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Abstract: With the continuous advancement of remote sensing technology, the semantic segmentation
of different ground objects in remote sensing images has become an active research topic. For complex
and diverse remote sensing imagery, deep learning methods have the ability to automatically discern
features from image data and capture intricate spatial dependencies, thus outperforming traditional
image segmentation methods. To address the problems of low segmentation accuracy in remote
sensing image semantic segmentation, this paper proposes a new remote sensing image semantic
segmentation network, RSLC-Deeplab, based on DeeplabV3+. Firstly, ResNet-50 is used as the
backbone feature extraction network, which can extract deep semantic information more effectively
and improve the segmentation accuracy. Secondly, the coordinate attention (CA) mechanism is
introduced into the model to improve the feature representation generated by the network by
embedding position information into the channel attention mechanism, effectively capturing the
relationship between position information and channels. Finally, a multi-level feature fusion (MFF)
module based on asymmetric convolution is proposed, which captures and refines low-level spatial
features using asymmetric convolution and then fuses them with high-level abstract features to
mitigate the influence of background noise and restore the lost detailed information in deep features.
The experimental results on the WHDLD dataset show that the mean intersection over union (mIoU)
of RSLC-Deeplab reached 72.63%, the pixel accuracy (PA) reached 83.49%, and the mean pixel
accuracy (mPA) reached 83.72%. Compared to the original DeeplabV3+, the proposed method
achieved a 4.13% improvement in mIoU and outperformed the PSP-NET, U-NET, MACU-NET, and
DeeplabV3+ networks.

Keywords: high-resolution remote sensing images; semantic segmentation; feature fusion; attention
mechanism

1. Introduction

High-resolution remote sensing images contain rich geographic information and
have many potential applications in areas including agricultural monitoring, land use,
and urban planning [1,2], making the intelligent analysis of remote sensing images a
topic of considerable interest. The semantic segmentation of remote sensing images is a
significant image processing task [3,4], aiming to categorize each pixel and mark it as the
corresponding category [5]. Remote sensing images are characterized by high quantities,
complex backgrounds, and large scale changes. The process of manually annotating data is
labor-intensive and prone to error. The rapid and accurate automatic extraction of object
information from remote sensing images has become an urgent need.

There are three main semantic segmentation methods used for remote sensing images:
traditional methods, machine learning, and deep learning. In the early days, traditional
remote sensing image segmentation mostly relied on shallow features of the image, includ-
ing the texture, edges, and geometric shapes of the target. Common segmentation methods
based on image pixels include thresholding, edge detection, and region-based segmentation.
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Cuevas et al. [6] presented an automatic image segmentation approach that implements
multi-thresholding through differential evolution optimization. This method is capable of
dynamically selecting optimal thresholds while maintaining the primary features of the
original image. Chen et al. [7] employed the Canny edge detector for edge detection on mul-
tispectral images and performed multi-scale segmentation on the detected edge features.
The integration of edge information and segmentation scale effectively controlled the merg-
ing procedure of neighboring image objects. Byun et al. [8] achieved initial segmentation
through an improved seed region-growing program and obtained segmentation results us-
ing a region adjacency graph to merge regions. To cope with complex remote sensing image
segmentation scenarios, the simple linear iterative clustering (SLIC) superpixel segmenta-
tion algorithm, which utilizes the K-means clustering algorithm, is widely utilized in the
remote sensing field. Csillik et al. [9] used SLIC superpixels to quickly segment and classify
remote sensing data. Model-based segmentation methods based on Markov random fields
are also widely used, which improve segmentation accuracy by introducing contextual
information. Sziranyi et al. [10] applied unsupervised clustering to fused image series
using cross-layer similarity measures and then performed multi-layer Markov random field
segmentation. To overcome the constraints of single shallow-feature-based segmentation
approaches, hybrid feature combination segmentation methods have been proposed, such
as combining edge detection with region-based segmentation to enhance the quality of the
segmentation outcomes. Zhang et al. [11] introduced a hybrid approach to region merging.
This method utilizes the globally most similar region to establish the initial point for region
growing and enhances the optimization ability for local region merging. These traditional
methods rely too heavily on shallow features of the image, and pixel features are easily
affected by factors such as the lighting, the presence of clouds and fog, and the sensors,
resulting in insufficient reliability. The ability of machine learning to learn features and
geometric relationships between images has received attention. Mitra et al. [12] used the
support vector machine (SVM) algorithm to solve the problem of insufficient labeled pixels
required for supervised pixel classification in remote sensing images. Bruzzone et al. [13]
introduced an enhanced support-vector-machine-based semi-supervised approach for re-
mote sensing image classification. By leveraging both labeled and unlabeled samples, this
method effectively tackles the ill-posed problem. Pal et al. [14] used a random forest classi-
fier to select the best category. Mellor et al. [15] used a random forest classification model to
classify forest cover areas on multispectral remote sensing images. These methods heavily
rely on handcrafted features, which result in a poor generalization capability [16,17].

With a high-resolution background, due to the impact of the spatiotemporal envi-
ronment, objects of the same type present different spectral features, and the utilization
of shallow features is inadequate for capturing the complexity of remote sensing images,
thereby leading to limited segmentation accuracy. Deep learning methods have begun to
attract attention as computing power has improved rapidly, since deep neural networks
can automatically learn features in large datasets and extract deep semantic features of im-
ages, showing excellent performance. Classic segmentation models have begun to emerge.
Long et al. [18] pioneered the fully convolutional network (FCN) semantic segmentation
model, enabling pixel-level image classification. In a FCN, the traditional fully connected
layer in the final layer of the network is replaced by a convolutional layer, allowing the
network to accept inputs of arbitrary sizes and produce feature maps of the same size as
the input. Zhong et al. [19] used an FCN to extract buildings and roads, which could better
capture ground target features compared to traditional neural networks, but the eight-fold
upsampling method lost image detail information. A series of segmentation networks using
an encoder–decoder structure have been proposed, such as SegNet [20] and U-Net [21].
Cao et al. [22] proposed the Res-UNet network, which addresses the problems of gradient
vanishing and feature loss in deep neural networks by introducing residual connections.
Although it has achieved high segmentation accuracy in high-resolution remote sensing
forest images, its segmentation performance for small target tree species is poor. Based
on U-Net, Li et al. proposed MACU-Net [23], which utilizes asymmetric convolutions to



Electronics 2023, 12, 3653 3 of 16

replace regular convolutions and enhance the feature extraction capability, thus improving
the utilization rate of features, but the segmentation of ground object boundaries is still
not clear enough. To avoid reducing the size of the receptive field when obtaining feature
maps at various scales, the utilization of dilated convolution [24] to perform convolution
operations on input images is widespread. PSPNet [25] is a model based on pyramid
pooling that implements the pyramid pooling module at the last layer to extract contextual
information at different scales. DeeplabV1 was proposed in [26], which utilizes dilated
convolution to perform convolution operations on input images in VGG [27] and then adds
a conditional random field (CRF) module at the output end for post-processing to obtain
relatively accurate contours. In DeeplabV2 [28], dilated convolutions are extensively ap-
plied to feature maps at multiple scales to capture contextual information at different levels,
thereby improving segmentation accuracy. DeeplabV3 [29] optimized the ASPP module by
adding average pooling and batch normalization operations to improve the feature repre-
sentation and model generalization capabilities. Removing the CRF as a post-processing
module still achieved good segmentation results. DeeplabV3+ [30] included a decoder
module to fuse shallow features in the encoder with deep features output by the encoder
in order to further optimize the edges and details of the segmentation results. Compared
with classical semantic segmentation methods, DeeplabV3+ can segment ground objects in
complex remote sensing images, but it still faces challenges such as the inaccurate segmen-
tation of small targets and blurred boundary information. Wang et al. [31] introduced a
class feature attention mechanism into the DeeplabV3+ network to enhance the correlation
between different categories and effectively extract and process semantic information of
diverse categories.

The attention mechanism holds great importance in the field of deep learning. It can
assist a model in identifying useful information within the input data, suppressing irrele-
vant information, and enhancing performance and efficiency. SENet [32] assigns different
weights to each channel by learning the correlation between feature channels. The Efficient
Channel Attention Network (ECA-Net) [33] models the interactions between convolutional
feature channels and introduces an adaptive channel attention mechanism, optimizing
the negative impact of dimensionality reduction in SENet. To account for information
interaction in the spatial dimension, Woo et al. [34] introduced the Convolutional Block
Attention Module (CBAM), which uses a channel attention module and a spatial attention
module in series to perform adaptive feature refinement, in contrast to methods that employ
costly and complex techniques such as non-local or self-attention blocks. The Coordinate
Attention (CA) mechanism [35] encodes each spatial position, which aids in capturing
global contextual information and long-range dependencies. It proves particularly effective
for remote sensing images, where spatial relationships and geometric information play
a crucial role, enabling neural networks to better comprehend input data and improve
prediction accuracy.

To address the intricate scenarios encountered in object classification for remote sens-
ing images, the proposed RSLC-Deeplab model was designed by combining attention
mechanisms and feature fusion methods to automatically extract different ground objects
from remote sensing images. To compare the segmentation performance, various segmen-
tation networks including RSLC-Deeplab, DeeplabV3+, U-Net, PSP-NET, and MACU-Net
were evaluated on the publicly available WHDLD dataset through experiments. The ex-
perimental results showed that RSLC-Deeplab outperformed other comparison networks,
effectively enhancing the segmentation ability and reducing the training cost.

2. Methodology

The traditional DeeplabV3+ model was proposed by a team at Google. On the basis of
DeeplabV3, DeeplabV3+ has undergone fundamental architectural changes. DeeplabV3+
uses Xception [36] as the backbone network, eliminates the use of fully connected Condi-
tional Random Fields (CRF), and uses DeeplabV3 as the encoder to design a new encoder–
decoder structure. In the encoder, a deep convolutional neural network is employed to
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extract features from the input image. Then, ASPP obtains rich contextual information by
utilizing multi-scale atrous convolution and pyramid pooling from the output features of
the backbone network. The semantic information features of various scales are integrated,
and the fused high-level semantic features with multiple scales are adjusted in terms of
channel number and upsampled using bilinear interpolation. In the decoder, the upsam-
pled high-level semantic features are used to restore spatial resolution. During the process
of feature map resolution recovery, the low-level features extracted from the backbone
network are concatenated with the high-level features. The low-level features possess
better perceptual abilities for capturing fine-grained details, such as small objects or edges,
resulting in improved accuracy when localizing and segmenting small objects within the
image. Finally, four-times bilinear interpolation upsampling is used to generate the final
prediction image.

The feature extraction process in the DeeplabV3+ network utilizes the Xception back-
bone network. The Xception backbone network possesses a substantial amount of layers
and parameters, resulting in high model complexity and a slow training speed. Based
on improvements made to the original DeeplabV3+ model, RSLC-Deeplab is proposed to
enhance the segmentation performance and training efficiency, as shown in Figure 1. The
main contributions of the RSLC-Deeplab model proposed in this paper are as follows:

1. In the encoder, ResNet-50 is used instead of the original Xception as the feature
extraction module, which can capture more refined features.

2. After the backbone network, the CA module is introduced to embed positional in-
formation into the channel attention mechanism, enabling neural networks to better
comprehend input data and improve prediction accuracy.

3. In the decoder, we designed an MFF module, which captures and refines low-level
spatial features using asymmetric convolution and then fuses them with high-level
abstract features to mitigate the influence of background noise and restore the lost
detailed information in deep features.

1x1 Conv

MFF

Encoder

Decoder

ResNet-50

CA

ASPP

Upsample 
By 4

1x1 Conv Concat
Upsample 

By 2
3x3 Conv

1x1 Conv

3x3 Conv
rate=6

3x3 Conv
rate=12

3x3 Conv
rate=18

Image 
Pooling

Figure 1. Structure diagram of RSLC-Deeplab.

2.1. Optimized Feature Extraction Module

In the encoder, the feature extraction network for RSLC-Deeplab is ResNet-50 [37], and
Table 1 depicts its structure. We know that the depth of a network is crucial for effective
feature extraction. Deep convolutional networks utilize an end-to-end multi-layer approach
to integrate features at different levels, achieved through the stacking of convolutional
layers and downsampling layers. When the network is stacked to a certain depth, gradient
vanishing and gradient explosion problems will occur. Data preprocessing and the incorpo-
ration of batch normalization (BN) in the network are effective solutions to address these
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issues. However, as the network depth increases and convergence is achieved, another
challenge emerges: the accuracy tends to reach a plateau and subsequently deteriorate
rapidly. Therefore, ResNet introduces a residual structure to alleviate the degradation
problem of network performance.

Table 1. ResNet-50 network structure.

Output Size Network Output Channel Module Repetitions

128 × 128 7 × 7, 64 64 1
64 × 64 3 × 3, max pool 64 1
64 × 64 Bottleneck 256 3
32 × 32 Bottleneck 512 4
16 × 16 Bottleneck 1024 6

8 × 8 Bottleneck 2048 3

Compared to traditional convolutional neural networks, the residual structure can
directly pass low-level features to high-level layers through shortcut connections, which
enhances the smooth flow of information within the network. This helps the network to
better capture details and local features and improves the reusability of features, thereby
enhancing the network’s performance. The shortcut connection skips the connection
of one or more layers and directly combines its output with the output of the stacked
layers. This approach not only avoids introducing additional parameters or computational
complexity, but also facilitates gradient propagation and enables feature reuse. The formula
is as follows:

y = F(x) + x (1)

where x and y represent the input and output features, respectively, and the function
F(x) represents the residual mapping composed of stacked nonlinear layers. For residual
networks with different network depths, there are two different residual structures. The
residual structure on the left of Figure 2 is suitable for networks with fewer layers, while the
residual structure on the right is more suitable for networks with more layers. In ResNet-50,
the F(x) function of the residual structure is composed of three stacked layers: 1 × 1, 3 × 3,
and 1 × 1 convolution. The channel number is first reduced by 1 × 1 convolution, then 3 × 3
convolution is performed, and finally the channel number is restored by 1 × 1 convolution.

3x3, 64

64-d

3x3, 64

relu

relu

1x1, 256

256-d

1x1, 64

relu

relu

3x3, 64

relu

Figure 2. A deeper residual structure. Left: ResNet-34 building block. Right: “Bottleneck” building
block for ResNet-50/101/152.

2.2. CA Module

The origin of attention mechanisms can be traced back to studies on human vision,
where researchers aimed to develop models of visual selective attention that could simulate
the intricate process of human visual perception. It has been empirically established that
incorporating attention mechanisms into convolutional neural networks enhances the
ability to capture crucial information. The core principle underlying attention mechanisms
entails learning the regions of interest in each image via the process of forward propagation
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and negative feedback, followed by the assignment of appropriate attention weights. In
order to effectively capture the relationships between channels, a Coordinate Attention
(CA) module is introduced subsequent to the feature extraction network module. The CA
module is mainly implemented through two steps: embedding coordinate information and
generating coordinate attention. The CA module dynamically adjusts weights to model
dependencies between different distances, enabling the model to better capture global
information within images. The specific structure is depicted in Figure 3.

Residual

X Avg Pool Y Avg Pool

Concat + Conv2d

BatchNorm + Non-linear

Conv2d Conv2d

Sigmoid Sigmoid

Re-weight

Input

Output

C x H x W

C x H x 1 C x 1 x W

C/r x 1 x (W+H)

C/r x 1 x (W+H)

C x 1 x W

C x 1 x W

C x H x 1

C x H x 1

split

C x H x W

Residual

X Avg Pool Y Avg Pool

Concat + Conv2d

BatchNorm + Non-linear

Conv2d Conv2d

Sigmoid Sigmoid

X
horizontal vertical

Re-Weight

Y

Input Output

C x H x 1

C x H x W C x H x 1

C x H x 1

C x 1 x W

C/r x 1 x (W+H)

C/r x 1 x (W+H)

C x 1 x W

C x 1 x W

C x H x W

Figure 3. The CA module.

Due to the prevalent utilization of global pooling in channel attention mechanisms
for the purpose of globally encoding spatial information, there exists a potential risk of
losing positional information. In the coordinate information embedding module, for the
input feature X, a pooling kernel of dimensions (H,1) and (1,W) is employed to encode
each channel along the horizontal and vertical coordinate directions, respectively. By using
a pair of one-dimensional features to encode the features of each location into a unique
vector, the network can better understand and utilize location information. Consequently,
the output of the c-th channel, characterized by a height (h) and width (w), can be expressed
as follows:

zh
c (h) =

1
W ∑

0≤i≤W
xc(h, i) (2)

zw
c (w) =

1
H ∑

0≤j≤H
xc(j, w) (3)
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By combining features along both the horizontal and vertical directions, a set of feature
maps that are sensitive to directional information is generated. This pair of transforma-
tions helps the attention block gain the ability to apprehend distant correlations within a
particular spatial orientation while upholding the integrity of precise positional data in
the alternative spatial orientation. Consequently, such operations assist the network in
effectively locating desired objects. After performing cascaded operations on the aggre-
gated feature maps, they are further processed using a 1 × 1 convolutional transformation
function, F1, which is expressed as follows:

f = δ
(

F1

[
zh, zw

])
(4)

where [·, ·] denotes the concatenation operation along the horizontal and vertical coordinate
directions, δ denotes the non-linear activation function, and f represents the intermediate
feature map that encodes spatial information. Subsequently, f is partitioned into two
separate tensors, namely f h ∈ RC/r×H and f w ∈ RC/r×W , along the spatial dimension.
Here, the variable r specifically denotes the reduction ratio employed to regulate the block
size within the SE block. Subsequently, f h and f w undergo separate 1 × 1 convolutions,
denoted as Fh and Fw, respectively, to match the channel dimensions of the input tensor
X, as follows:

gh = σ
(

Fh

(
f h
))

(5)

gw = σ(Fw( f w)) (6)

where σ represents the sigmoid activation function. Then, gh and gw are expanded as
attention weights, and the final output Y of CA is as follows:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (7)

2.3. MFF Module

Due to the three downsampling operations in the feature extraction process of the
backbone network, the decrease in resolution leads to the loss of spatial information for
finer details. In the decoder part of the original DeeplabV3+ network model, the problem
of lost segmentation object detail is improved to some extent by directly concatenating the
deep features output by the encoder with the shallow features from the backbone network,
but it is still not precise enough for segmenting complex objects such as object boundaries
and small targets. To further improve segmentation accuracy, a multilevel feature fusion
module (MFF) is introduced, as illustrated in Figure 4.

3x3 Conv

1x3 Conv

3x1 Conv

BN+ReLU

Concat

F1

F2

Figure 4. Structure of the MFF.
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During the process of multilevel feature fusion, the shallow features. F1, obtained
from the third downsampling of the backbone network and the deep features, F2, from the
encoder output are used as inputs. To fuse the local spatial information in F1 with the global
semantic information in F2, asymmetric convolution is utilized to extract features from
the shallow features, F1, which are then concatenated and fused with the deep features,
F2. By effectively combining shallow and deep features, this method enhances the overall
accuracy of the segmentation model.

Compared to normal convolution, asymmetric convolution has a stronger feature
representation ability. The weights of the square convolution kernel are typically larger
than those of the corners, which can lead to uneven feature refinement. Asymmetric
convolution uses three parallel convolutional layers: 3 × 3 convolution, 1 × 3 convolution,
and 3 × 1 convolution. The 3 × 3 convolution obtains features from a larger receptive
field, while the 1 × 3 and 3 × 1 convolutions can obtain receptive fields in the horizontal
and vertical directions, respectively. This allows the network to effectively collect the
correlation information of different spatial scales, which is particularly useful for tasks
such as semantic segmentation, where capturing detailed spatial information is crucial.
Finally, the outcomes of three convolution operations are added to further enrich the spatial
features. The formula for asymmetric convolution is

x
′
i = F3×3(xi−1) + F1×3(xi−1) + F3×1(xi−1) (8)

xi = σ

γ
x
′
i − µ

(
x
′
i

)
√

υ
(
x′i
)
+ εi

+ β

 (9)

where xi−1 is the input feature, xi is the output feature, υ is the expected value of the input,
εi is a small constant to ensure numerical stability, γ and β represent the two trainable
parameters of the BN layer, and σ represents the ReLU activation function.

3. Experiment
3.1. Experimental Data

The dataset used in this study was the publicly available remote sensing image dataset
WHDLD (https://sites.google.com/view/zhouwx/dataset#h.p_hQS2jYeaFpV0 (accessed
on 27 August 2023)), which was released by Wuhan University. It consists of 4940 images
captured by GF-1 and ZY-3, with each image being an RGB image and having a resolution
of 256 × 256 pixels. The pixel-level annotations of the dataset include six classes: water,
vegetation, building, road, bare soil, and pavement.

According to the statistics, the WHDLD dataset exhibits an issue of imbalanced pixel
distribution among different classes. Therefore, we employed augmentation techniques,
including horizontal flipping, vertical flipping, 90-degree rotation, 180-degree rotation,
270-degree rotation, and brightness adjustment, to enhance classes with a lower pixel count,
such as road, bare soil, and building. The dataset was expanded to a total of 6700 images,
and the augmented samples are illustrated in Figure 5. The dataset was divided into
training, validation, and testing sets in an 8:1:1 ratio. The example images and labels of the
WHDLD dataset are shown in Figure 6.

https://sites.google.com/view/zhouwx/dataset#h.p_hQS2jYeaFpV0
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origin

rotate 90° rotate 180° rotate 270°

horizontal flip vertical flip adjust brightness

Figure 5. The augmented samples.

building road vegetation water bare soil pavement

Image

Label

Figure 6. Dataset samples.

3.2. Implementation Details

Experimental verification was conducted on the proposed algorithm, and the con-
figuration parameters of the experimental platform are shown in Table 2. The transfer
learning approach was used in the experiment, where the pre-trained model weights of the
backbone network were loaded before training to accelerate the model’s convergence. The
SGD optimizer was selected for network gradient updates. The initial learning rate of the
experiment was 0.007, the momentum coefficient was 0.9, the batch size was 12, and the
training epoch was 200.

The experiment utilized the cross-entropy loss function to quantify the disparity
between the model’s predictions and the actual results, a technique that is well-suited for
classification tasks. It has the benefits of being easy to compute and optimize and usually
produces good results in training neural networks, so it can effectively guide a model to
learn the task objectives. Since the pixels in the input image of this experiment had six
categories, the experiments used the following multi-category cross-entropy loss function:

Loss = − 1
N

N

∑
i=1

K

∑
k=1

yi,klog pi,k (10)
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where yi,k is the true class of the i-th sample, taking a value of 1 if it belongs to the k-th class
and 0 otherwise, with N samples and K classes in total. Meanwhile, pi,k is the probability
of the i-th sample being predicted as the k-th class.

Table 2. Information about the experimental platform.

Experimental Environment Configuration Information

Operating system Windows 10
CPU Intel(R) Core(TM) i7-11700F
GPU NVIDIA GeForce RTX 3060
Cuda Cuda 11.3

Framework Pytorch 1.10.0

3.3. Evaluation Metrics

After the model was trained, the trained weights were used for testing with the test
set. The accuracy of classification was analyzed using a confusion matrix, as shown in
Table 3. TP (true positive) represents correctly classified positive samples, while FP (false
positive) represents incorrectly classified negative samples. Conversely, FN (false nega-
tive) represents incorrectly classified positive samples, and TN (true negative) represents
correctly classified negative samples.

Table 3. Confusion matrix.

Predicted Label

True False

GT data
True TP (true positive) FN (false negative)

False FP (false positive) TN (true negative)

The experiment employed key metrics such as pixel accuracy (PA), mean pixel accuracy
(mPA), and mean intersection over union (mIoU) were used in the experiment to measure
the differences between the predicted and ground-truth images. The formulas are as follows:

PA =
∑n

i=0 pii

∑n
i=0 ∑n

j=0 pij
(11)

mPA =
1
n

n

∑
i=0

pii

∑n
i=0 ∑n

j=0 pij
(12)

mIoU =
1
n

n

∑
k=1

TPk
TPk + FPk + FNk

(13)

where n is the number of classes including the background class, pii is the count of pixels
of class i predicted as class i, and pij is the count of pixels of class i predicted as class j.

3.4. Comparative Experiment of Different Backbone Networks

A backbone network is a pre-trained model utilized for extracting image features and
providing enhanced feature representation for subsequent semantic segmentation tasks. To
select an appropriate backbone network as the feature extraction network for the model,
five comparative experiments were conducted using different backbone networks within
the original DeeplabV3+ [30] network architecture. Table 4 presents the experimental data.
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Table 4. Comparative experimental results of different backbone networks.

Method Backbone mIoU (%) Parameters
(M) Flops (G) Model Size

(M)

Scheme 1 Xception 68.50 54.71 41.72 209.70
Scheme 2 MobileNetV2 67.44 5.81 13.23 22.44
Scheme 3 EfficientNetV2 69.68 31.25 100.10 120.12
Scheme 4 ResNet-101 70.81 59.33 76.29 226.98
Scheme 5 ResNet-50 70.48 40.34 66.54 154.23

In Table 4, Scheme 5 used ResNet-50 [37] as the backbone network, with an mIoU of
70.48%, a parameter count of 40.34 M, a computational cost of 66.54 G, and a model size
of 154.23 M. Scheme 1 used Xception [36] as the backbone network, and Scheme 5 had
an mIoU increase of 1.98% compared to Scheme 1, with a significantly smaller parameter
count and model size. Scheme 2 used MobileNetv2 [38] as the backbone network, and
although the parameter count and model size were greatly reduced, its mIoU was 3.04%
lower than that of Scheme 5, indicating insufficient segmentation accuracy. Scheme 3 used
EfficientNetV2 [39] as the backbone network, and its mIoU was 0.80% lower than that
of Scheme 5, with a smaller parameter count but a much larger computational cost than
Scheme 5. Scheme 4 used ResNet-101 as the backbone network, and although its mIoU
was 0.33% higher than that of Scheme 5, its parameter count and model size were much
larger than those of Scheme 5. After a comprehensive analysis, ResNet-50 was chosen as
the feature extraction module of this task, not only improving the semantic segmentation
accuracy, but also optimizing the model complexity.

3.5. Ablation Experiment

To validate the efficacy of the ResNet-50 network, the CA module, and the MFF mod-
ule, a set of experiments were designed by gradually introducing the ResNet-50 backbone
network, CA attention module, and MFF module. Table 5 presents the experimental data.

Scheme 1: The original Deeplabv3+ network, which employed Xception as the feature
extraction network, was used as the baseline.

Scheme 2: ResNet-50 was used as the feature extraction network to replace Xception
in Scheme 1.

Scheme 3: The CA module was introduced on the basis of Scheme 2, which enhanced
the feature representation generated by the network, enabling neural networks to better
comprehend input data and improve prediction accuracy.

Scheme 4: The MFF module was introduced on the basis of Scheme 2, which captured
and refined low-level spatial features using asymmetric convolution and then fused them
with high-level abstract features to improve segmentation accuracy.

Scheme 5: On the basis of Scheme 2, both the CA module and the MFF module were
introduced simultaneously.

Table 5. Results of ablation experiments on different modules.

Method Backbone CA MFF PA (%) mPA (%) mIoU (%)

Scheme 1 Xception 80.38 80.47 68.50
Scheme 2 ResNet-50 81.92 81.89 70.48
Scheme 3 ResNet-50 X 82.63 82.45 71.67
Scheme 4 ResNet-50 X 82.78 82.86 71.73
Scheme 5 ResNet-50 X X 83.49 83.72 72.63

As shown in Table 5, the PA, mPA, and mIoU values of Scheme 1 were 80.38%,
80.47%, and 68.50%, respectively. Scheme 2 utilized ResNet-50 as the feature extraction
network, and its PA, mPA, and mIoU values were 81.92%, 81.89%, and 70.48%, respectively.
Compared to Scheme 1, the PA, mPA, and mIoU values improved by 1.54%, 1.42%, and
1.98%, respectively. Based on Scheme 2, Scheme 3 introduced a CA module, yielding PA,
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mPA, and mIoU values of 82.63%, 82.45%, and 71.67%, respectively. Compared to Scheme 2,
the PA, mPA, and mIoU values improved by 0.71%, 0.56%, and 1.19%, respectively. Scheme
4 introduced an MFF module to further restore the edge details of the segmentation image
by fusing low-level and high-level features, with PA, mPA, and mIoU values of 82.78%,
82.86%, and 71.73%, respectively. Compared to Scheme 2, the PA, mPA, and mIoU values
improved by 0.86%, 0.97%, and 1.25%, respectively. Scheme 5 simultaneously introduced
both the CA and MFF modules, with PA, mPA, and mIoU values of 83.49%, 83.72%, and
72.63%, respectively. Compared to the original DeepLabV3+ model, the PA, mPA, and
mIoU values improved by 3.11%, 3.25%, and 4.13%, respectively. The experimental results
indicate that RSLC-Deeplab exhibited impressive segmentation performance.

The experiments used SGD as the optimizer, which updated the model parameters by
computing the gradients of each training sample and gradually reducing the model’s loss
function. The performance variation of different approaches at different stages is depicted
in Figure 7. Using ResNet-50 as the backbone network, the mIoU value increased rapidly at
the beginning and then tended to converge, with a significant improvement in mIoU values.
After gradually introducing the CA and MFF modules, the model had the ability to fit the
training data faster and achieve better segmentation results, indicating that the design and
training methods of the model were effective. The training and validation loss values of
the RSLC-Deeplab algorithm on the WHDLD dataset are shown in Figure 8. During the
initial stages of the experiment, both the training and validation losses decreased rapidly;
then, the decreasing trend slowed down after a certain number of iterations, before finally
tending to converge.

Figure 7. The mIoU values of different schemes in ablation experiments.
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Figure 8. The loss values of RSLC-Deeplab on the training and validation sets.

3.6. Comparative Experiment of Different Methods

We conducted comparative experiments between RSLC-Deeplab and other models,
including DeeplabV3+ [30], U-Net [21], PSP-Net [25], and MACU-Net [23], on the WHDLD
dataset to verify the segmentation performance of RSLC-Deeplab. The experimental results
of different network models are shown in Table 6. The results obtained in this study reveal
that RSLC-Deeplab outperformed the other networks. The PA, mPA, and mIoU of the
proposed method were 83.49%, 83.72%, and 72.63%, respectively, which were 3.11%, 3.25%,
and 4.13% higher than those of DeeplabV3+ and 5.56%, 3.91%, and 4.99% higher than those
of MACU-Net.

Table 6. Comparative experimental results of different segmentation methods.

Method PA (%) mPA (%) mIoU (%)

DeeplabV3+ 80.38 80.47 68.50
U-Net 72.73 75.35 63.31

PSPNet 69.54 72.32 60.36
MACU-Net 77.93 79.81 67.64

RSLC-Deeplab 83.49 83.72 72.63

At the same time, the remote sensing image segmentation results produced by RSLC-
Deeplab and the comparative methods are presented in Figure 9. As illustrated in the
diagram, PSPNet, and U-Net could roughly segment large-scale ground objects, but their
segmentation ability for small-scale targets and object edges was poor, resulting in many
misclassifications and omissions. MACU-Net demonstrated a certain improvement in
segmentation ability compared to U-Net, but there were still problems of misclassification
and omission in categories such as buildings, vegetation, and water bodies. DeeplabV3+
showed a greater improvement in segmentation ability than the classical semantic seg-
mentation methods, but it still could not accurately segment the edge feature information
of small-scale categories such as buildings, water bodies, and bare soil. The proposed
RSLC-Deeplab improved the segmentation accuracy of small-scale landform targets, and
the edge segmentation of categories such as buildings, roads, and vegetation was clearer,
without many misclassifications and omissions. The experiment proved that RSLC-Deeplab
captured more detailed features and improved the segmentation accuracy of small targets.
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Image Ground truth PSPNet U-Net MACU-Net DeeplabV3+ RSLC-Deeplab

building road vegetation water bare soil pavement

Figure 9. Diagram of the segmentation effect of different methods.

This study also took into account the metrics of parameter size and training time.
The parameter size and training time per epoch of the compared methods are presented
in Table 7. The parameter size of RSLC-Deeplab was 47.62M, and the training time was
239s. The experimental results demonstrated a significant reduction in both training time
and parameter size for RSLC-Deeplab compared to the original DeeplabV3+ network.
MACU-Net showed a smaller parameter size, but it had a more complex model structure,
resulting in a longer training time. RSLC-Deeplab used ResNet-50 as the feature extraction
network, which significantly reduced the model’s parameter size and computation amount.

Table 7. Comparison of training time and parameter size of different methods.

Method Training Time (s)/Epoch Parameters (M)

PSPNet 181 48.97
U-Net 217 34.53

MACU-Net 266 5.17
DeeplabV3+ 304 54.71

RSLC-Deeplab 239 47.62

4. Conclusions

This paper proposed RSLC-Deeplab for high-resolution remote sensing image se-
mantic segmentation. Firstly, ResNet-50 was used as the backbone network, which had
a stronger feature extraction ability while reducing the parameter size and computation
amount, providing better feature representation for subsequent segmentation. Secondly,
the CA mechanism was used after the feature extraction module to embed positional
information into the channel attention mechanism, enabling neural networks to better
comprehend input data and improve prediction accuracy. Finally, a multi-level feature
fusion (MFF) module based on asymmetric convolution was proposed, which captured
and refined low-level spatial features using asymmetric convolution and then fused them
with high-level abstract features. The MFF module effectively eliminated background noise
during feature extraction and improved the clarity of segmentation boundaries.
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On the WHDLD remote sensing image dataset, our model achieved an mIoU of 72.63%
and an mPA of 83.72%, which significantly improved issues such as mis-segmentation and
edge detail blurring. Compared with other methods, our model obtained more accurate
segmentation results. On this basis, we will further optimize the segmentation accuracy of
the model for categories with a low segmentation accuracy and continue to study how to
suppress the impact of interfering factors such as background noise and shadows in the
image to enhance the model’s overall segmentation capability.
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