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Abstract: The advancement of the sensing capabilities of end devices drives a variety of data-intensive
insights, yielding valuable information for modelling intelligent industrial applications. To apply
intelligent models in 5G and beyond, edge intelligence integrates edge computing systems and
deep learning solutions, which enables distributed model training and inference. Edge federated
learning (EFL) offers collaborative edge intelligence learning with distributed aggregation capabilities,
promoting resource efficiency, participant inclusivity, and privacy preservation. However, the quality
of service (QoS) faces challenges due to congestion problems that arise from the diverse models and
data in practical architectures. In this paper, we develop a modified long short-term memory (LSTM)-
based congestion-aware EFL (MLSTM-CEFL) approach that aims to enhance QoS in the final model
convergence between end devices, edge aggregators, and the global server. Given the diversity of
service types, MLSTM-CEFL proactively detects the congestion rates, adequately schedules the edge
aggregations, and effectively prioritizes high mission-critical serving resources. The proposed system
is formulated to handle time series analysis from local/edge model parameter loading, weighing
the configuration of resource pooling properties at specific congestion intervals. The MLSTM-CEFL
policy orchestrates the establishment of long-term paths for participant-aggregator scheduling and
follows the expected QoS metrics after final averaging in multiple industrial application classes.

Keywords: congestion-aware collaborative learning; edge federated learning; industrial applications;
quality of service; long short-term memory

1. Introduction
1.1. Motivation and Problem Statement

Applied artificial intelligence (AI) for real-time image processing applications in the
industrial Internet of Things (IIoT) within 5G and beyond networks has the potential to
gain popularity due to its remarkable performance outcomes [1,2]. Advancements in end
devices, the quality of data, sensing capabilities, and computing adequacy, together enable
comprehensive services to achieve compelling performance targets. Although application
services benefit from real-time considerations, the requirements for ultra-reliable low-
latency performance are crucial. These requirements involve efficient utilization of support
paradigms in both access and core networks, including new radio interfaces, green commu-
nications [3,4], multiple-input multiple-output [5], software-defined networking (SDN) [6],
multi-access edge computing (MEC) [7], network functions virtualization (NFV) [8], etc. Si-
multaneously, despite various enablers and framework supports, challenges persist within
the IIoT, particularly in the era of big data generated from massive structured and unstruc-
tured data sources. These challenges include accommodating multiple types of vertical
and horizontal services on a single platform, managing the heterogeneity of standard and
proprietary devices, and handling extensive interfaces [9,10]. Given these circumstances,
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the application of AI in the IIoT is motivated to extend into edge IIoT networks that aim to
mitigate backbone congestion, enhance energy efficiency, and optimize the utilization of
network resources.

Edge AI enables intelligent applications through low-latency model learning and
enhanced privacy protection. By combining MEC with deep learning (DL), the concept of
edge intelligence is well established, particularly for industrial imaging and visual-based
platforms. It offers agile multi-service responses and efficient utilization of resources in
caching, communication, and computation [11–13]. However, the transmission of raw
image/video data batches to the input gate significantly impairs fronthaul performance.
Stringent privacy regulations and the inaccessibility of private data present challenges in
accessing end-sensing data nodes. As a result, a privacy-enhanced framework becomes a
crucial prerequisite to facilitate the advancement of edge AI model development.

Federated learning (FL) was conceptualized in 2016 [14], offering a promising solu-
tion to tackle the challenges related to communication costs, data privacy, and regulatory
compliance. Edge federated learning (EFL) in wireless IIoT communications represents a
cutting-edge collaborative AI framework designed to address industrial image processing
learning models [15]. By harnessing resources in close proximity to user equipment within
distributed areas, EFL is explored to optimize battery consumption for local IIoT devices
and mitigate the need for direct local–global round communications [16–18]. In the context
of 5G core networks, 3GPP and ETSI drive the utilization of MEC resources and interaction
with network data analytics function (NWDAF) to facilitate AI-driven execution services.
Through a service-based architecture, network functions and data exposure capabilities
provide insightful information for comprehensive global network analytics. Additionally,
supported by SDN/NFV-enabled systems, the network application programming interface
(API) streamlines request procedures [19–23]. Nevertheless, despite these advancements,
the diversity among EFL-based service types gives rise to challenges. The tasks of prioritiz-
ing service classes, harmonizing update aggregation policies, and accurately predicting
congestion become intricate issues demanding real-time solutions.

Regarding congestion predictions, ML/DL-based methods are given significant con-
sideration. In [24], the authors monitored anomalous traffic as an illustrative use case of
ML tasks within network operations; moreover, the authors developed formulations for
transmission latency, bandwidth congestion, and the accuracy of ML tasks while incorpo-
rating edge–cloud collaboration. The proposed method optimized the data preprocessing
ratio between edge servers and cloud servers, considering network bandwidth constraints
and congestion, as well as the real-time function of anomalous traffic detection. Addition-
ally, the domain of prediction modelling has acknowledged the effectiveness of modified
or optimized long short-term memory (LSTM) techniques [25,26]. Within the context of
communication networks, the motivations behind employing LSTM can be categorized
into three main perspectives, including sequential dependencies with variable/temporal
patterns, adaptive learning, and enhanced prediction accuracy with proactive capability.

In [27], the authors presented the problem of massive traffic and proposed a novel
approach to network traffic prediction using LSTM and transfer learning. By transferring
knowledge from a source domain to a target domain, the method enhanced predictions in
low-data scenarios, addressing overfitting and data scarcity. The LSTM-based approach ex-
tended transfer learning’s application, established a prediction architecture, and improved
accuracy, even with limited time series datasets. Furthermore, the LSTM-based approach
is also studied in throughput prediction for minimizing the delay of mission-critical ser-
vices [28]. The authors investigated ML and DL integration for accurate throughput
prediction and introduced a modified LSTM-based prediction system with an attention
mechanism. The system used TCP log data traces and achieved lower loss in predicting
throughput compared with existing methods (e.g., LSTM without attention).
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1.2. Paper Contributions

This paper delves into the algorithm designs of modified LSTM-based congestion-
aware EFL (MLSTM-CEFL) to address the aforementioned problem statements, structuring
the solutions into three contributing phases as follows:

1. The system architecture is given to handle the virtualization approach for orchestrating
resource pooling properties within the NFV infrastructure (NFVI). The framework
divides the plane into participants, edge aggregators, and controllers, strengthened by
a modified LSTM (MLSTM) algorithm for predicting congestion levels. The structural
planes enhance interactivity and interface connections to facilitate scalability for the
multi-service IIoT model aggregation.

2. MLSTM-CEFL is introduced for collecting feature inputs, predicting congestion rates,
determining high-impact latency-efficient conditions, and optimizing the final model
learning objectives. The procedural flow of feature collection and EFL-based IIoT
model communications are presented in this paper.

3. The proposed reliable model aggregation policy is presented by considering the output
of quality of service (QoS) guarantees and orchestration capabilities in configuring
proactive congestion detection and prioritizing model flows. The simulation is imple-
mented with DL policy modelling in a TensorFlow and Keras-based environment and
network topology in Mininet and MiniNFV.

1.3. Paper Organization

This paper is organized as follows. Section 2 outlines the related studies. Section 3
presents the proposed approach, including the system architecture, algorithm designs, and
congestion prediction algorithms for efficient orchestration. The experiment and analysis
are provided in Section 4, covering the simulation environment, QoS evaluation metrics,
result, and discussion. Finally, Section 5 concludes the paper.

2. Related Works

This section provides complementary studies that highlight the key contributions of
LSTM in network prediction and the applicability of (edge) FL integration. FL has been
applied to enhance industrial applications in various aspects, such as privacy-preserving
schemes, massive data management, model offloading decisions, and resource efficiency.

2.1. LSTM-Based Prediction for QoS Enhancements

The prediction of network traffic has gained significance in contemporary scenarios,
such as anomaly control, congestion regulation, and bandwidth management. In [29],
a framework utilizing LSTM for network traffic prediction was proposed by employing
real network traces and aiming for predictions within very short timeframes. To tackle
the diversity of network traffic, a feature-based clustering method was employed as a
preprocessing stage to group similar time series. The experimental results indicated that
the LSTM-based framework performed better in predicting network traffic with minimal
errors. In [30], the effectiveness of LSTM in predicting mobile traffic was studied. The
authors used datasets that contained multivariate traffic information directly from the LTE
control channel’s downlink control information. This paper aimed to enhance QoS by
focusing on network delays, which include sending, propagation, processing, and queuing
delays. In [31], a model named Nefopam was introduced for predicting network flow delay.
It combined LSTM and graph convolutional neural networks to effectively capture the
spatiotemporal attributes of network flow data. Nefopam incorporated three components
(recent, daily cycle, and weekly cycle) to characterize the temporal and spatial aspects.
These component outputs were integrated for the final prediction result.

2.2. Applicability of LSTM with (Edge) FL and IIoT Applications

The architecture of the IIoT-FL framework is provided to illustrate the collaborative
procedures involved in model training and inference between local IIoT nodes and the
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parameter server (see Figure 1). In the primary framework, (edge) FL policy can be jointly
optimized by multi-agent deep Q-networks in terms of resource allocation and computation
offloading [32]. However, QoS-specific prediction can be separately studied and integrated
for improving the congestion-aware control platform.
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Figure 1. Architecture of IIoT-FL framework with LSTM-based congestion-aware aggregation.

LSTM-based prediction can be deployed to detect the congestion rates of local model
updates and optimize the aggregation scheduling. In the initial phase, the global model
is initialized with primary parameters and hyperparameters, and it is subsequently dis-
tributed to the local nodes. To participate in the FL execution, an IIoT node needs to have
auxiliary memory and intrinsic storage for tasks such as (1) loading data from local storage,
(2) computing the local model, (3) saving the model to local auxiliary memory storage,
(4) loading the saved model for testing, and (5) storing the final model output [15,33]. Loss
optimization occurs at each local IIoT node. The optimal local models are then uploaded
to the parameter server for the aggregation process. The congestion-aware scheduling
(using the LSTM-based approach) assists the policy settings to avoid model drops. Through
this procedure, the integration of FL brings forth several key advantages for deploying
distributed AI models in IIoT services, including personalized data protection, service
differentiation, efficient low-latency communications, and optimization of AI model learn-
ing [34–37].

In the context of controlling FL networking states, an LSTM-based controller can be
used to model and manage the dynamic flows of model updates and connections, due to its
capability of learning and predicting patterns, adapting to changing conditions, and making
decisions based on the history of states and aggregation procedures. In Figure 1, there are
key components in LSTM for FL, including: input data

(
XMn(t)

)
, input gate (it), forget gate

( ft), output gate (ot), cell state (
∼
Ct), new cell state (Ct), hidden state (ht), and congestion
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rate prediction YMn(t)
. Mn(t) represents the set of local loss-minimized model parameters

from participant n at t-index round communications. With LSTM-based settings, the FL
controller can be significantly improved with proactive hidden state information to predict
the scheduling load congestion.

In [38], a privacy-preserving scheme was proposed to enhance the security of local
model updating procedures within FL model aggregation. The proposed scheme served
to mitigate the impact of malicious participants and strengthen the flexibility of partici-
pant selection. Furthermore, considering the expanding scale of IIoT equipment, ref. [39]
proposed the management of data by converging deep reinforcement learning with FL to
handle the training of extensive datasets. By converting raw data into model parameters,
FL optimizes offloading decisions for IIoT tasks and directs them towards optimal edge
aggregators equipped with sufficient serving resources. Consecutively, the utilization of
fronthaul communication resources is minimized.

From an edge perspective, an MEC-assisted FL framework was coupled with a digital
twin to tackle computation offloading and resource allocation problems [40]. MEC was
employed to mitigate the resource limitations of local participants and helped the core
network congestion. The proposed framework greatly optimized the key performance
indicators in system costs and FL training efficiencies. Furthermore, QoS-centric resource
allocation in FL policy was also studied over edge IIoT networks for minimizing delay,
energy consumption, and cost expenditure [41]. The authors separated the sequential and
concurrent mechanisms by tackling the diversity of IIoT devices and obtaining the Nash
bargaining solutions. As a result, EFL serves as a significant mechanism to enhance QoS
and other learning metrics by leveraging edge computing capacity to assist in offloading
decisions and resource allocation [42].

3. Congestion-Aware EFL-Based Model Aggregation Policy in Edge Computing
3.1. System Architecture

In this section, we present the system architectures used to implement the proposed
software-defined approach, which are organized into three tiers as follows:

1. Participant tier refers to local devices with image datasets, computing models, and
service type indicators.

2. Edge tier involves a heterogeneity of multi-service image processing for industrial
applications, model labels/features, and allocatable virtual capacities.

3. Controller tier comprises three primary processing phases. First, the modified LSTM
congestion prediction (MLSTM-CP) module assists in predicting congestion levels.
Next, the offloading decision-maker module executes to facilitate the selection of
the optimal edge aggregator for offloading. Lastly, the policy installation for model
aggregation concludes the tier’s functionalities. Comprehensive descriptions of the
primary notations are given in Table 1.

3.1.1. Participant Tier

In the proposed EFL framework, participants are expected to fulfill three fundamental
requirements, outlined as follows:

1. Adequate local resources: Participants need to ensure the connectivity, energy capac-
ities, and model computing capabilities within both auxiliary and intrinsic memories.

2. High-quality data input: The integrity and reliability of the data are required in
contributing to the overall performance of our framework.

3. Non-malicious intent: This requirement ensures the security and trustworthiness of
the collaborative learning environment for all selected participants.

Meeting these prerequisites grants participants the authorization to engage in collabo-
rative training and be considered for selection when scheduling interactions with the global
server. Let N = {1, 2, . . . , n} denote the set of selected IIoT participants. As each participant
is associated with a specific image processing service, we collect the corresponding features



Electronics 2023, 12, 3615 6 of 19

of m services between the participant and aggregator by denoting Ym
n =

{
Y1

n , Y2
n , . . . , Ym

n
}

to participant n. Mn(t) is based on individual data contributions Dn(t) and linked to a
unique service type identified as Ym

n .

Table 1. Primary notations and descriptions.

Notation Description

N = {1, 2, . . . , n} Set of local IIoT participants
E = {1, 2, . . . , e} Set of edge aggregators with specified resource pooling properties

Ym
n =

{
Y1

n , Y2
n , . . . , Ym

n
}

Set of m services for participant n

Mn(t)
Set of local loss-minimized model parameters from participant n at t-index round

communications
Me(t) Loss-minimized model parameters in edge aggregator e at round t
Dn(t) Data distribution of participant n at round t

pt
[

Mn(t)

]
Size-based processing time of local model Mn(t)

tl
[

Mn(t)

]
Tolerable latency of local model Mn(t)

sc
[

Mn(t)

]
Service criticality of local model Mn(t)

ts
[

Mn(t)

]
Time slot of local model Mn(t) at edge aggregator

bs
[

Mn(t)

]
Buffer size of adjusted edge aggregator that loaded Mn(t)

qi
[

Mn(t)

]
Queueing index of Mn(t) at current time slot at e

τm Upper-bound QoS (e.g., delay) for service m
T[M G(e)

m

]
Latency of averaging service m toward final model in e

Tcomp
(n) Computation latency at participant n

Tcomm
(e) Communication latency between participants to edge aggregator e

Tcomp
(e) Computation latency in edge aggregator e at round t

Tupdate Uplink data rate for updating the local model(
XMn(t)

, YMn(t)

)
Input data and target features(

Xtr
Mn(t)

, Ytr
Mn(t)

)
Training input data and target features(

Xte
Mn(t)

, Yte
Mn(t)

)
Testing input data and target features

N(m) Number of models
B(s) Batch sizes
D(u) Dense units

MLSTM(u) MLSTM units
N(e) Number of epochs

W (e.g., Wxi)
Sampling weights (e.g., weight matrices that determine how the input data XMn(t)

contribute to the computation of input gate i)
b (e.g., bi) Bias (e.g., bias terms associated with the input gate i)
(σ, tanh) Sigmoid and tanh activation functions

it, ft, ot,
∼
Ct, Ct, and ht

LSTM components: input gate, forget gate, output gate, cell state, new cell state,
and hidden state

� Element-wise multiplication

3.1.2. Edge Tier

In our proposed framework, the adaptive allocation of edge resources is facilitated
through the implementation of an NFV-enabled system. Virtualization procedures are
leveraged to configure resource attributes in a manner that caters to varying criticality
levels associated with each slicing service. Specifically, the image processing services are
categorized into three distinct classes. A comprehensive description of these class attributes,
criticalities, and application scenarios when FL is applied to industrial services can be
found in Table 2. Class-1 represents a high mission-critical scenario, where unsatisfactory
QoS performance can lead to significant consequences. Instances of this class include
the modelling of visually assisted robots and low-latency manufacturing control systems.
Class-2 denotes a mission-critical context with an upper-bound tolerable delay of 150 ms.
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This class is applicable to FL-based industrial visual or surveillance modelling systems.
For the low mission-critical category, Class-3 is characterized by a delay tolerance of
300 ms. QoS class indicators (QCI) define the characteristics of each class, aligning with QCI
priority assurance in the recently released standardization. Each indicator specifies class
characteristics based on example service’s packet delay budget (PDB) for different scenarios:
(1) vehicle-to-everything (V2X) messages or real-time gaming, (2) live streaming or mission-
critical user plane, and (3) non-mission-critical user plane or non-conversational video.
Although the specification provided is designed for a single use-case implementation,
serving as a simulation template, we set each value as dynamic and adjustable within
the proposed algorithm procedure. The upper-bound maximum delays of each class are
denoted as τm, which are multi-dimensional containers corresponding to the various service
types (m).

Table 2. The class characteristics, criticalities, and FL-based scenarios in industrial services.

Conditions Upper-Bound Delays Criticalities FL-Based Scenarios

Class-1 50 ms High mission-critical Visual-assisted robot, low-latency manufacturing control
Class-2 150 ms Mission-critical Industrial visual/surveillance systems
Class-3 300 ms Low mission-critical Imaging compression for storage and retrieval

3.1.3. Controller Tier

In this sub-section, we delve into the controller and virtualization layers, addressing
their roles in adapting virtual edge model storage, network functions, and computing
capacities in accordance with the proposed policy. The controller functions as an integrated
virtualized infrastructure manager (VIM), overseeing the orchestration between pooled
virtualization and physical resources. To efficiently apply policies to the primary controller,
the incoming local model Mn with defined Ym

n is channeled into a subordinate processing
module. This module pre-calculates metrics such as size-based processing time (pt

[
Mn(t)

]
),

tolerable latency (tl
[

Mn(t)

]
), and service criticality (sc

[
Mn(t)

]
) for the given model. These

metrics enhance the hidden states of processing speed, latency tolerance, and service crit-
icality. The resulting time series of model loading durations are stored for the purposes
of congestion control and adaptive configuration adjustments. Within the subordinate
module of each virtual EFL server, specific parameters are retrieved for the selected par-
ticipant’s models Mn(t), including the time slot (ts

[
Mn(t)

]
), buffer size (bs

[
Mn(t)

]
), and

queuing index (qi
[

Mn(t)

]
). The observation of these parameters is enabled through SDN

interfaces integrated into the system architecture. The gathered network status conditions
at the current t-index are appended to the policy orchestration. Through the formulation
of predictive models, the congestion levels are translated into three subsequent threads of
action as follows:

1. During non-congestion states, the offloading decision-maker modules adhere to the
current policy, retaining incoming local models.

2. In cases of congestion, the scheduling and aggregation destinations for that specific
time slot are altered by modifying forwarding rules within the primary controller.

3. For heavy congestion, adjustments are made to the virtual resource placement prop-
erties within each functional instance’s descriptor. This adaptation is guided by the
proposed policy and prioritized service types at that time slot.

3.2. Primary Objectives and Algorithm Designs

A reliable model aggregation policy with MLSTM-CEFL offers four primary objectives
in industrial EFL-based applications, which include minimizing model aggregation laten-
cies, preventing excessive model drops, ensuring efficient utilization of model computing
resources, and maximizing model communication throughput. In multi-service industrial
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applications, MLSTM-CEFL distinguishes between each application class through adap-
tive resource pooling modifications. Consequently, the scheduling policy and offloading
decisions are formulated based on these four primary outputs.

To minimize the overall latencies, the three-tuple elements are jointly considered,
including the latencies of local model computation, model communication, and edge
aggregation. The local computing time is considered based on the size of input data
batch Dn(t) to complete the Mn(t). The final local learning model at t-index is the optimal
model parameter that minimizes the loss of each mini-batch input. Once the optimal
loss-minimized M∗n(t) is acquired, the updating process in a time slot ts, denoted as Tupdate,
is executed across all IIoT participant nodes. The models are directed towards a selected
edge aggregator. This process is formulated at the t-index by summing up the model
updating latencies of each local node. Upon receiving the local models for the t-index,
the edge aggregation procedure is performed to minimize the edge loss function within
each matched industrial imaging service. Given the distinct requirements of each service
for model construction and target features, traditional federated averaging algorithms are
employed in this design to aggregate service m iteratively, culminating in the final learning
model denoted as T

[
MG(e)

m

]
. Equations (1)–(3) are presented as follows: (1) the consumed

latencies of local model computing from a single participant, (2) model communication
between a set of matched participants–edge in a single time slot, and (3) edge computing
for the aggregated model in a single time slot. The final objective is provided in Equation
(4). Tcomp

(n) , Tcomm
(e) , Tcomp

(e) , and Tupdate denote the following descriptions: (1) computation
time in the local IIoT participant n, (2) communication time between a set of participants
and a single edge aggregator e, (3) computation time in edge aggregator e, including global
loss minimization and federated averaging, and (4) uplink data rate for model updating
under specific IIoT network conditions. Additionally, L represents the loss function of
imaging or visual-assisted model training in industrial applications capable of utilizing
the mean squared error to calculate gradients within each specified convolutional neural
network model.

Tcomp
(n)

[
M∗n(t)

]
, T[argmin

Mn(t)

L (Mn(t) |Dn(t))] (1)

Tcomm
(e) , ∑

ts
∑
n

Tupdate[M
∗
n(t)] (2)

Tcomp
(e) , T[L(Me(t)

∣∣∣∑N
n=1 Dn(t))] + T[MG(e)

m ] (3)

min
(

∑ Tcomp
(n) + Tcomm

(e) +Tcomp
(e)

)
m
≤ τm (4)

High model drops significantly degrade the final learning accuracy within EFL-based
applications, primarily due to the absence of high-quality data contributions and incomplete
training procedures. To prevent this issue, the priority and congestion detection are pivotal
to consider with the high-impact features of τm and output of MLSTM-based estimation.
Moreover, to enable resource-efficient model computing, each edge aggregator requires
elastic resource placement orchestrated through virtualized and softwarized manage-
ment entities such as NFV orchestrator (NFVO), virtual network function (VNF) manager
(VNFM), and VIM. By allowing modifiable properties in each instance descriptor, NFVI
consists of efficient virtual mapping allocation that is extensively controlled by an SDN-
enabled controller connected to the proposed modules. Addressing throughput-maximized
model communications involves activating model updates as opposed to sharing raw data.
Moreover, real-time scheduling is further extended in the following section.

As illustrated in Figure 2, the interactivity of three main tiers in our proposed IIoT-EFL
architecture is given, including participant, edge, and controller tiers. Each tier can be
described as follows:
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• Participant tier: The selection criteria are listed, including the non-malicious user
status, sufficiency of resource capacities, and high-quality image sensing contributions.
Real-time wireless data planes in SDN-enabled architectures involve various end-user
equipment, including robotic image sensing nodes, manufacturing nodes, surveillance
videos, and tracking/monitoring applications.

• Edge tier: Virtual resource edge aggregators adapt to the formulated industrial service
type and class-m prioritization orchestrated through the virtualization layer. This
orchestration directly follows the controller tier. Mn(t) values are loaded into global
loss minimization processes directed towards the edge-aggregated parameters Me(t).

• Controller tier: With multi-services in IIoT-EFL-based applications, the final averaged

learning model MG(e)
m for each application type is independently computed following

the scheduling policies of the defined congestion states from MLSTM-CP output and
controller-based orchestration in VIM.

The procedural flow of EFL-based IIoT applications entails four fundamental steps:

1. Distributing model structures and hyperparameters for each matching service type
between distinct aggregators e and local nodes n.

2. After obtaining the primary model, local computing optimizes model parameters
using local data, followed by uploading the refined model parameters back to the
corresponding edge aggregator.

3. By collectively gathering multi-type local model parameters, the edge-aggregated
models are executed and subsequently categorized based on their respective service
types. This categorization sets the stage for the final averaging process during the
last-index iteration.

4. Each service class computes the final learning model by dynamically adopting the
aggregation and scheduling policies outlined by the proposed controller.

3.3. MLSTM-CP and Orchestration of EFL Model Aggregation

In the MLSTM-CP module, the forget, input, and output gates collaboratively engage
with both the input data and target features (XMn(t)

, YMn(t)
). Equation (5) presents the set

of general features for input, which are gathered through the proposed SDN/NFV-enabled
network API and RESTful API within the system architecture. The feature information
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is captured within the local participant, the updated FL model, and the queuing process
at the selected edge aggregator. The deployment of a model-task profiler and inspection
techniques are set. The purpose of each component in our proposed MLSTM-CP can be
described as follows:

• Input data (XMn(t)
): At each time step, the input data is fed into the MLSTM cell, and

the gates and operations process this input to determine how much new information
should be integrated, how much previous knowledge should be retained, and how
the hidden state of the model should be updated based on the evolving conditions of
the industrial process. The collected features are from various edge devices/servers
deployed in the industrial setting (see (5)).

XMn(t)
=
{

pt
[

Mn(t)

]
, tl
[

Mn(t)

]
, sc
[

Mn(t)

]
, ts
[

Mn(t)

]
, bs
[

Mn(t)

]
, qi
[

Mn(t)

]}
(5)

• Input gate (it) represents the decision-making process for how much new information
from the current participants–edge data should be incorporated into the model update
(see (6)). Different edge devices might have varying degrees of relevancy or noise in
their data due to the conditions of the industrial processes that are being monitored.

it = σ
(

WxiXMn(t)
+ Whiht−1 + bi

)
(6)

• Forget gate (ft) symbolizes the importance of retaining experienced information from
previous participants–edge updates (see (7)). ft assists our system to determine how
much to retain from past states in order to make better decisions;

ft = σ
(

Wx f XMn(t)
+ Wh f ht−1 + b f

)
(7)

• Output gate (ot) acts as the filter that decides how much of the current hidden state
should be exposed and utilized for influencing the global model. ot reflects how
much the insights and knowledge gained from a particular participant–edge update
experience should contribute to the comprehensive learning process (see (8)).

ot = σ
(

WxoXMn(t)
+ Whoht−1 + bo

)
(8)

• Cell state (
∼
Ct) acts as the “memory” of the MLSTM, which captures the accumulation

of insights and patterns from various participants–edge data and updating schedules.
∼
Ct retains essential information about the evolving system dynamics. The updated
cell state, denoted as Ct, is the result of combining between (1) the previous cell state
( Ct−1) that was preserved based on the forget gate and (2) the new candidate cell state

(
∼
Ct) that was incorporated based on the input gate (see (9) and (10)).

∼
Ct = tanh

(
WxcXMn(t)

+ Whcht−1 + bc

)
(9)

Ct = ft�Ct−1 + it �
∼
Ct (10)

• Hidden state (ht) represents the encoded information that the MLSTM uses to influ-
ence the model update process (see (11)). In other words, ht acts as the output of the
MLSTM cell and encapsulates the input pattern understanding of how the various
participants–edge updates contribute to the overall improvement of the model.

ht = ot � tanh(Ct) (11)
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• Returned congestion rate (YMn(t)
): ht and ot components assist the output features by

encapsulating the distilled knowledge and encoded patterns learned from XMn(t)
over

multiple timesteps. ot controls how much of ht is exposed and utilized to contribute
to the output features as congestion rates, which in turn influence the scheduling
awareness of global model updates (see (12)).

0 ≤ YMn(t)
≤ 1 (12)

By obtaining MLSTM-CP outputs, the orchestration of resource virtualization is mod-
ified. The proposed EFL model aggregation policies consider the congestion rate of the
current time slot by evaluating the total incoming model services and prioritizing the
optimal path for each level of criticality. To create a forwarding graph, the SDN primary
controller is used to determine whether to alter or maintain the current edge aggregator
destination. To configure instance properties, the NFV MANO-enabled interface facil-
itates interactivity from the outputs of the predictive module towards virtual resource
placement policies. The proposed MLSTM-CEFL is achieved through its capabilities
of adjusting virtual resources in the edge aggregator based on congestion prediction,
scheduling the long-term forwarding path, and modifying the offloading decision of FL
local–edge communications.

The predicted congestion rates YMn(t)
provide insights into IIoT-EFL network perfor-

mance and enable QoS enhancements. By anticipating potential traffic bottlenecks, QoS
in EFL model update processes can be predicted as τpre(t + 1) to compare with the upper-
bound τm(t + 1) for dynamically scheduling flow paths and allocating edge resources
where needed to prevent congestion. The overall process ensures optimal model update
flow, minimizes delays, and enhances learning experience, which harmonizes network
resources with demand and maintains reliable service delivery.

4. Experiment and Analysis
4.1. Simulation Environment

In simulation environments, there are three significant phases including MLSTM-based
modelling, E2E IIoT networks, and FL communications for imaging services.

For the first phase, the Python programming language is used for MLSTM-based
modelling experimentation [43–45]. The proposed algorithms contain specified parameters
and algorithmic flow, as described above, in collaboration with the deployed system
architecture. The interaction between the prediction module and the orchestration entity
enhances real-time and elastic performance. The parameters, including the number of
models, batch sizes, dense units, MLSTM units, and the number of testing epochs, are
set to 3, 512, 4 times the number of MLSTM units, 128, and 125, respectively. The input
data of XMn(t)

is gathered through device and resource abstractions using OpenFlow-based
techniques, flow monitoring, and RESTful API techniques. The overview procedures of
the MLSTM-CEFL simulation are illustrated in Figure 3. The primary stage encompasses
inputting the gathered FL model and network states until the evaluation of both training
and testing batches is completed.

Algorithm 1 demonstrates the pseudocode for implementing our proposed controller,
MLSTM-CP, in TensorFlow and Keras-based functions (e.g., SpatialDropout1D, etc.), inte-
grating virtual containers at the edge and network interfaces through SDN/NFV MANO
to converge with the final MLSTM-CEFL policy (lines 18–23). Utilizing general features
collected, as given in Equation (5), the model selection and splitting processes are executed
for training batches

(
Xtr

Mn(t)
, Ytr

Mn(t)

)
and testing batches

(
Xte

Mn(t)
, Yte

Mn(t)

)
. The procedure

begins by initializing the number of models, batch sizes, dense units, MLSTM units, and
the number of epochs, denoted as N(m), B(s), D(u), MLSTM(u), and N(e), respectively.
The modelBuilder function is executed with a subordinate computing controller, linked to
the SDN database, to construct the model’s structure. Parameters, hyperparameters, loss,
and optimizer functions are configurable to maximize the optimality of finalModel. With
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multiple models, each model type is specified using the modelBuilder function and fitted
with different batch sizes and weights. For sustained reliability, an averaging formulation
is applied to each output of the finalModel.
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Algorithm 1 Pseudocode of softwarized MLSTM-CP

Requires:
{
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]
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[
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]
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[
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]
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[
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]
, bs
[
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[
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Ensure: Optimal schedule flow batches

1: Initialize N(m), B(s), D(u), MLSTM(u), N(e), and
(

XMn(t)
, YMn(t)

)
2: def modelBuilder():
3: Embedding and SpatialDropout1D of features XMn(t)

4: X = Bidirectional (CuDNNLSTM (MLSTM(u) ))
(

XMn(t)
)

5: hiddenLayer = concatenate([GlobalMaxPooling1D, GlobalAveragaePooling1D])
6: hiddenLayer = add ([hiddenLayer, Dense(D(u), relu)]
7: ouputLayer = Dense (1, sigmoid )
8: finalModel = Model(inputs = X, outputs = ouputLayer)
9: finalModel.compile (loss, optimizer)
10: return finalModel
11: Split

(
Xtr

Mn(t)
, Ytr

Mn(t)

)
and

(
Xte

Mn(t)
, Yte

Mn(t)

)
12: Sampling weights: W
13: for each model m in range of N(m) do
14: finalModel = modelBuilder()
15: for global iteration e in range of N(e) do
16: finalModel.fit

(
Xtr

Mn(t)
, Ytr

Mn(t)
, B(s), e, W f ormulation

)
17: Executing prediction and flatten output
18: Average YMn(t)

based on finalModel and W f ormulation
19: Obtain YMn(t)

to EFL-controller and pre-calculate QoS τpre(t + 1)
20: if QoS τpre(t + 1) ≤ τm(t + 1) do
21: Obtain optimal schedule flow batches to MLSTM-CEFL
22: else
23: Re-schedule model flow rules and resource descriptors (Mininet, MiniNFV)

Two baseline approaches are employed for comparison: (1) the conventional LSTM-based
congestion-aware FL aggregation scheduling and (2) MLSTM for centralized congestion-
aware FL aggregation scheduling, denoted as CLSTM-CFL and MLSTM-CCFL respectively.
Each method is explained as follows:

• MLSTM-CCFL employs the same MLSTM architecture to predict congestion rates
within a centralized FL framework. This approach capitalizes on MLSTM’s profi-
ciency in capturing temporal dependencies and adapting to dynamic input sequences.
However, in this method, data from multiple participants and edge devices, along
with their update statuses, are collected and transmitted to a central processing unit
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where the MLSTM model predicts congestion. The centralized feature of this approach
introduces a trade-off between two factors: (1) the increased latency due to the need
to transmit input features to a central server for processing and (2) the benefits of
globalized and uniform decision making.

• CLSTM-CFL relies on the capacity of traditional LSTM to recognize temporal patterns
and relationships in FL input data. CLSTM-CFL can be limited by its conventional
LSTM architecture, which may hinder its ability to promptly respond to real-time
variations and adapt effectively to evolving state dynamics, such as multi-round
participant model updates and edge aggregation. Nevertheless, its advantage lies in
resource consumption, as it operates with lightweight execution.

For the second phase, in E2E IIoT networks, the primary processes on SDN/NFV
MANO are addressed in the simulation using the configured testbed with TOSCA lan-
guage [46,47]. The descriptors are programmable, following the outputs of the MLSTM
module. In this stage, the final orchestration between the MLSTM-CP outputs and con-
trollers takes the form of the proposed MLSTM-CEFL. The parameter setup is detailed in
Table 3, and the system is executed across three consecutive congestion states for 250 s,
including non-congestion, normal congestion, and heavy congestion scenarios. Traffic
generation occurs for each congestion state evaluation. For each state transition from non-
congestion to heavy congestion, queueing algorithms within each path’s gateway buffer are
observed. Fair-queueing-based pacing is employed in this study. To evaluate the proposed
policy, metrics assessing the overall control QoS performance are analyzed by conducting
simulations comparing the proposed MLSTM-CEFL with other baseline policies.

Table 3. Primary parameter configuration for our experiment setup.

Purpose/Platform Specification

Hosting infrastructure Intel(R) Xeon(R) Silver 4280 CPU @ 2.10 GHz, 128 GB, NVIDIA Quadro RTX 4000 GPU

DL platform Python (TensorFlow and Keras)

FL platform TensorFlow Federated (MNIST dataset)

Number of models 3 (CLSTM-CFL, MLSTM-CCFL, and MLSTM-CEFL)

Input shape (Number of time steps, number of features)

Dropout rate 0.2

Recurrent dropout rate 0.1

Batch sizes 512

Dense units 4 times of MLSTM units

MLSTM units 128

Number of epochs (training, testing) (1000, 125)

Optimizer Adam

Loss Mean Squared Error

Activation function Sigmoid and Tanh

Learning rate 0.001

Validation split 0.2

Simulation times for capturing QoS 250 s (Fair-queueing-based pacing)

SDN/NFV-UE, control, and interfaces Mininet+MiniNFV, RESTful API

Number of participants, edge aggregator,
and server (500, 5, 1)

In the final phase, after orchestrating the proposed MLSTM-CEFL, EFL communi-
cations are executed for the development of the final learning model using TensorFlow



Electronics 2023, 12, 3615 14 of 19

Federated with data contributions from the MNIST handwritten digits dataset. The adapted
configuration of the EFL framework is rooted in the differentiation of drop ratios from the
second phase, aimed at constraining the count of participants and model updates during
specific congestion state intervals. The performance evaluation of this phase refers to
accuracy and loss for comparative analysis.

4.2. QoS Evaluation Metrics

Various organizations, such as the International Telecommunication Union (ITU) [48],
develop standards and guidelines for QoS to ensure consistent service quality globally.
QoS in EFL is a critical concept that governs the performance and reliability of the learning
process within a decentralized network of edge devices. EFL leverages QoS to ensure
that the transmission, aggregation, and processing of ML/DL models occur efficiently. By
optimizing metrics, such as latency and reliability (e.g., model delivery ratios), QoS ensures
that industrial applications and services meet predefined standards, resulting in enhanced
user experiences and efficient operations across diverse industries [49].

In our study, we prioritize the minimization of delay (see (4)) and optimization of
reliability metrics (FL model drop and delivery ratios). By leveraging MLSTM-CP on
predictive capabilities, the system anticipates congestion points and allocates resources
proactively. Reduced latency guarantees real-time interactions and timely model updates,
thus enhancing the final averaged learning model. Equation (13) presents the total latency
TTOTAL of E2E IIoT. The total latency is the sum of radio access delay tRAN , edge aggregation
delay tEDGE, and orchestration control delay tCONTROL. The edge latency encompasses the
transmission time between gateways in the fronthaul networks. The control latency refers
to the model updating time between edge aggregators and federated averaging entities
in the control plane. The latencies associated with resource adjustment and scheduling,
subsequent to MLSTM-CEFL orchestration, are considered by tCONTROL.

TTOTAL = tRAN + tEDGE + tCONTROL (13)

FL model drop ratios indicate the proportion of models that were discarded during the
FL round communication process due to congestion or resource limitations. It reflects the
effectiveness of the controller as VIM and policy orchestration. The drop ratios highlight
the potential challenges faced in maintaining a stable connection between participants,
edge aggregators, and the central server. In contrast, FL model delivery ratios quantify the
success rate of delivering the model updates in IIoT-EFL systems.

4.3. Results and Discussion

In this sub-section, the results of precision, accuracy/loss of IIoT-EFL-based imaging
services, and QoS performances of E2E IIoT networks are given to allow comparison
between the proposed MLSTM-CEFL, MLSTM-CCFL, and CLSTM-CFL. The percentage
of training and testing accuracies are given for MLSTM-based modules in predicting the
congestion rates at every input time slot. Figure 4 illustrates the accuracy and loss value of
the proposed and baseline approaches.

Within 125 sampling time slots, the prediction rates from non-congestion to a heavy-
congestion level are acceptable, illustrated by an insignificant difference between them.
With precise congestion rate prediction, the proposed orchestrator and controller signif-
icantly improve the proactive resource placement towards the optimal edge aggregator
for particular conditional intervals. In terms of (training, testing), the proposed module
achieves (4.1979%, 7.2369%) and (10.6698%, 13.9758%) higher accuracies than MLSTM-
CCFL and CLSTM-CFL, respectively. MLSTM-CCFL fails to focus on the distinct edge-
specific service that could contribute to more accurate centralized congestion predictions.
Accuracy is a metric that is primarily used for classification problems where the goal is
to correctly classify data points into different classes. In the context of time series predic-
tion (multi-round communication in EFL) with MLSTM, accuracy acts as a certain case
in predicting the exact congestion rate values. In our simulation setup, we convert the
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congestion rate predictions into three discrete classes (low, normal, and high congestion)
and then calculate accuracy based on those classes. Our approach transforms the regression
problem into a classification problem by dividing it into a limited number of classes for
prediction. We delineate congestion rate ranges: 0–30% as low congestion, 30–70% as
normal congestion, and above 70% as high congestion. Subsequently, we map the predicted
congestion rate to one of these classes and calculate accuracy based on how effectively the
model categorizes the congestion rates into the correct states.
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Another primary focus is the loss metric (MSE); the goal is to minimize it to ensure
accurate predictions of congestion rates at the aggregator buffers over multi-round commu-
nications. The loss represents the discrepancy between the predicted values and the actual
target values. In our setup, the loss value measures how well the model is able to predict
the congestion rate at the edge for a given time step. MSE measures the average squared
difference between the predicted values and the actual target values, and the lower the
MSE, the better the model is at fitting the training data. Table 4 presents each approach
output in terms of accuracy and loss values. After installing the forwarding path and or-
chestrating the virtual edge resources by following the congestion thread notifications from
the proposed MLSTM-CP module, the FL simulation on the imaging dataset is conducted
to represent each policy rule. With appropriate offloading of decision makers, the number
of round communications is alleviated and the drop possibility of local distribution is
significantly reduced. The training and testing loss values of MLSTM-CEFL reach 0.0225
and 0.0399, respectively.

Table 4. Losses and accuracies of proposed schemes.

CLSTM-CFL MLSTM-CCFL MLSTM-CEFL

Training accuracy 88.8403% 95.3122% 99.5101%
Training loss 0.5991 0.2892 0.0225

Testing accuracy 85.1598% 91.8991% 99.1356%
Testing loss 0.7812 0.4515 0.0399

Figure 5 presents the primary QoS metrics captured for evaluation in this simulation
setup. The accuracy and reliability of predicting the congestion rate at an edge aggregator
outputs good results using MLSTM-CEFL. The predicted rate and actual experiment rate
configuration are acceptable; the policy created a model that can effectively forecast the
congestion rate at the edge to help in managing network resources efficiently. A higher
similarity in Figure 5a illustrates a predicting congestion rate that allows FL central policy
administrators to (1) proactively allocate resources, (2) balance loads, and (3) prevent
potential network congestion. The MLSTM-CEFL framework, collaboratively trained across
multiple edge aggregators while preserving data privacy and featuring accurate congestion
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rate predictions, results in a more effective converged final model. Delays TTOTAL are
captured as Equation (13) and illustrated in Figure 5b, serving as a major evaluation metric
to determine the performance stability of the proposed MLSTM-CEFL, MLSTM-CCFL, and
CLSTM-CFL models. In our architecture, tRAN , tEDGE, and tCONTROL are jointly considered
in the Mininet platform. The average delays of the proposed policy reach 30.81 ms among
all service settings, which is a 46.8961 ms and 111.2661 ms improvement (lower delays)
on the MLSTM-CCFL and CLSTM-CFL policies, respectively. Through the convergence of
MLSTM-CP modules with system orchestrators, resources are effectively allocated in each
iteration of the local-aggregator updates. Our proposed scheme ensures the system’s ability
to reliably serve each IIoT application class, with particular emphasis on the mission-critical
service class. Accurate congestion rate prediction facilitates the well-adjusted update
scheduling of local model parameters, which is particularly applicable in asynchronous
FL. Given stable delay variation, experience-based forwarding is efficient for both reactive
and proactive configurations. The proposed approach contributes to lower and more stable
latencies, enabling the final learning model to achieve latency-efficient characteristics while
preventing local models from exceeding the upper-bound maximum delays.
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The FL model drop ratio is presented in Figure 5c. This measure indicates the pro-
portion of local/edge models that are dropped or discarded during the FL process due to
various reasons such as (1) communication errors, (2) failures, (3) model convergence issues,
or (4) insufficiency of policy orchestration. High model drop ratios can be problematic, as
this indicates inefficient communication and collaboration between local devices and the
aggregator. High ratios lead to delays in model updates, suboptimal performance, and
increased training costs. To maintain the final model performance, our proposed scheme
achieved the minimization of model drop ratios to an average of 0.376% among various
congestion states in our 250 s simulation. This output provides three primary benefits:
(1) enhancing communication reliability, (2) resolving convergence issues, and (3) handling
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aggregation scheduling failures. In contrast to the drop ratio, the FL model delivery ratio is
presented in Figure 5d. This parameter measures the successful model updates. A high
model delivery ratio is significant for ensuring that the latest model updates from edge
devices are successfully integrated into the central model. The proposed approach reached
a delivery ratio of 99.9922%, which is applicable for IIoT application services following the
criteria standardization. The proposed approach has delivery ratios 2.2541% and 3.5081%
higher than MLSTM-CCFL and CLSTM-CFL, respectively. By identifying future congestion
intervals, a proactive model aggregation update orchestrates the forwarding path to opti-
mize matching local–aggregator throughputs and minimize total latency, as described in
Equation (4). The proposed policy achieves a high delivery ratio that aims to deliver great
precision performances in each IIoT service model.

The non-monotonic changes observed in the results for the proposed MLSTM-CEFL
are attributed to the inherent dynamics of network congestion. Stability is achieved by
accommodating variations in congestion states throughout the 250 s simulation setup. The
performance metrics—latency, drop ratio, and delivery ratio—are influenced by real-time
fluctuations in traffic loads, network conditions, and resource allocations. However, the
capability of the proposed MLSTM-CEFL to adapt and optimize within these changing
conditions ensures a stable response to varying congestion levels, enhancing the overall
QoS and resource utilization.

5. Conclusions and Future Works

This paper introduces an MLSTM-based congestion-aware EFL, namely MLSTM-CEFL,
as a prediction handler and controller to orchestrate the aggregation scheduling policy. By
leveraging the MLSTM-CEFL model, congestion prediction activates the capability for the
controller to proactively measure the next-state QoS metrics and allocates the resource on
edge aggregators efficiently for multi-service model averaging. Our network architecture
is divided into participants, edge aggregators, and controllers, which enables scalable
IIoT model aggregation. Integration of MLSTM-CP and the controller as a VIM enhances
adaptability and facilitates policy decision making to obtain the optimal scheduling flows.
The simulation results showcased the precision and stability of MLSTM-CEFL throughout
various congestion network states in order to ensure multi-class QoS expectations and
efficient resource placement. Our proposed approach minimized the E2E delays and
optimized the reliability in terms of model drop/delivery ratios.

In future studies, the E2E network slicing based on the EFL framework for IIoT
applications will be extended. Another perspective involving multi-convolutional neural
networks for various industrial sensing image datasets will be explored to capture the
differentiation of computing latencies. The slicing framework aims to enhance the multi-
class handling of time-sensitive model communications in EFL-based real-time image
processing applications.
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