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Abstract: One of the most important challenges in robotics is the development of a Multi-Robot-
based control system in which the robot can make intelligent decisions in a changing environment.
This paper proposes a robot-based control approach for dynamically managing robots in such a
widely distributed production system. A Multi-Robot-based control system architecture is presented,
and its main features are described. Such architecture facilitates the reconfiguration (either self-
reconfiguration ensured by the robot itself or distributed reconfiguration executed by the Multi-Robot-
based system). The distributed reconfiguration is facilitated through building a trust model that is
based on learning from past interactions between intelligent robots. The Multi-Robot-based control
system architecture also addresses other specific requirements for production systems, including
fault flexibility. Any out-of-control fault occurring in a production system results in the loss of
production time, resources, and money. In these cases, robot trust is critical for successful job
completion, especially when the work can only be accomplished by sharing knowledge and resources
among robots. This work introduces research on the construction of trust estimation models that
experimentally calculate and evaluate the trustworthiness of robots in a Multi-Robot system where the
robot can choose to cooperate and collaborate exclusively with other trustworthy robots. We compare
our proposed trust model with other models described in the literature in terms of performance
based on four criteria, which are time steps analysis, RMSD evaluation, interaction analysis, and
variation of total feedback. The contribution of the paper can be summarized as follows: (i) the
Multi-Robot-based Control Architecture; (ii) how the control robot handles faults; and (iii) the trust
model.

Keywords: multi-robot system; reconfigurable architecture; fault tolerant control; trust model; cloud
and edge computing

1. Introduction

A Multi-Robot-based control system is an emerging solution that is gaining popular-
ity [1]. Today there are a wide variety of research activities that have been approved in
this spirit [2]. In this paper, we are particularly interested in the architecture and behavior
of intelligent robots that work together, especially in the event of a fault. Usually, the
detection of faulty components is manual and time-consuming [3,4]. Nowadays, pattern
classification [5,6], fuzzy logic [7,8], expert systems [9,10] as well as causal analysis such
as knowledge-based representation [11] represent a centralized approach of the solution.
However, these approaches suffer from having to handle massive data [12]. To over-
come these limits (computation time, massive data, and scalability), Multi-Robot-based
Control System has been proposed because of the need for decentralized data handling
and decision-making [13]. In particular, we are interested in robots that are cooperative,
dependent on each other, and communication reliable.
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In the Multi-Robot-based control system, robots need to know information about
the environment through sensors [14] and need also to execute some commands through
actuators [15]. The robots can be affected by many fault types: (i) faults affecting the
robot perception (which means sensors) [16], (ii) faults affecting the robot’s actions on the
environment (which means actuators) [17], and (iii) faults affecting the robot behavior. The
fault detection can be endogenous (i.e., the robot identifies a fault in itself) or exogenous
(i.e., the robot perceives a fault in another one). In this paper, we are interested only in
endogenous fault detection [18].

In our Multi-Robot-based control system, the robots coordinate their behavior together
to detect and identify a fault that can occur in the system [19]. On the one hand, the robots
are independent, which means they can make their own decisions without interfering with
others. On the other hand, the robots are dependent on each other, which means a robot
sometimes needs help from the other robot to achieve its goals [20,21]. The Multi-Robot
task planning can be performed online or offline. Online task planning means that the
robots search for the solution during the task execution [22]. Offline task planning means
that the robots already determine the solution before the task execution [23]. In this paper,
we are interested in online Multi-Robot task planning.

Additionally, Multi-Robot cooperation can be centralized or distributed. A centralized
approach means that a specific robot plays a particular role as a coordinator between
all robots [24]. A distributed approach means that all the robots must cooperate to find
a convenient solution for the whole system [25]. In this work, distributed cooperation
is adopted.

Though its importance, few research papers have considered treating faults by en-
dogenous Multi-Robots in a distributed and open system with online task planning.

The primary goal of this research is to create a decision-making framework in a Multi-
Robot system that is founded on the concept of trust, where robots can only cooperate
and collaborate with other trustworthy robots. Because of the unknown faults involved,
trust is a key factor in any collaboration, especially in a highly dynamic and unpredictable
environment where robots are expected to work. In this paper, we present research on the
development of trust assessment models that tentatively ascertain and assess the reliability
of robots in the Multi-Robot framework where the robot can decide to participate and team
up solely with other reliable robots.

Our main contributions consist of defining the following items:

(i) The Multi-Robot-based Control Architecture by presenting in detail the main com-
ponents and methods. Such architecture facilitates the reconfiguration (either self-
reconfiguration ensured by the robot itself or distributed reconfiguration executed
by the Multi-Robot-based system). For this first contribution, we use the finite state
machine to represent the architecture.

(ii) The Multi-Robot-based control system architecture also addresses other specific re-
quirements for production systems, including fault flexibility.

(iii) Trust Model: The distributed reconfiguration is facilitated through building a trust
model that is based on learning from past interactions between intelligent robots. Our
proposed model outperformed the trust models described in the literature in terms
of performance.

The remainder of this paper is organized as follows: Section 2 presents the state of the
art on the related works. Section 3 introduces the Multi-Robot-based Control Architecture.
Section 4 describes how the control Robot handles faults. In Section 5, we introduce the
Trust Model. In Section 6, we compare our proposed trust model with other models
described in the literature in terms of performance based on four criteria, which are time
steps analysis, RMSD evaluation, interaction analysis, and variation of total feedback.

Finally, the conclusions and future work are summarized in the Section 7.
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2. Related Works

SPORAS is a reputation mechanism proposed by [26] for a weakly connected envi-
ronment where agents have a common goal. With this methodology, the reputation value
is calculated by combining user opinions. The rating numbers are collected using two of
the most recent agents. In addition, this model offers a new recursive reputation scoring
procedure depending on previous reputation scores at a given point in time; the more
recent ratings carry greater weight. However, this approach has two major shortcomings.
Firstly, SPORAS only collects the most recent reviews between two users. Secondly, users
with extremely high reputation scores are notified after each update. Users with low scores
have significantly fewer score changes when using a reputation-based trust.

In [27], the authors presented a reliability–reputation model called TRR, which inte-
grates agent societies and evaluates agent reputation based on trustworthiness. In this
approach, an agent’s reputation is determined by ratings given by other agents who
have interacted with them before, as well as the trustworthiness of those rating agents.
Trusted agents receive higher scores, while less trusted agents have a lower impact on the
reputation score.

The REGRET model [28] derives ontological interactions from diverse sources. Conse-
quently, each element of the reputation score must be evaluated separately, considering
individual or societal dimensions. These reputation values are subsequently consolidated
to form the ontological reputation. An advantage of the REGRET model is that it calculates
reputation by considering the number of agents and the frequency of interactions among
rating agents.

Based on a review of the literature, each model used distinct variables to evaluate an
agent’s reputation. For instance, the TRR model emphasized the importance of considering
the reliability of rating agents, where a trustworthy evaluator’s presented value was
deemed accurate. In contrast, TRR assigned equal weight to all interactions, overlooking
the significance of recent contacts that reflect an agent’s recent behavior. On the other hand,
SPORAS incorporated the passage of time in reputation assessment and placed greater
emphasis on recent interactions. The REGRET model, however, pointed out that both TRR
and SPORAS overlooked the impact of the number of agents rating a single agent and
the frequency of interactions among rating agents. Consequently, each model prioritizes
different variables in the calculation of an agent’s reputation.

In [29], the authors created the trust score model, which calculates trustworthiness
in the form of a direct trust score using a combined logic and q-learning rule framework.
In [30], the authors examined the use of a trust framework in Multi-Robot soccer to see
how trust affects action choice. The choice of timing analysis to include in the confidence
assessment, particularly in real-world scenarios, is one of the most common errors found
in the trust assessment model literature [31]. A majority of trust evaluation techniques rely
on a statistical or heuristic approach to develop a trust evaluation algorithm, which may
not be appropriate for analyzing the behavior of complex agents.

In [32], the authors proposed a trust estimation model in which an agent’s trust in
MAS is experimentally evaluated. To estimate trust, the proposed approach uses temporal
difference learning, which involves the concept of Markov games and heuristics. In [33],
the authors developed a trust-based Multi-Robot control system to increase the efficiency of
robot collaboration through recognition and cooperation only with trusted robots. In [34],
the authors proposed a trust-based navigation control algorithm that determines a robot’s
trustworthiness based on its service and uses this information to determine the robot’s
waypoint to avoid deadlocks. In a mobile and collaborative smart factory, [35] proposed a
trust-based team-building paradigm for efficient automated guided vehicle (AGV) teams.
In [36], the authors’ approach is founded on introducing a basic trust model within a com-
petitive multi-agent system, assuming that an agent’s trust measure reflects their expertise,
under the condition that an ample number of competitive interactions are executed. In [37],
the authors proposed several agents possessing specific expertise, represented as a real
value ranging from 0 to 1. To simplify the simulation, each agent has only one type of
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service. The agent is asked to provide a service of type T, where T represents one of the
available service types.

The work described in this article is built on previous work reported in [27,36] by
enhancing efficiency and offering an innovative model that addresses the problems of
the previous model. The proposed trust model provides several contributions to reduce
uncertainty and enhance performance, as described below:

- The proposed trust model and algorithm offer a viable approach to reducing uncer-
tainty in heterogeneous robot networks.

- The trust model formalizes reputation in self-governing networks of robots.
- It demonstrates that reputation can be effectively utilized even in the absence of a

central authority or external calibration.
- The simulation results showcase the model’s essential features, including improved

performance compared to the reference models.

3. The Multi-Robot-Based Control Architecture

Every Intelligent Robot existing in our Multi-Robot system has its specific Goal to
accomplish and can produce a plan (which is constituted of tasks) related to this goal. This
strategy permits the Intelligent Robot to choose a suitable plan of tasks to be performed.

In Figure 1, we represent a subset of the ontology modeling the Goal, Task Planner, and
Fault Handling (only the concepts and roles related to behavior composition are shown).
Each Intelligent Robot is assumed to have its own Goals. To ensure a defined Goal, a set
of Plans can be proposed. A Plan is related to a set of Tasks. Each Task has some inputs
that are Events and uses some Resources. An Intelligent Robot can subscribe to a specific
Task. An Intelligent Robot can send or receive a message. The different classes of planning,
perception, treating faults, object, space, context, and reconfiguration, as well as how these
classes are related to one another, are referred to as semantics for robot knowledge.
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Figure 1. A subset of the ontology modeling the Goal, Task Planner, Trust Model, and Fault Handling.
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In Figure 1, the ontology classes and their hierarchies are drawn in rectangles, while
relationships between classes are connected with black solid arrows, where:

• Goal: represents the high-level objectives or desired outcomes that the intelligent robot
aims to achieve in the manufacturing system. Based on the state of the environment,
the intelligent robot can execute the goal with the acheiveGoal method or abort it with
cancelGoal method (in case of major modification on the environment). The intelligent
robot can check the state of execution through the getStateExecution method. As usual,
the isConsistentWith method permits attesting the consistency between two Goals or
more and the getUtility method allows selecting the most convenient Goal.

• Task Planner: represents the sequences of actions and decisions designed to accomplish
specific goals. They provide a structured framework for the robot to follow to achieve
its objectives. Task plans outline the steps, dependencies, and priorities involved
in executing the required tasks. The intelligent robot arranges task sequences and
executes tasks following a specific plan that permits it to achieve a specific goal.

• Fault_Handler: The intelligent robot has to control the system and discover any
fault that can occur based on its symptoms to determine its type and save the occur-
rence time associated with this fault. To accomplish this, the intelligent robot uses
various sensors, monitoring devices, and data analysis techniques. It continuously
gathers data from the system, such as sensor readings, machine outputs, or envi-
ronmental parameters, and analyzes them to detect anomalies or deviations from
expected behavior.

• Trust_Model: used to establish and evaluate trust relationships among different entities
within the intelligent system. It defines the criteria and factors that contribute to
trustworthiness, such as reliability, credibility, past performance, or reputation. Each
robot assesses the trustworthiness of the other robot based on various factors such as
past interactions, observed behavior, and reliability.

• Reconfig_Controller: whenever a fault occurs, the intelligent robot has to decide the
right reconfiguration to ensure that the whole system is still working right.

• Task: a robot’s suitable action selection process.
• Event: the intelligent robot receives notifications about any event that occurs in

the environment
• Resource: each intelligent robot needs some resources to execute a task (for example,

workpiece).
• Sensor: a robot uses its sensors to perceive objects and models the world in which

it lives.
• Position: refers to a certain environmental circumstance that surrounds robots and can

reveal information about a robot’s suitable movement selection process. To support
such cognitive capacities, our model is provided by the context, which consists of
three classes of knowledge: Situation, TemporalPosition, SpatialPosition. The basic
knowledge that an intelligent robot must access for localization and navigation is
represented by context, temporal position, and spatial position. They represent a
perceived environment.

• Actuator: the flexible robot can execute the task using the actuator. For each actuator,
we must propose a behavior to judge the requests to it.

3.1. How to Calculate the Distance

We consider a set of R robots in a two-dimensional, square, grid-like environment.
The robot initially holds many parameters such as

√ The current node position at time t;
√ The start node position;
√ The goal node position.
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The robot calculates the distance through the following formula:

d(V1, V2) = k

√
n

∑
i=1
|V1i −V2i|k

where the distance d between two robot nodes in dimensional space.
The parameter k determines the metric:

√ k = 1, Manhattan distance
√ k = 2, Euclidean distance
√ k → ∞ , dominance distance (only the feature with the largest difference is taken

into account).

3.2. Robot Behavior

• Movement behavior

Each robot has four degrees of freedom represented by its set of actions {up, down,
left, right}.

If the robot must move from the current node position to the goal node position, the
robot plans to move, testing several candidate paths before selecting the best one.

• Communication Behavior

At every step, a robot exchanges its local position and shares its knowledge with all
other agents.

• Collision avoidance behavior

The main robot behavior is the collision avoidance strategy, which means avoiding
any obstacle (it can be another robot or any object existing in the environment) that the
robot can encounter in its path.

3.3. Model

In our scenario, we have a collection of R robots located in a two-dimensional square
grid environment. Each robot has four actions it can take, specifically moving up, down,
left, or right. The robots all start from the same location and are outfitted with a radio
transceiver that allows them to communicate with other robots within a certain range of
their current position.

The parameters used by our model are
R: Set of robots
r: robot (r ∈ R)
Acr: Set of actions of a robot r, Acr = {up, left, down, right}
Gr: Set of goals to be achieved by a robot r
Ac: Set of joint actions of R agents, Ac = R × Ac
acr

i: i-th joint action of the robot, aci ∈ Ac
Ps

r: Starting point of robot r
Pi

r: Location of robot r at the time i
Pg

r: Goal position of robot r
KindT: A robot that can be considered as usually trustworthy, often trustworthy, often

untrustworthy, or usually untrustworthy. KindT = {UT, OT, OU, UU}
Probr: Probability of lying assigned to robot r
Thr: Threshold for a robot r to consider another robot as trustworthy (under this value,

it is considered untrustworthy).
The process aims to minimize coverage time and redundancy while ensuring that the

robots fully achieve their goals. The robots aim to determine the most efficient path from
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the origin to the destination point while avoiding obstacles. This can be expressed as an
objective function:

min(Ps
r , Pg

r ) = d(Ps
r − P1

r ) +
n−1

∑
i=1

d(Pi
r , Pi+1

r ) + d(Pn
r + Pg

r ) (1)

The fitness function, denoted by Equation (1), evaluates the solution domain, where
Pr

s represents the starting point, Pr
g is the goal point, Pi is the ith point that the robot

moves to, and d(Pr
i, Pr

i+1) represents the Euclidean distance between Pr
i and Pr

i+1.

4. Intelligent Robot Handling Faults

Potential faults can manifest within both physical and virtual components of the
robotic system, subsequently permeating through and interrupting the sense–think–act
cycle inherent to the system. Consequently, these faults exert a notable adverse influence
on the system’s capacity to successfully achieve its intended objectives [38].

Hardware faults can potentially manifest in any physical element of the robotic system,
specifically sensors and actuators. Software faults could impact the program such as
unexpected conditions. The communication faults may alter the interaction between the
different intelligent robots.

A faulty sensor in a Multi-Robot system refers to a sensor component that is not
functioning as intended or providing accurate readings. Such a sensor may produce
erroneous or inconsistent data, leading to incorrect perceptions of the environment [39,40].
In a Multi-Robot system where multiple robots collaborate and make decisions based on
sensor information, a faulty sensor can disrupt the overall performance and coordination
of the system.

A faulty actuator represents an actuator that is not performing its intended functions
correctly. This can manifest as reduced precision, responsiveness, or even complete failure
in executing movements or tasks [41,42].

Faulty software in a Multi-Robot system corresponds to software components or
programs that exhibit incorrect behavior or fail to function as expected. Such faults can arise
due to errors in code, algorithm design, or interactions between software modules [43,44].

Faulty communication in a Multi-Robot system refers to disruptions or errors that
occur during the exchange of information between robots or between robots and a cen-
tral control unit. This can lead to incomplete, delayed, or corrupted data transmission,
hindering effective collaboration and coordination among robots [45,46].

At this juncture, it becomes pivotal to discern significant research voids in a compre-
hensive manner, encompassing all facets of fault detection, including the recognition of
faulty sensors, actuators, software, and communication. To the best of our knowledge,
research papers that comprehensively address fault detection in robotic systems across the
domains of hardware, software, and interaction are currently unavailable in the publicly
accessible literature. Our contribution entails the development of an intelligent system
endowed with the capacity to proficiently manage a set of faults that can affect hard-
ware, software, or interaction. The proposed solution is predicated upon a reconfiguration
paradigm strategically delineated across three hierarchical levels: the goal level, the plan
level, and the task level.

When studying Multi-Robot system, an important topic is to identify which faults
could happen in the system. It is important to define at the beginning which faults can be
taken into consideration. Firstly, we introduce the different kinds of faults that can occur in
the system. After that, we will present how the faults are treated by self-reconfiguration.
Finally, we present the different levels of reconfigurations.

4.1. Types of Faults

Belief refers to the robot’s perception or understanding of its environment, tasks, and
actions. When an intelligent robot operates, it relies on its beliefs about the world to make
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decisions and take actions. These beliefs are based on the information the system has
gathered through sensors, planning, and reasoning processes. “Unbelief” in this context
could refer to the robot’s lack of accurate understanding or perception of its environment
and capabilities due to the presence of faults. The robot’s ability to make informed decisions
and take appropriate actions is compromised when its beliefs do not align with reality. This
mismatch between belief and reality, caused by the various faults, can lead to unexpected
and potentially undesirable behavior in the intelligent robot system. By considering that
a fault can affect an Intelligent Robot [38], we define a list of faults that can happen such
as actuator fault, behavior fault, and sensor fault (Figure 2). Table 1 explains the event
meaning related to Figure 2.
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Table 1. The typical faults related to Figure 2.

Event Meaning

T Fault alarm
M1 Actuator fault
M2 Behavior fault
M3 Sensor fault
A1 Communication fault

A2 (resp. A3) Actuator A2 (resp. A3) is broken
A4 (resp. A5, A6) Behavior A4 (resp. A5, A6) is incorrect
A7 (resp. A8, A9) Sensor A7 (resp. A8, A9) is broken

â We consider the following fault that concern the behavior of an Intelligent Robot:

• Action fault: the Intelligent Robot does not execute the action well. In this
case, the robot’s belief about its ability to perform the action correctly might be
misaligned with reality, leading to faulty behavior.

• Plan fault: the Intelligent Robot generates a plan that does not reach the goal.
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• Unexpected condition: the Intelligent Robot faces an abnormal condition. In such
cases, the robot’s beliefs about its environment might not align with the actual
conditions, leading to unanticipated behavior.

NB: The process of deciding on faulty intelligent robots is beyond the scope of
this paper.

â The different faults that concern the actuator:

• Blocked off: the actuator does not execute any request.
• Blocked on: the actuator is always activated even without request.

In these cases, the robot’s belief about the actuator’s state might not match the actual
state, leading to incorrect actions or lack of actions.

4.2. Faults Handling Using Self-Reconfiguration

For each kind of fault, we save data about the fault regarding the fault type, the occur-
rence time, and the treatment time. Therefore, we have a queue denoted by QueueAgent

to save the faults affecting the behavior, the perception, and the execution of Intelligent
Robots (where NA represents the number of all faults saved in QueueAgent).

The various steps involved in the robot’s self-reconfiguration for fault handling are
illustrated in Figure 3.
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Figure 3. UML sequence diagram for fault handling.

1. The sensor informs the Planner Task of the occurred fault.
2. The Planner Task asks the Fault Handler for fault recovery.
3. The Fault Handler requests reconfiguration from the Reconfiguration Controller.
4. The Reconfiguration Controller treats the request and takes the decision.
5. The Reconfiguration Controller asks Fault Handler to apply the reconfiguration.
6. The Fault Handler applies the reconfiguration.
7. The Fault Handler asks Planner Task to be reconfigured.
8. The Planner Task is reconfigured consequently, and the fault is recovered.
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4.3. Order of Reconfigurability

The reconfigurability level (RL) is deployed to represent the different kinds of re-
configurable layers in an automated, self-configured Multi-Robot-based control system.
RL can be used as a reconfiguration complexity indicator. The higher RL leads to more
reconfigurability, which would cost more in function of time and resources required for
the reconfiguration.

Multi-Robot-based control system can be reconfigured in three levels:
RL1: At the task level, the Multi-Robot-based control system can only change the task

due to a simple fault. For example, instead of moving right, move left due to an obstacle.
RL2: At the plan level, the Multi-Robot-based control system includes all the reconfig-

urations in the first level, plus reconfiguring the Task planner, which means it is possible to
change the planning for a specific fault occurring.

RL3: At the goal level, the Multi-Robot-based control further changes the goal. This is
accomplished only if the goal cannot be achieved due to some circumstances (some faults
happen and do not allow the goal to be ensured).

Running Example. The Multi-Robot-based control system considers many scenarios
in case faults happen to physical components such as sensors, actuators, or machines
(Figure 4). In the first level, we consider three goals (Goal 1, Goal 2, and Goal 3). In
the second level, there are some task planners related to each goal. Let us say three task
planners (TaskPlanner1, TaskPlanner2, and TaskPlanner3). In the third level, there are some
tasks defined for each task planner. We consider, for example, five tasks (Task1, ..., Task5).
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Figure 4. Different configurations applied by the intelligent robot.

Due to faults that may happen, the intelligent control system incorporates a reconfigu-
ration mechanism that encompasses three levels: goal reconfiguration, plan task reconfigu-
ration, and task reconfiguration. At the goal level, the system transitions from one goal to
another, while at the plan task level, it switches between different plan tasks. Furthermore,
at the task level, specific tasks are modified or substituted with alternative tasks to achieve
the desired reconfiguration.

We denote in the following by (i) nGoal the number of possible Goals implementing
the system.Ri denotes a particular Goal where i ∈ [1, nGoal].
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(ii) nPlan i the number of possible plans related to a specific goal Ri, and let Ri,j (where
i ∈ [1, nGoal] and j ∈ [1, nPlan i]) be a state of Ri representing a particular Plan.

(iii) nTask i,j the number of all possible tasks related to Ri,j (i denotes a specific goal and
j represents a specific plan).

We denote Ri,j,k where i represents the goal, j represents the Plan, and k represents the
Task (i ∈ [1, nGoal], j ∈ [1, nPlan i] and k ∈ [1, nTask i j]). If we move from Ri,j,k to Ri,j,l that
means the reconfiguration concerns only the task level. If we move from Ri,m,k to Ri,n,p that
means the reconfiguration concerns two levels, meaning the plan level as well as the task
level. If we move from Ri,m,k to Rj,n,p that means the reconfiguration is applied on three
levels (goal, plan, and task).

5. Faults Handling Using Trust Model
5.1. Generic Trust Model

The proposed framework architecture of the trust estimation model is depicted in
Figure 1. The trust estimation model comes into action once two robots interact. When a
robot, labeled as “j,” discovers an objective that belongs to another robot, labeled as “i,”
robot j initiates the interaction by transmitting the location information to robot i. Robot i
subsequently explores the target location and obtains observations from the environment
in return. The observations function as the outcome of the interaction between robot j and
robot i and are then employed as input for the trust model. Additionally, robot i seeks the
trust estimate of robot j from other robots to incorporate it into its present trust update
calculation (See Algorithm 1).

Algorithm 1: Exploring the environment

1: Get_Current_Node // the current robot position
2: Get_Goal_Node // is the goal position
3: while current_node <> goal_node do

updateWorld(time)
If data available from other agents

if node has been visited
choose arbitrary action in {acr

i}
else

check for current trust on agent ‘j’
if trustworthiness > Threshold

explore new node
get environment data through sensor
Update the trust on agent ‘j’

End if
End if
End if

End do
end

Running Example

In this running example, we consider three robots RB1, RB2, and RB3. RB1 is desig-
nated as the leader but has a sensor flaw that causes it to misclassify zones as blue. The
environment used was a 6 × 12 grid cell world where every cell measured 20 cm × 20 cm.
The grid cell was partitioned into a blue zone and a green zone, with the blue zone rep-
resenting the objective locations that the robots needed to find, while the green zone was
intended to mistake the agents. The robots were aware of the positions of the zones in
the grid cell but not the color distribution, and they were required to determine the blue
zones’ positions.

The general goal involves robots finding blue zones as targets within a resource
constraint of ten locations. It follows a game of tag format, with RB1 as the leader and
each subsequent robot verifying information and updating the trustworthiness estimates
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of the previous robot. RB1 has a sensor flaw programmed into it, and RB2 and RB3 must
evaluate RB1’s trustworthiness to determine if it should continue to lead. RB1 sends
location information to RB2, which verifies the information and updates its trustworthiness
estimate of RB1. In this case, two scenarios are possible: the first one, where robot RB1
sends the correct information to robot RB2, and the second scenario where robot RB1 sends
the wrong information to robot RB2. If robot RB2 relies on the information provided by
RB1 and goes to the target location, it might end up finding nothing there. This results in a
waste of time and resources. Therefore, the robots need to establish a level of trust with
each other to improve the decision-making process.

RB2 then sends the information to RB3, which investigates and assesses the credibility
of both RB1 and RB2. After verifying RB1’s misclassification, RB2 moves on to explore the
closest target area that RB1 has not yet explored. RB3 reached the same conclusion as RB2
that RB1 cannot be trusted after a certain number of mistakes. After RB1 was proven to
be reliable, RB2 and RB3 took action on excluding RB1 and dynamically rearranged the
exploration teams.

5.2. Trust Model Presentation

In this section, we present two methods (tFeedB [36] and TRR [27]) with our proposed
method (tReconf) based on the trust model.

5.2.1. First Method (tFeedB)

Let us consider two robots P and Q [36]; robot P attributes a trust value to robot Q
that reflects P’s subjective assessment of another robot’s trustworthiness. It stems from P’s
previous direct experience with Q. Firstly, the trust measure assigned to any other robot is
null since the robot has not interacted with other robots and hence has no knowledge of
the environment. Now, we will go through how a robot’s trust measure is calculated and
updated with other robots.

Take, for example, the ith step for robot P. Due to some fault, robot P requires certain
reconfiguration in this situation. As a result, P considers soliciting the help of another robot
Q. After P has forwarded the request to Q and Q has responded, P assesses the quality of
the response (feedback). Every feedback is a number in the range {0,1}. A feedback value of
0 (1, resp.) indicates the response’s refusal (acceptation, resp.). Let FB1, ..., FBs represent
the feedback that evaluates the quality of Q’s answers to the request R1, ..., RN.

At the ith step, the trust measure Trusti(P, Q) assigned by P to Q is computed as

Trusti(P, Q) = α ∗ Trusti−1(P, Q) + (1− α) ∗

N
∑

j=1
FBj

N
(2)

where Trusti−1(P, Q) is the previous value of trust assigned by P to Q, and α is a real
value in the range [0, 1] reflecting the significance given to previous reliability evaluations
concerning the current evaluation. α indicates the weight of the past evaluations when
updating the trust (it indicates the significance given to the past concerning the current
moment). N is used to denote the number of interactions or requests that have occurred
between robot P and robot Q over time, and it helps contextualize the trust-building process
between the two robots. If it is the first interaction of P with Q, no previous evaluation
may be used for updating the trust. The feedback includes an assessment of the response’s
quality, which informs P about the quality of the contributions made by the robots who
were contacted to generate the response.

5.2.2. Second Method (TRR)

Step 1: Reputation
The authors take [27] into account Q’s reputation in the community as can be seen by

P, as well as services that fit into the category. A reputation, noted by Reputation(P, Q), is a
measured value that has robot P upon robot Q. The authors hypothesized that a weighted
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mean of all the trust values Reputation(C, Q) that every robot C (different from P and Q)
related to Q is used to calculate the reputation Reputation(P, Q) that a robot P attributes
to another robot Q. In other words, we suppose that the trust that C has in Q is reflected
by the recommendation that each robot C makes to robot P regarding robot Q. The trust
measure Reputation(P, C) is used to weigh this suggestion from C, taking into account P’s
trust in C. In the present stage, the intelligent robot P receives some recommendations from
the other robots in response to past recommendation requests.

The function Reputation(P, C) is calculated roughly as follows:

Reputation(P, Q) =

∑
C 6=P,Q

Trust(P, C) ∗ Trust(C, Q)

∑
C 6=P,Q

Trust(P, C)
(3)

Step 2: Trust

Trusti(P, Q) = α ∗ Trusti−1(P, Q) + (1− α) ∗ reputation(P, Q) (4)

We presume that each community robot can have his or her reliability model, indepen-
dent of the other robots, and we will not go into depth about this model here.

The authors suggest that the coefficient α is not constant, but rather depends on (i) the
number of encounters that P and Q have had in the past about the category’s services, and
(ii) P’s expertise in evaluating the category’s services. To make things easier, we will treat
the coefficient α as a constant.

Furthermore, when the Equation (3) is taken into consideration, the Formula (4)
above becomes:

Trusti(P, Q) = α ∗ Trusti−1(P, Q) + (1− α) ∗
∑

C 6=P,Q
Trust(P, C) ∗ Trust(C, Q)

∑
C 6=P,Q

Trust(P, C)
(5)

5.2.3. Our Method (tReconf)

Robot P can utilize its feedback to update its internal trust model for the system’s
robots. The overall process that leads to responding to the requested reconfiguration is
logically distributed into three phases: (i) robot P submits a reconfiguration request to robot
Q and requires its collaboration; (ii) Q responds to the service request; (iii) P updates its
internal trust model (using the feedback).

Step 1: Computation of FeedB(rec, P, Q) value: each feedback FeedB(rec, P, Q) is a real
number in the range [0;1], indicating the quality of the reconfiguration offered by robot Q to
robot P regarding the reconfiguration rec. A feedback value of such that FeedB(rec, P, Q) = 0
means that the reconfiguration is bad in quality terms while FeedB(rec, P, Q) = 1 means
that the reconfiguration is perfectly good.

Step 2: The reconfiguration reliability that robot P attributes to the reconfigurations
supplied by robot Q is represented by RecfgR(P, Q). P modifies its RecfgR mappings based
on this feedback noted FeedB(P, Q). We recall that reliability is a measure of a robot’s trust
in another robot, with RecfgR(P, Q) = 0 indicating that Q is completely unreliable and
RecfgR(P, Q) = 1 indicating that Q is completely trustworthy.

We specifically chose to compute Q’s actual reliability in its reconfiguration with P by
averaging all the Q feedbacks. As a result, if we consider Trust(Q, C), and the feedback
for Q concerning a reconfiguration rec is FeedB(rec, P, Q), the current reconfiguration
reliability RecfgR(P, Q) is computed as follows: if we consider Trust(Q, C), and the feedback
for Q concerning a reconfiguration rec is FeedB(rec, P, Q), the evaluation made by P is
Trust(P, Q)*FeedB(rec, P, Q). We obtain an estimate of Q’s precise value by averaging
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all the relevant reconfigurations where |Reconfig(P, Q)| denotes the total number of
reconfigurations provided by Q at the previous step to robot P.

Rec f gR(P, Q) =

∑
rec∈Recon f ig(P)

Trust(P, Q) ∗ FeedB(rec, P, Q)

|recon f ig(P, Q)| (6)

Running example:
In Figure 5, an example is represented in which robot P must evaluate the reconfigu-

ration reliability of robot Q (RecfgR). Robot Q ensures three reconfigurations provided to
robot P represented by rec1 (resp. rec2 and rec3). We note also that robot P has evaluated
the trust to Q in each step and obtains the following values 0.3 (resp. 0.5 and 0.7) that robot
P assigns to robot Q. Robot P evaluates the reconfiguration ensured by robot P by assigning
the FeedB measure 0.6 (resp. 0.9, 0.5). Consequently, the reconfiguration reliability that
assigns robot P to robot Q is

Rec f gR(P, Q) =
0.3 ∗ 0.6 + 0.5 ∗ 0.9 + 0.7 ∗ 0.5

3
= 0.33
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Step 3: Trust(P, Q): when P calculates the whole trust score to assign to Q, it considers
both the contributions of reconfiguration reliability RecfgR(P, Q) and previous reputation
Trusti−1(P, Q). The percentage of importance to give to the reconfiguration reliability is
represented by the value (1− α) ∗ Rec f gR(P, Q).

Trusti(P, Q) = α ∗ Trusti−1(P, Q) + (1− α) ∗ Rec f gR(P, Q) (7)

α is a real value in the range [0;1] that represents the relevance that P assigns to
previous reliability evaluations following the existing evaluation. In other words, α per-
mits the assessment of the value placed on memory (trust) in comparison to the present
reconfiguration reliability RecfgR.

Moreover, we take into consideration Equation (6), and the Formula (7) above becomes

Trusti(P, Q) = αTrusti−1(P, Q) + (1− α)

∑
rec∈Recon f ig(P)

Trust(P, Q) ∗ FeedB(rec, P, Q)

|recon f ig(P, Q)| (8)

6. Experimental Results

We consider three robots called RB1, RB2, and RB3 that must explore space and gather
a specific number of colored balls. The robots must swiftly find all the target-colored cells
that have been assigned to them. In particular, RB1 (resp. RB2, RB3) must gather ten
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blue (resp. red, yellow) balls. The agents are aware of where the balls are. They must
scavenge the surroundings to locate their balls. A robot will inform the appropriate robot
if it comes across a ball that belongs to another robot. For instance, if RB1 discovers a
red ball belonging to RB2, then RB1 will inform RB2 about the location of the ball. The
given scenario describes a situation where robot RB1 can mistakenly provide inaccurate
information to robot RB2 while exploring an environment to collect specific-colored balls.
This could happen due to faulty or damaged sensors, high uncertainty, or a highly dynamic
environment that differs from initial observations.

The robots in the environment are working individually to find their cells, but they
can collaborate to speed up the process. This collaboration involves sharing information
about cells found by other robots. For instance, if Robot RB1 finds a cell that belongs to
Robot RB3, it will share the cell’s location information with Robot RB3. Robot RB3 will
then verify the cell color by exploring the location shared by Robot RB1. If the cell’s color
matches Robot RB3’s objectives, the interaction is successful.

At the beginning, each trustee robot is randomly assigned one of five profiles. The
robots explore the environment to achieve their objectives of finding their respective cells
and may work collaboratively to expedite the time it takes to complete their objectives. If a
robot shares correct information, the trust in that robot increases, and if they repeatedly
share incorrect information, the trust decreases over time. The generated trust values range
from 0.0 to 1.0, with 0.5 representing neutral trust. A decrease of up to 10% from the neutral
trust is considered an acceptable reduction in trust level before a robot’s trustworthiness is
questioned, and the minimum trust value is set to 0.2 for the simulation.

Since cooperation and communication are allowed, if one robot comes across a colored
cell that belongs to another robot, the location data can be communicated. However, there
is a potential that a sensor error will cause the incorrect robot to receive the cell location
information. All the robots are unaware of the possibility of the sensor malfunction, which
is coded in a probabilistic mode. The predicted trust levels for each robot range from 1.0
to 0.2, with higher values indicating more real trustworthiness. The objective of robots
is to reach their goals within a limited number of steps and avoid collisions. In case of
a collision, the robots are returned to their previous positions. The game ends after all
robots have reached their goals. The goal yields a reward of 100, while a collision results
in a penalty of −10. In all other scenarios, the reward is set at −1 to incentivize taking
fewer steps.

By comparing the performance of the established trust models tReconf to two other
models previously discussed in the literature, namely tFeedB [36] and TRR [27], the models’
effectiveness is assessed. The reason for selecting these three models for the comparative
study is that they employ similar principles in evaluating trustworthiness.

The simulation involves a set of trustor and trustee robots that engage in interactions
for a duration of 85 rounds. Each robot in the simulation is programmed with a probability
of experiencing sensor malfunction, which causes it to incorrectly identify the color of
the grid cell. This probability of malfunction can be associated with the probability of
lying. Table 2 presents the probabilities of the sensor malfunction occurring, which were
determined using arithmetic reasoning based on three different levels of robot credibility:
fully trustworthy, fully untrustworthy, and partially trustworthy.

Table 2. The probability of a sensor’s failure to correctly identify the color of a cell.

Robot Sensor Malfunction
Probability Trustworthiness

RB1 0.1 0.9
RB2 0.4 0.6
RB3 0 1
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In the following section, we compare tReconf with tFeedB [36] and TRR [27] based
on four criteria, which are time steps analysis, RMSD evaluation, interaction analysis, and
variation of total feedback.

6.1. Time Steps Analysis

The term “time steps” is used in this study to describe how many cells the robots must
pass through to accomplish their goals. The trust model utilized in the decision-making
framework is thought to be more effective the fewer time steps a robot needs to take to
accomplish its goal. A robot should have some degree of trust in the sender robot when
receiving shared information from another robot before exploring the area they have been
sent to. The receiving robot would experience fewer time steps overall if the sender were
to always communicate accurate location information. If the sender is dishonest and the
receiver robot nevertheless complies with their instructions, the time steps would increase
because of non-value-added procedures. Shorter completion times would result from the
accurate identification of trustworthy robots by a reliable trust evaluation model.

When a robot shares information with another robot (e.g., RB3 sharing information
with RB2), the receiving robot (RB2) moves toward the target location to identify the grid
cell, and the number of cells crossed to reach the target location is added to the total time
steps taken to complete the objective. In situations where there is a high level of trust
among robots, positive outcomes are almost guaranteed for each interaction, and every time
step is considered value-added and contributes to achieving the objectives. Conversely,
if a robot follows false information from an untrustworthy source, the likelihood of a
negative outcome increases, and the time steps taken during such an instance are not
considered value-added. Instead, they only serve to prolong the time required to complete
the objectives.

According to Figure 6, it is evident that the tReconf model outperforms other models
in terms of time steps due to its utilization of a trust model that ensures precise outcomes.
The tReconf model selectively relies on trustworthy agents while disregarding messages
from less reliable sources. In contrast, the tFeedB model struggles to accurately identify
trustworthy agents, resulting in a higher number of time steps required. However, the
TRR model emerges as a satisfactory solution, as its outcomes exhibit a reasonable level
of performance.
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6.2. RMSD Evaluation

The study assesses the trust models’ effectiveness and accuracy using two methods:
time steps analysis and RMSD analysis. The time steps analysis measures the trust models’
effectiveness in accelerating the robot’s achievement of simulation objectives. The RMSD
method calculates the difference between expected and actual trustworthiness values to
evaluate the accuracy of the trust models. A lower RMSD value indicates a more precise
trustworthiness estimation. The study uses the RMSD analysis to assess the trust models’
effectiveness in accurately estimating robots’ trustworthiness. The actual trustworthiness
values are obtained from Table 2, while the trustworthiness estimates generated by the
model at the end of the simulation are the predicted values. A lower RMSD value indicates
higher estimation accuracy for trustworthiness. Table 3 displays the calculated RMSD
values from simulation trials.

Table 3. Comparison between tReconfig, tFeedB, and TRR trust models based on RMSD values.

TRUST tReconf tFeedB TRR

T1,2 0.015 0.031 0.026
T1,3 0.009 0.025 0.034
T2,1 0.027 0.042 0.008
T2,3 0.006 0.028 0.033
T3,1 0.008 0.064 0.051
T3,2 0.015 0.031 0.019

In comparison to the two literature models, the results in Table 3 demonstrate that our
method tReconf has the lowest RMSD values, indicating superior accuracy in trustwor-
thiness estimation. However, when evaluating entirely trustworthy robots, tFeedB [36] is
the worst.

6.3. Interaction Analysis

To accurately distinguish between trustworthy and untrustworthy robots, a trust
decision-making framework must have the right number of contacts with other robots.
Only those trustworthy robots would produce value-added interactions in the future, which
might speed up the completion of the target.

RB1 and RB3 are predicted to interact more than RB2, which has greater malfunction
probabilities, based on the communication sensor malfunction probabilities.

The following inferences can be made from Table 4:

Table 4. Comparison between tReconfig, tFeedB, and TRR trust models based on the average number
of interactions.

Interaction tReconf tFeedB TRR

I1,2 10 25 15
I1,3 53 35 47
I2,1 24 26 18
I2,3 32 23 35
I3,1 48 37 43
I3,2 7 28 11

- The tReconf model operates as anticipated, with more interactions being seen with
the RB1 and RB3 trustworthy robots and fewer interactions being seen with the RB2
robot. Since RB3 is more reliable than RB1, there are more interactions with RB3.

- The TRR model functions also as expected, exhibiting a higher number of interactions
with the trustworthy robots RB1 and RB3, while fewer interactions are observed with
the RB2 robot.

- However, with tFeedB model, there are fewer contacts with RB1 and RB3 than antici-
pated because trustworthiness cannot be reliably determined by tFeedB models.
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6.4. Variation of Total Feedback versus Percentage of Unreliable Robots

In this subsection, we explain several tests we conducted to assess the efficacy of
our tReconf strategy in identifying the best-suited candidates for reconfiguration. The
competing robots’ behavior is simulated in our prototype. Each simulated actor has a
distinct skill to which the simulator assigns a real value between [0, 1]. For the sake of
simplicity, we have assumed that only one reconfiguration type exists in this scenario.

Figure 7 illustrates the results in terms of the variation in total feedback from tFeedB,
TRR, and tReconf robots versus the different percentages of unreliable robots P. We ran
some tests with different percentages of unreliable robots P. We performed the following:
We looked at nine different robot populations, each with a size of N = 150 robots and a
different proportion P of unreliable robots. 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and
90% are the nine P values we examined. We fixed the value of parameter α to 0.41, with the
tFeedB, TRR, and tReconf robots participating in the game.
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Figure 7. Variation of total feedback versus percentage of unreliable robots P at a population size
of N = 150.

The results are shown in Figure 7 in terms of the results of tFeedB, TRR, and tReconf
robots vs. the percentage of unreliable robots P.

Based on Figure 7, we conclude that the TfeedB approach reaches its maximum bank
amount for P = 20%, and the performance of tFeedB solutions for other p-values drops.
The reasons for this are (i) the TfeedB robot is not able to correctly distinguish unreliable
robots, and (ii) it suffers unnecessary costs while asking for recommendations when the
population is reliable (P < 50%). In contrast to the TfeedB approach, TRR gradually learns
to distinguish trusted robots, which reduces the cost of referrals. Furthermore, reliability
in TRR is determined by the number of interactions between the trustor and the trustee.
Moreover, Figure 7 shows that the performance of TRR is not significantly affected by
the presence of unreliable robots. The approach TRR is a good solution as it provides
good results in all cases (when all robots are reliable as well as when most of them are
unreliable). This can be explained by the fact that TRR is based on the two parameters
of reliability and reputation. Whenever the reputation is weak, the choice is based on
reliability. Whenever reliability is reduced, the decision is based on reputation. Another
advantage of this approach is that the reputation is calculated over all the community, not
only restricted between two robots. The major disadvantage of TRR is that it does not take
into consideration the quality of the solution ensured by the chosen robot Q, as does our
solution tReconf.
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If we consider the tReconf approach, it starts with acceptable results and gradually sur-
passes the other solutions, especially when the percentage of unreliable robots is important
(more than 50%). In our approach tReconf, we give more importance to the past interactions
between robots P and Q as well as the trust that has robot P in Q. That is why, even when
most robots are unreliable, the choice of robot P is based on its own experience, which
means that P should choose the best robot that previously interacts with it successfully (by
calculating the updated feedback that has P on Q). Therefore, the solution is not affected by
the high percentage of unreliable robots in this case. The only disadvantage that has our
approach tReonf is that robot P does not need to contact all the other robots to decide on
the best robot to choose to ensure the reconfiguration. In some cases, this is not sufficient,
and robot P needs to consider the reputation of robot Q in the whole community not only
calculated by robot P itself.

7. Conclusions

In this paper, we consider treating faults by endogenous Multi-Robots in a distributed
and open framework with online task planning. The essential objective of this research
is to make a decision-making framework in a Multi-Robot framework that is established
on the concept of belief, where robots can only coordinate and collaborate with other
reliable robots. Because of the faults that may occur, trust may be a key factor in any
collaboration, particularly in a highly dynamic and unpredictable environment where
robots are anticipated to work. In this, we present our contribution to the trust model
that discovers and evaluates the reliability of robots in a Multi-Robot system where the
robot can choose to take part and group up exclusively with other dependable robots.
Our main contributions comprise defining (i) the Multi-Robot-based Control Architecture
by presenting in detail the main components and methods. Such architecture facilitates
the reconfiguration (either self-reconfiguration ensured by the robot itself or distributed
reconfiguration executed by the Multi-Robot-based system). For this first contribution, we
use the finite state machine to represent the architecture. (ii) The Multi-Robot-based control
system architecture also addresses other specific requirements for production systems,
including fault flexibility. (iii) Trust Model: The distributed reconfiguration is facilitated
through building a trust model tReconf that is based on learning from past interactions
between intelligent robots. It should be noted that this paper focuses on proposing a new
trust model tReconf and discussing its potential benefits rather than providing specific
formulas or algorithms for calculating trust. We compare tReconf with tFeedB [36] and
TRR [27] based on four criteria, which are time steps analysis, RMSD evaluation, interaction
analysis, and variation of total feedback. Our proposed model outperformed the trust
models described in the literature in terms of performance.

Our future work will be the following. Our methodology can be expanded to include
human-computer interaction. Our Multi-Robot-based control system can be ameliorated
to allow robots to participate in multiple collaborations at the same time. This work is
part of our work on cloud, fog, and edge computing (see, for example, [47]). The problem
considered in this paper is a typical candidate for application of cloud, fog, and edge
computing because the robots need to maintain the knowledge about the other robots,
the environment, the knowledge about trust, etc., and make decisions in real-time. This
requires maintaining global and local knowledge and decision-making with trade-offs
between the decision time and accuracy. Future research will consider these aspects of
robot-based intelligent control systems.
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