

It can be observed that the stubbing complexity generally decreases with the increasing
number of iterations, reflecting the effectiveness of the search-based approach for the CITO
problem. Generally speaking, the convergence speed of various algorithm for different
systems is affected by many factors. Under the same population size and running envi-
ronment, the convergence behavior is analyzed from following two aspects: individual
encoding and optimization performance.

From the perspective of individual encoding strategy, this paper encodes any class
integration test order into one individual in one-dimensional space through Algorithm 1,
and maps it into CITO through Algorithm 2. The method of using one-dimensional spatial
locations to represent individuals reduces the spatial dimension, simplifies the location
update process, and reduces the computational complexity. It can be seen that most meta
algorithms can gradually improve the quality of solutions and converge faster. However,
we also find that this encoding strategy has some limitations. Generally, the search space
for the CITO problem increases with the number of classes, so the position coordinate of
an individual may be very large. Consequently, it is easy to reduce the precision of the
obtained class integration test order because of the large search space.

Illustrated by the optimization trend of these ten algorithms, the convergence speed
of bat algorithm and firefly algorithm is comparatively slow, and their convergence curve
is relatively flat as a whole. The precision of the optimal solution generated by the firefly
algorithm is higher than that of bat algorithm and significantly lower than that of other
eight algorithms. The reason behind the slow convergence of the bat algorithm is that the
speed term with constant coefficient reduces individual flexibility and population diversity,

Electronics 2023, 12, 3733 22 of 30

which make the algorithm converge rapidly in early stage but slow in later stage. The
pairwise learning mechanism of firefly algorithm causes oscillation of optimization results,
especially in the larger search space caused by more classes.

Electronics 2023, 12, x FOR PEER REVIEW 22 of 31

(a) SPM

(b) ATM

(c) ANT

2.8

3.3

3.8

4.3

4.8

5.3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

GA PSO CS FA BA
GWO MFO SSA SCA HHO

2.0

2.5

3.0

3.5

4.0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

GA PSO CS FA BA

GWO MFO SSA SCA HHO

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

GA PSO CS FA
BA GWO MFO SSA
SCA HHO

Figure 4. Cont.

Electronics 2023, 12, 3733 23 of 30
Electronics 2023, 12, x FOR PEER REVIEW 23 of 31

(d) BCEL

(e) DNS

Figure 4. Graph for convergence analysis.

It can be observed that the stubbing complexity generally decreases with the increas-

ing number of iterations, reflecting the effectiveness of the search-based approach for the

CITO problem. Generally speaking, the convergence speed of various algorithm for dif-

ferent systems is affected by many factors. Under the same population size and running

environment, the convergence behavior is analyzed from following two aspects: individ-

ual encoding and optimization performance.

From the perspective of individual encoding strategy, this paper encodes any class

integration test order into one individual in one-dimensional space through Algorithm 1,

and maps it into CITO through Algorithm 2. The method of using one-dimensional spatial

locations to represent individuals reduces the spatial dimension, simplifies the location

update process, and reduces the computational complexity. It can be seen that most meta

algorithms can gradually improve the quality of solutions and converge faster. However,

we also find that this encoding strategy has some limitations. Generally, the search space

for the CITO problem increases with the number of classes, so the position coordinate of

an individual may be very large. Consequently, it is easy to reduce the precision of the

obtained class integration test order because of the large search space.

Illustrated by the optimization trend of these ten algorithms, the convergence speed

of bat algorithm and firefly algorithm is comparatively slow, and their convergence curve

is relatively flat as a whole. The precision of the optimal solution generated by the firefly

algorithm is higher than that of bat algorithm and significantly lower than that of other

eight algorithms. The reason behind the slow convergence of the bat algorithm is that the

10.5

11.0

11.5

12.0

12.5

13.0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

GA PSO CS FA

BA GWO MFO SSA

7.5

8.5

9.5

10.5

11.5

12.5

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

GA PSO CS FA

BA GWO MFO SSA

Figure 4. Graph for convergence analysis.

The top 4 fastest algorithms with excellent optimization results for these five systems
are shown in Table 8. The detailed information is described as follows.

SPM contains 19 classes, 72 dependencies and 1178 cycles. There are abrupt changes
in the movement of the search individuals over the first 40 iterations of the firefly algorithm
and first the 80 iterations of bat algorithm. The precision of optima solutions obtained
by both firefly algorithm and bat algorithm is slightly improved in the later stage. The
other eight intelligent algorithms can produce promising stubbing complexity within about
120 iterations, among which moth flame algorithm has the fastest convergence speed with
best accuracy. At the early stage, the precision of the optima solutions generated by the
moth flame algorithm is much higher than that of other algorithms and precision of optima
solutions of the salp swarm algorithm, grey wolf optimization algorithm and cuckoo search
algorithm is higher than that of other remaining algorithms. When the same precision of
optima solutions is required, the moth flame algorithm needs the least iterations, while
the salp swarm algorithm, grey wolf optimization algorithm and cuckoo search algorithm
need less iterations than other algorithms. Among all ten algorithms, bat algorithm needs
the most iterations and firefly algorithm needs more iterations. The convergence speed of
the moth flame algorithm, grey wolf optimization algorithm, cuckoo search algorithm and
salp swarm algorithm is consistent with the optimization results in Table 4.

Electronics 2023, 12, 3733 24 of 30

Table 8. The top 4 fastest algorithms with excellent optimization results.

System Classes Dependencies Cycles Top 4 Fastest Algorithms with Excellent Optimization Results

SPM 19 72 1178

MFO (moth flame optimization algorithm)
GWO (grey wolf algorithm)

CS (cuckoo search algorithm)
SSA (salp swarm algorithm)

ATM 21 67 30

MFO (moth flame optimization algorithm)
GWO (grey wolf optimization algorithm)

PSO (particle swarm optimization algorithm)
SSA (salp swarm algorithm) with slow convergence speed at

early stage and fast convergence speed at later stage

ANT 25 83 654

MFO (moth flame optimization algorithm)
SCA (sine cosine algorithm)

GWO (grey wolf optimization algorithm)
SSA (salp swarm algorithm) with slow convergence speed at

early stage and fast convergence speed at later stage.

BCEL 45 294 416,091

GWO (grey wolf optimization algorithm)
GA (genetic algorithm)

SSA (salp swarm algorithm)
SCA (sine cosine algorithm)

DNS 61 276 16

MFO (moth flame optimization algorithm)
GA (genetic algorithm)

SSA (salp swarm algorithm)
GWO (grey wolf algorithm)

ATM contains 21 classes, 67 dependencies and 30 cycles. Most algorithms can find
promising solutions in the first 80 iterations. Among them, the convergence speed of the
moth flame algorithm is the fastest, the Harris hawk optimization algorithm converges
more quickly than the firefly algorithm and the bat algorithm, but more slowly than other
intelligent algorithms. At the early stage, the three algorithms with the highest precision
under the same iterations are the moth flame algorithm, grey wolf optimization algorithm
and particle swarm optimization algorithm. When the same precision of optima solutions
is required, the iterations required by the moth flame algorithm, grey wolf optimization
algorithm and particle swarm optimization algorithm are significantly less those required
by other algorithms, while the firefly algorithm and bat algorithm need the most iterations.
Additionally, the convergence speed of moth flame optimization algorithm, grey wolf
optimization algorithm and particle swarm optimization algorithm is consistent with the
optimization results in Table 4. In particular, salp swarm algorithm shows the characteristics
of slow convergence speed at early stage and fast convergence speed at later stage.

ANT contains 25 classes, 83 dependencies and 654 cycles. Most algorithms can find
high-precision solutions in the first 110 iterations. At the early stage of optimization process,
the convergence speed of sine cosine algorithm and grey wolf optimization algorithm is
not as fast as moth flame algorithm. Additionally, the convergence speed and precision
of solutions obtained by the salp swarm algorithm are higher than firefly algorithm and
bat algorithm, lower than other algorithms. At the same iterations, the algorithm with
the highest optimization accuracy is the moth flame algorithm. When the same precision
is needed, the iterations required by moth flame algorithm is significantly less than that
of other algorithms, but the firefly algorithm and bat algorithm need the most iterations.
Additionally, the convergence behavior of moth flame algorithm, sine cosine algorithm
and grey wolf optimization algorithm is consistent with the optimization results in Table 4.
Although the final optimization results of the salp swarm algorithm rank second, the
convergence speed of the salp swarm algorithm is slow at the early stage and becomes fast
at later optimization stage.

Electronics 2023, 12, 3733 25 of 30

BCEL contains 45 classes, 294 dependencies and 416,091 cycles, which improves the
complexity of the system. As can be seen from the convergence curve, the optimization
ability of most algorithms in the first 100 iterations is low. Most algorithms can find stable
solutions at 190 iterations. The reason behind this behavior is that the dependencies in
BCEL are complex and the search space is large, which makes individuals easy to oscillate
in the search space. Among all these algorithms, the wolf optimization algorithm, genetic
algorithm, salp swarm algorithm and sine cosine algorithm show exciting convergence
speed between 100 and 170 iterations, consistent with the optimization results in Table 4.

DNS contains 61 classes, 276 dependencies and 16 cycles. Although the number of
classes in DNS is the most among these five systems, the dependencies among classes are
weak. It can be seen that most algorithms can find stable solutions at 150 iterations and
maintain a good convergence speed at the early stage. Among these ten algorithms, the
optimization performance of the moth flame algorithm is outstanding and the convergence
speed is the fastest. In the first 110 iterations, the convergence speed of other algorithms
is almost the same except the fastest convergence speed of moth flame algorithm and the
slow convergence speed of the bat algorithm, firefly algorithm, Harris hawk optimization
and sine cosine algorithm. At the later stage of optimization process, the genetic algorithm,
salp swarm algorithm and grey wolf optimization algorithm show their excellent search
ability, consistent with the optimization results in Table 4.

Based on the above analysis, the convergence speed is affected by the number of
classes and dependency cycles. The more the number of classes and cycles are, the more
difficult the optimization process is, and the more iterations are required to achieve higher
precision of optima solutions. Combing the consistency between convergence speed and
optima solutions obtained, algorithms with fast convergence speed can obtain solutions
with high accuracy, except for the salp swarm algorithm.

Generally, the salp swarm algorithm shows the characteristics of slow convergence
speed at early stage and fast convergence speed at later stage. Based on the analysis of
individual update mechanism in the salp swarm algorithm, the leader’s update process
is affected by the maximum number of iterations. The greater the maximum number of
iterations, the slower the leader searches in the early stage. Compared with SPM, BCEL
and DNS, the number of classes in ATM and ANT is small with low coupling; thus, their
maximum iteration is relatively high, resulting in low convergence at early stage.

4.5.2. Runtime Analysis

To ensure the fairness of the experimental results, each algorithm run independently
in the same environment. The actual average runtime of each iteration of these algorithms
for each system is recorded and shown in Table 9 and Figure 5. In Figure 5, the horizontal
axis indicates the software system and the vertical axis indicates the actual average runtime
of each iteration.

Table 9. Average runtime (ms).

System GA PSO CS FA BA GWO MFO SSA SCA HHO Average

Elevator 2578 1004 2067 2652 2759 1003 1010 993 1085 779 1593

SPM 5919 2489 4816 6335 8159 2394 2432 2428 2668 1826 3947

ATM 10,503 2948 5723 7653 8199 2918 2905 3027 3225 2268 4937

Daisy 7540 3566 6962 8027 9320 3476 3514 3546 3877 2675 5250

ANT 8426 4189 8011 9422 11,874 4069 4151 4157 4560 3149 6201

DEOS 8323 4225 8037 9678 11,720 4054 4156 4158 4602 3108 6206

Email 20,216 9975 19,495 22,876 28,365 9704 10,061 9985 10,958 7608 14,924

BCEL 26,855 13,232 25,821 29,350 36,527 13,157 13,140 13,181 14,150 10,358 19,577

DNS 81,973 24,306 47,800 60,892 72,791 23,698 24,191 24,964 26,141 17,212 40,397

Notepad 74,445 27,413 52,760 61,349 78,079 26,831 27,334 28,084 29,509 24,475 43,028

Electronics 2023, 12, 3733 26 of 30

Electronics 2023, 12, x FOR PEER REVIEW 26 of 31

Generally, the salp swarm algorithm shows the characteristics of slow convergence

speed at early stage and fast convergence speed at later stage. Based on the analysis of

individual update mechanism in the salp swarm algorithm, the leader’s update process is

affected by the maximum number of iterations. The greater the maximum number of iter-

ations, the slower the leader searches in the early stage. Compared with SPM, BCEL and

DNS, the number of classes in ATM and ANT is small with low coupling; thus, their max-

imum iteration is relatively high, resulting in low convergence at early stage.

4.5.2. Runtime Analysis

To ensure the fairness of the experimental results, each algorithm run independently

in the same environment. The actual average runtime of each iteration of these algorithms

for each system is recorded and shown in Table 9 and Figure 5. In Figure 5, the horizontal

axis indicates the software system and the vertical axis indicates the actual average

runtime of each iteration.

Table 9. Average runtime (ms).

System GA PSO CS FA BA GWO MFO SSA SCA HHO Average

Elevator 2578 1004 2067 2652 2759 1003 1010 993 1085 779 1593

SPM 5919 2489 4816 6335 8159 2394 2432 2428 2668 1826 3947

ATM 10,503 2948 5723 7653 8199 2918 2905 3027 3225 2268 4937

Daisy 7540 3566 6962 8027 9320 3476 3514 3546 3877 2675 5250

ANT 8426 4189 8011 9422 11,874 4069 4151 4157 4560 3149 6201

DEOS 8323 4225 8037 9678 11,720 4054 4156 4158 4602 3108 6206

Email 20,216 9975 19,495 22,876 28,365 9704 10,061 9985 10,958 7608 14,924

BCEL 26,855 13,232 25,821 29,350 36,527 13,157 13,140 13,181 14,150 10,358 19,577

DNS 81,973 24,306 47,800 60,892 72,791 23,698 24,191 24,964 26,141 17,212 40,397

Notepad 74,445 27,413 52,760 61,349 78,079 26,831 27,334 28,084 29,509 24,475 43,028

Figure 5. Histogram for average time analysis.

Search-based software testing is the process of automatically generating test data ac-

cording to a test adequacy criterion using search-based optimization algorithms. The

search-based approaches for the CITO problem means that meta heuristic algorithms need

to search acceptable class integration test orders with low stubbing complexity among all

possible combinations of classes. As we can see from the growth trend of running time,

systems with more classes have larger search space which increases the optimization dif-

ficulty and requires more time to obtain optima solutions.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

Elevator SPM ATM Daisy ANT DEOS Email BCEL DNS Notepad

GA PSO CS FA

BA GWO MFO SSA

SCA HHO

Figure 5. Histogram for average time analysis.

Search-based software testing is the process of automatically generating test data
according to a test adequacy criterion using search-based optimization algorithms. The
search-based approaches for the CITO problem means that meta heuristic algorithms need
to search acceptable class integration test orders with low stubbing complexity among
all possible combinations of classes. As we can see from the growth trend of running
time, systems with more classes have larger search space which increases the optimization
difficulty and requires more time to obtain optima solutions.

Elevator contains 12 classes, with the average runtime of 1593 ms, minimum runtime
of 779 ms and maximum runtime of 2759 ms. ATM contains 21 classes, with the average
runtime of 4937 ms, minimum runtime of 2268 ms and maximum runtime of 8199 ms.
BCEL contains 45 classes, with the average runtime of 19,577 ms, minimum runtime of
10,358 ms and maximum runtime of 36,527 ms. Notepad contains 65 classes, with the
average runtime of 41,028 ms minimum runtime of 24,475 ms and maximum runtime
of 78,079 ms. It can be seen from the statistical data that the average runtime is directly
proportional to the number of classes in the systems. The more classes in system, the more
running time is required.

From the perspective of the running time required by the different algorithms, the
Harris hawk optimization spends the least runtime for each iteration. The runtime per
each iteration of the grey wolf optimization algorithm, moth flame algorithm, particle
swarm optimization algorithm, salp swarm algorithm and sine cosine algorithm is roughly
the same. Grey wolf optimization algorithm ranked the second least running time for
seven systems. Moth flame algorithm ranked the third least runtime for six systems.
Therefore, grey wolf optimization algorithm and moth flame algorithm show their obvious
time advantages. Additionally, the running time of the cuckoo search algorithm, firefly
algorithm, genetic algorithm and bat algorithm is significantly higher than that of other
algorithms. The bat algorithm is the algorithm with most runtime per each iteration.

4.5.3. Memory Analysis

Similarly, the memory of each iteration of these algorithms for each system is collected
and shown in Table 10 and Figure 6. In Figure 6, the horizontal axis indicates systems
under test and the vertical axis indicates the actual average memory of each iteration.

It can be seen from the statistical data that the used memory of generating optimal
test orders is rising with the increasing number of classes. That is, more classes in systems
require more memory. For systems with almost the same number of classes, the more
dependencies there are, the more memory is required.

Electronics 2023, 12, 3733 27 of 30

Table 10. Average memory (KB).

System GA PSO CS FA BA GWO MFO SSA SCA HHO Average

Elevator 216 256 236 332 208 264 336 320 332 248 275
SPM 252 312 160 416 244 166 332 360 380 368 299
ATM 148 132 200 364 160 184 348 332 264 388 252
Daisy 196 208 184 360 192 302 328 332 320 456 288
ANT 208 160 580 592 209 268 328 332 328 496 350
DEOS 288 140 220 488 384 360 324 520 320 360 340
Email 176 248 532 640 236 392 332 692 368 436 405
BCEL 612 616 656 604 644 556 544 572 768 476 605
DNS 968 876 956 1084 1324 1152 1088 1392 1296 1248 1138

Notepad 844 524 844 628 372 832 688 856 840 840 727
Electronics 2023, 12, x FOR PEER REVIEW 28 of 31

Figure 6. Histogram for memory analysis.

It can be seen from the statistical data that the used memory of generating optimal

test orders is rising with the increasing number of classes. That is, more classes in systems

require more memory. For systems with almost the same number of classes, the more

dependencies there are, the more memory is required.

It also can be seen that for all systems, the memory by the genetic algorithm, particle

swarm optimization algorithm and bat algorithm is the least. The average memory of the

grey wolf optimization algorithm, moth flame algorithm and cuckoo search algorithm is

less than that generated by the genetic algorithm, particle swarm optimization algorithm

and bat algorithm. The average memory of the firefly algorithm, sine cosine algorithm,

salp swarm algorithm and Harris hawk optimization is small.

4.6. Answering the Research Questions

Based on the above experimental results and analysis of the test stubbing complexity,

method complexity, attribute complexity, convergence speed, average runtime and

memory consumption, the conclusions to the research questions are as follows:

Answer to question 1: Comparatively speaking, the moth flame optimization algo-

rithm, salp swarm algorithm, grey wolf optimization algorithm, cuckoo search algorithm

and sine cosine algorithm can obtain class integration test orders with low test stubbing

complexity. Among these promising algorithms, the moth flame optimization algorithm

and salp swarm algorithm are unstable especially in large search space.

Answer to question 2: The moth flame optimization algorithm, grey wolf algorithm,

cuckoo search algorithm and sine cosine algorithm have faster convergence speed, but

salp swarm algorithm shows the characteristics of slow convergence at the early stage and

fast convergence at the late stage. In terms of computational resource consumption, the

moth flame optimization algorithm and grey wolf optimization algorithm requires less

runtime and memory. The cuckoo search algorithm requires more runtime and more

memory than the moth flame optimization algorithm and grey wolf optimization algo-

rithm.

5. Threats to Validity

The main threats to the experiment validity can be summarized into internal validity

and external validity.

Internal validity refers to whether the evaluation measure is appropriate and whether

the experiment data is accurate. At present, the stubbing complexity has been widely used

to evaluate the performance of various approaches for the CITO problem. For these ten

0

200

400

600

800

1000

1200

1400

Elevator SPM ATM Daisy ANT DEOS Email BCEL DNS Notepad

GA PSO CS FA BA

GWO MFO SSA SCA HHO

Figure 6. Histogram for memory analysis.

It also can be seen that for all systems, the memory by the genetic algorithm, particle
swarm optimization algorithm and bat algorithm is the least. The average memory of the
grey wolf optimization algorithm, moth flame algorithm and cuckoo search algorithm is
less than that generated by the genetic algorithm, particle swarm optimization algorithm
and bat algorithm. The average memory of the firefly algorithm, sine cosine algorithm, salp
swarm algorithm and Harris hawk optimization is small.

4.6. Answering the Research Questions

Based on the above experimental results and analysis of the test stubbing complexity,
method complexity, attribute complexity, convergence speed, average runtime and memory
consumption, the conclusions to the research questions are as follows:

Answer to question 1: Comparatively speaking, the moth flame optimization algo-
rithm, salp swarm algorithm, grey wolf optimization algorithm, cuckoo search algorithm
and sine cosine algorithm can obtain class integration test orders with low test stubbing
complexity. Among these promising algorithms, the moth flame optimization algorithm
and salp swarm algorithm are unstable especially in large search space.

Answer to question 2: The moth flame optimization algorithm, grey wolf algorithm,
cuckoo search algorithm and sine cosine algorithm have faster convergence speed, but salp
swarm algorithm shows the characteristics of slow convergence at the early stage and fast
convergence at the late stage. In terms of computational resource consumption, the moth
flame optimization algorithm and grey wolf optimization algorithm requires less runtime
and memory. The cuckoo search algorithm requires more runtime and more memory than
the moth flame optimization algorithm and grey wolf optimization algorithm.

Electronics 2023, 12, 3733 28 of 30

5. Threats to Validity

The main threats to the experiment validity can be summarized into internal validity
and external validity.

Internal validity refers to whether the evaluation measure is appropriate and whether
the experiment data is accurate. At present, the stubbing complexity has been widely used
to evaluate the performance of various approaches for the CITO problem. For these ten
algorithms, the choice of parameter values is another threat to the internal validity. Due to
the lack of mathematical characteristic analysis of the CITO problem, we adopt the standard
form of these algorithms except genetic algorithm and particle swarm optimization algo-
rithm. At the same time, the time() methods are inserted into each iteration to ensure the
accuracy. Furthermore, the fact that the mapping from individual location to the stubbing
complexity is limited by data accuracy, not only affects the objectivity of evaluation results,
but also limits the scope of application of the method.

The external validity refers to the generalization of experimental conclusion. Although
these intelligent optimization algorithms have their own unique performance in the ex-
periment, there is no guarantee that the conclusion can be extended to other systems.
We selected benchmark systems with various complexity to verify the performance, but
we need to do more work to further verify the effectiveness, including conducting some
experiments on systems of other language such as C#, python. Additionally, more datasets
need to be selected from different fields or scales for testing to further validate the findings
reported in this study.

6. Conclusions

This paper propose a testing framework of meta heuristic algorithms for CITO problem.
It analyzes the optimization performance of ten typical algorithms: genetic algorithm,
particle swarm optimization algorithm, cuckoo search algorithm, firefly algorithm, bat
algorithm, grey wolf optimization algorithm, moth flame algorithm, salp swarm algorithm,
sine cosine algorithm, and Harris hawk optimization algorithm.

In general, the bat algorithm and firefly algorithm exhibit less effectiveness and
efficiency in CITO compared to the other eight algorithms. For systems with fewer de-
pendencies, the moth flame algorithm, salp swarm algorithm, grey wolf optimization
algorithm, and cuckoo search algorithm show their excellent optimization performance. In
cases of systems with significant class coupling, the grey wolf optimization algorithm and
cuckoo search algorithm demonstrate impressive optimization performance with high pre-
cision of optima solutions. However, the moth flame algorithm and salp swarm algorithm
display instability.

The coupling-based fitness function achieves a proper balance between attribute
complexity and method complexity. For systems greatly affected by attribute coupling, the
moth flame algorithm, salp swarm algorithm and grey wolf optimization algorithm are
recommended. For systems greatly affected by method coupling, the moth flame algorithm,
grey wolf optimization algorithm, cuckoo search algorithm and sine cosine algorithm
algorithms are recommended. Among these algorithms, the sine cosine algorithm and salp
swarm algorithm are unstable. Furthermore, most algorithms with high-precision optima
solutions exhibit faster convergence speed, need less runtime and memory.

This study is helpful in selecting appropriate meta heuristic algorithms to generate
class integration test orders, thereby laying a foundation for further scientific research
and practical applications. However, certain challenges remain, including issues of lack of
accuracy, space explosion caused by encoding mechanism and dependency cycles quoted
from related works. In the future, we will focus on coding mechanism improvement, space
reduction, adaptive optimization and so on. In addition, the CITO problem is a constrained
multi-objective optimization problem. We intend to conduct further Pareto analyses in
multi-objective optimization algorithms such as NSGA-II to identify better solutions in
future work.

Electronics 2023, 12, 3733 29 of 30

Author Contributions: Conceptualization, W.Z.; Data curation, W.Z. and L.G.; Formal analysis, W.Z.;
Funding acquisition, Q.Z.; Investigation, W.Z.; Methodology, W.Z.; Project administration, Q.Z.;
Resources, W.Z. and D.Z.; Software, W.Z. and L.G.; Supervision, Q.Z.; Validation, W.Z. and X.G.;
Visualization, W.Z.; Writing—original draft, W.Z.; Writing—review and editing, W.Z. and D.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This search was supported in part by the Science and Technology Planning Program of
Henan Province, under grant numbers 172102210592 and 212102210417.

Data Availability Statement: The dataset used to support the findings of this study is available from
the corresponding author upon request.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publica-
tion of this paper.

References
1. Khari, M.; Sinha, A.; Verdu, E.; Crespo, R.G. Performance Analysis of Six Meta-heuristic Algorithms over Automated Test Suite

Generation for Path Coverage based Optimization. Soft Comput. 2021, 24, 9143–9160. [CrossRef]
2. Le Hanh, V.; Akif, K.; Le Traon, Y.; Jézéque, J.M. Selecting an Efficient OO Integration Testing Strategy: An Experimental

comparison of Actual Strategies. In Proceedings of the 15th European Conference on Object-Oriented Programming, Budapest,
Hungary, 18–22 June 2001; pp. 381–401.

3. Jiang, S.J.; Zhang, M.; Zhang, Y.M.; Wang, R.; Yu, Q.; Keung, J.W. An Integration Test Order Strategy to Consider Control Coupling.
IEEE Trans. Softw. Eng. 2021, 47, 1350–1367. [CrossRef]

4. Kung, D.; Gao, J.; Hsia, P.; Toyoshima, Y.; Chen, C. A Test Strategy for Object Oriented Programs. In Proceedings of the 19th
Annual International Computer Software and Applications Conference, Dallas, TX, USA, 9–11 August 1995; pp. 239–244.

5. Zhang, M.; Keung, J.W.; Chen, T.Y.; Xiao, Y. Validating Class Integration Test Order Generation Systems with Metamorphic
Testing. Inf. Softw. Technol. 2021, 132, 106507. [CrossRef]

6. da Veiga Cabral, R.; Pozo, A.; Vergilio, S.R. A Pareto Ant Colony Algorithm Applied to the Class Integration and Test Order
Problem. In Proceedings of the esting Software & Systems-ifip Wg 61 International Conference, Natal, Brazil, 8–10 November
2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 16–29.

7. Hussain, K.; Mohd, M.S.; Cheng, S.; Shi, Y. Metaheuristic Research: A Comprehensive Survey. Artifical Intell. Rev. 2019, 52,
2191–2233. [CrossRef]

8. Tai, K.C.; Daniels, F.J. Interclass Test Order for Object-Oriented Software. In Proceedings of the 21st International Computer
Software and Applications Conference, Washington, DC, USA, 11–15 August 1997; pp. 602–607.

9. Traon, Y.L.; Jezequel, J.M. Efficient Object-Oriented Integration and Regression Test. IEEE Trans. Reliab. 2000, 49, 12–25. [CrossRef]
10. Briand, L.C.; Labiche, Y.; Wang, Y. An Investigation of Graph-Based Class Integration Test Order Strategies. IEEE Trans. Softw.

Eng. 2003, 29, 594–607. [CrossRef]
11. Zhang, M.; Keung, J.; Xiao, Y.; Kabir, M.A.; Feng, S. A Heuristic Approach to Break Cycles for the Class Integration Test Order

Generation. In Proceedings of the IEEE 43rd Annual Computer Software and Applications Conference, Milwaukee, WI, USA,
15–19 July 2019; pp. 47–52.

12. Briand, L.; Feng, J.; Labiche, Y. Experiment with Genetic Algorithms and Coupling Measures to Devise Optimal Integration Test Orders;
Technical report SCE-02-03; Carleton University: Ottawa, ON, Canada, 2002.

13. Borner, L.; Paech, B. Integration Test Order Strategies to Consider Test Focus and Simulation Effort. In Proceedings of the
International Conference on Advances in System Testing and Validation Lifecycle, Porto, Portugal, 20–25 September 2009;
pp. 80–85.

14. Vergilio, S.R.; Pozo, A.; Árias, J.C.G.; Cabral, R.d.V.; Nobre, T. Multi-objective Optimization Algorithms Applied to the Class
Integration and Test Order Problem. Softw. Tools Technol. Transf. 2012, 14, 461–475. [CrossRef]

15. Mariani, T.; Guizzo, G.; Vergilio, S.R.; Pozo, A.T. Grammatical Evolution for the Multi-Objective Integration and Test Or-
der Problem. In Proceedings of the Genetic and Evolutionary Computation Conference, Denver, CO, USA, 20–24 July 2016;
pp. 1069–1076.

16. Czibula, G.; Czibula, G.; Marian, Z. Identifying Class Integration Test Order Using an Improved Genetic Algorithm based
Approach. In Proceedings of the International Conference on Software Technologies, Madrid, Spain, 24–26 July 2018; pp. 163–187.

17. Zhang, Y.M.; Jiang, S.J.; Chen, R.Y.; Wang, X.Y.; Zhang, M. Class Integration Testing Order Determination Method based on
Particle Swarm Optimization Algorithm. Chin. J. Comput. 2018, 41, 931–945.

18. Zhang, Y.N.; Jiang, S.J.; Zhang, Y.M. Approach for Generating Class Integration Test Sequence based on Dream Particle Swarm
Optimization Algorithm. Comput. Sci. 2019, 46, 159–165.

19. Zhang, M.; Keung, J.W.; Xiao, Y.; Kabir, M.A. Evaluating the Effects of Similar Class Combination on Class Integration Test Order
Generation. Inf. Softw. Technol. 2021, 129, 106438. [CrossRef]

20. Zhang, B.Q.; Fei, Q.; Wang, Y.C.; Yang, Z. Study on Integration Test Order Generation Algorithm for SOA. Comput. Sci. 2022, 49,
24–29. [CrossRef]

https://doi.org/10.1007/s00500-019-04444-y
https://doi.org/10.1109/TSE.2019.2921965
https://doi.org/10.1016/j.infsof.2020.106507
https://doi.org/10.1007/s10462-017-9605-z
https://doi.org/10.1109/24.855533
https://doi.org/10.1109/TSE.2003.1214324
https://doi.org/10.1007/s10009-012-0226-1
https://doi.org/10.1016/j.infsof.2020.106438
https://doi.org/10.1007/s10915-022-01878-9

Electronics 2023, 12, 3733 30 of 30

21. Zhang, W.N.; Zhou, Q.L.; Jiao, C.Y.; Xu, T. Hybrid Algorithm of Grey Wolf Optimizer and Arithmetic Optimization Algorithm for
Class Integration Test Order Generation. Comput. Sci. 2023, 50, 72–81.

22. Harman, M.; Mcminn, P. A Theoretical and Empirical Study of Search Based Testing: Local, Global and Hybrid Search. IEEE
Trans. Softw. Eng. 2010, 36, 226–247. [CrossRef]

23. Harman, M.; Yue, J.; Zhang, Y. Achievements, Open Problems and Challenges for Search Based Software Testing. In Proceedings
of the 8th IEEE International Conference on Software Testing, Verification and Validation, Graz, Austria, 13–17 April 2015.

24. Khari, M. An extensive evaluation of search-based software testing: A review. Soft Comput. 2019, 23, 1933–1940. [CrossRef]
25. Zhang, Y.; Jiang, S.; Zhang, M.; Ju, X. Survey of Class Test Order Generation Techniques for Integration Test. Chin. J. Comput.

2018, 41, 670–694.
26. Zhang, M.; Jiang, S.J.; Zhang, Y.M. Research on Multi-objective optimization in Class Integration Test Order. J. Chines Comput.

Syst. 2017, 38, 1772–1777.
27. Khari, M.; Kumar, P.; Burgos, D.; Crespo, R.G. Optimized Test Suites for Automated Testing Using Different Optimization

Techniques. Soft Comput. 2018, 22, 8341–8352. [CrossRef]
28. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks,

Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.
29. Yang, X.S.; Deb, S. Cuckoo Search via Levy Flights. In Proceeding of the World Congress on Nature and Biologically Inspired

Computing (NaBIC2009), Coimbatore, India, 9–11 December 2009; pp. 210–214.
30. Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: London, UK, 2010; pp. 81–89.
31. Yang, X.S. A New Metaheuristic Bat-inspired Algorithm. Comput. Knowl. Technol. 2010, 284, 65–74.
32. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
33. Mirjalili, S. Moth-flame Optimization Algorithm: A Novel Nature Inspired Heuristic Paradigm. Knowl.-Based Syst. 2015, 89,

228–249. [CrossRef]
34. Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
35. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A Bio-Inspired Optimizer

for Engineering Design Problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
36. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TSE.2009.71
https://doi.org/10.1007/s00500-017-2906-y
https://doi.org/10.1007/s00500-017-2780-7
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1016/j.future.2019.02.028

	Introduction
	Literature Review
	Research Methodology
	Algorithms Selection
	Problem Representation
	Stubbing Complexity
	CITO Formulation

	CITO Optimization
	Mapping CITO to Individual Position
	Mapping Individual Position to CITO
	Constraints

	Comparative Analysis

	Experimentation
	Experiment Subjects
	Parameters Settings
	Experiment Design
	Effectiveness Analysis
	Stubbing Complexity
	Attribute Complexity and Method Complexity

	Efficiency Analysis
	Convergence Behavior Analysis
	Runtime Analysis
	Memory Analysis

	Answering the Research Questions

	Threats to Validity
	Conclusions
	References

