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Abstract: Aiming at the difficult problem of broadband oscillation localization in power systems,
the intelligent localization method of an oscillation source based on a digital twin is proposed, and
the oscillation source localization system is thus constructed. Firstly, a digital twin-based oscillation
source localization method and its system architecture are proposed. Furthermore, an intelligent
positioning method of the oscillation source, based on data-driven and mechanism fusion, is proposed.
It includes three steps: oscillation signal preprocessing, oscillation modal analysis and oscillation
source localization. For the oscillation signal preprocessing, the generative adversarial imputation
network is used to repair the missing samples, and the super-resolution technique is used to realize
the super-resolution measurement of broadband oscillation. In the oscillation modal analysis, the
spectrum of the oscillation signal is extracted using the fast Fourier transform. To accurately locate
the oscillation source, branch potential energy is used as the input to the data-driven model, such as
LSTM and CNN. Finally, an oscillation source localization system is developed based on the digital
twin workshop CloudPSS-XStudio, which can locate the oscillation source quickly and accurately.

Keywords: digital twin; oscillation source localization; generative adversarial imputation network;
super-resolution; Cloudpss-Xstudio

1. Introduction

Renewable energy will replace fossil energy in modern power systems. Renewable
energy sources are connected to the power grid through power converters, which will
make the power system exhibit the characteristics of highly penetrative power electronics.
The high penetration of power electronic equipment provides system coupling between the
generation side, load side and transmission network in many forms with variable oscillation
modes, showing strong time-variability, stochasticity, and strong nonlinearity [1,2]. As
a result, the probability of system oscillations caused by power electronic devices will
increase significantly.

To control broadband oscillation, it is necessary to localize the oscillation source. At
present, oscillation localization methods can be divided into three categories: an analyt-
ical calculation method, a numerical analysis method and a data-driven method. The
analytical calculation method mainly includes the complex torque coefficient method [3],
the state-space method [4] and the impedance method [5], which can accurately reflect
the relationship between the oscillation characteristics and the influencing factors. The
numerical analysis method mainly solves the power system mathematical model from the
perspective of an electromechanical transient or electromagnetic transient, in which the
energy method is representative of this method [6]. The above two methods have good
interpretability based on the mechanism model, but they are applicable to a single scenario,
and their accuracy and generalization ability need to be improved when dealing with the
new power system broadband oscillation localization problems with strong randomness
and nonlinearity.
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Data-driven oscillation source localization methods [7] are mostly oriented to engi-
neering programs. They use actual electrical quantity data as their input and build neural
models to realize the localization. There is some research on deep learning-based oscillation
source warning and localization through the training of neural network models with effec-
tive extraction and fitting to the oscillation characteristics. This achieves a high localization
accuracy, but its mathematical interpretability is poor.

Digital twin technology has been used in the simulation, analysis and control of power
systems. Reference [8] develops an approach that treats the OPF problem as a functional
mapping between the system operating status and OPF solutions. Reference [9] proposes a
confidence-oriented model updating strategy, which only requires small sample data to
update the model. Reference [10] develops the first data-oriented, real-time electromagnetic
transient simulation platform, ECS-Grid, for cyber-physical power systems (CPPS). How-
ever, most of the methods are still difficult to deploy on the user side, as they always rely on
special devices, drivers, compilers, and cumbersome configurations [11]. However, digital
twin techniques have not been used in the power system oscillation location. To this end,
this paper proposes an intelligent location method based on the digital twin and develops
an intelligent location system based on CloudPSS, a cloud computing-based simulation
platform that adopts both the CPU and GPU as computing devices.

Aiming at the problems above, the paper proposes an intelligent localization method
and system for oscillation sources based on the digital twin. Contributions of this paper are
summarized as follows:

• A data and mechanism fusion power system oscillation source localization method is
proposed, achieving accurate oscillation location of a power system.

• A power system oscillation source localization system is developed based on the
digital twin workshop CloudPSS-XStudio. The oscillation location system is a cloud
computing-based software and is portable.

The remainder of this paper is organized as follows. Section 2 introduces the digital
twin construction for the power system, and Section 3 proposes the oscillation source local-
ization algorithms, including three parts: acquired signal preprocessing, modal analysis
of oscillation and oscillation source localization. Section 4 develops an oscillation source
location system based on the digital twin platform CloudPSS-Xstuido. Section 5 discusses
the example test results, and the conclusion is provided in Section 6.

2. Digital Twin Construction for Power Systems
2.1. Digital Twin Framework

The concept of digital twin was first proposed by Prof. Michael Grieves of the Uni-
versity of Michigan in 2002. The digital twin makes full use of the physical model, sensor
update, operation history and other data, integrates multi-disciplinary, multi-physical
quantities, multi-scale and multi-probability simulation processes, completes the mapping
in the virtual space, and reflects the whole life cycle of the corresponding physical equip-
ment. Digital twin technology includes the construction of digital space models and various
techniques for simulation, analysis, prediction and control [12]. To realize the access and
management of data sources and business modules of the digital twin, the digital twin
framework shown in Figure 1 is designed [13]. In this, the intelligent perception system
establishes the data interaction between the actual physical system and the digital twin
model; the intelligent application system builds various advanced digital applications
based on the digital twin model.

Through digital twin technology, power systems can be modeled in digital space,
including the establishment of energy systems and auxiliary control system models. On
the one hand, one can analyze the power system on the digital twin. At the same time,
part of the operational data of the power system used in the data-driven intelligence can
be obtained by the digital twin. On the other hand, we can verify the effectiveness of
the control strategy of the power system on the digital twin and then apply it to the real
power system.
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2.2. Construction of Digital Twin Application

Based on the digital twin framework shown in Figure 1, CloudPSS-XStudio, a digital
twin workshop for power systems is established [14], which contains three parts: model
workshop CloudPSS SimStudio, function workshop CloudPSS FuncStudio, and application
workshop CloudPSS AppStudio.

CloudPSS is an electromagnetic transient program (EMTP) based on cloud computing
and has a flexible interface. EMT models are used in the calculation. CloudPSS can generate
EMT simulation projects of large-scale power grids automatically based on electromechan-
ical transient simulation projects or other data. At the same time, an electromagnetic
transient simulation parameter correction method, based on the Gaussian mixture model,
is proposed, and the parameters of the simulation model are dynamically identified and
corrected by using the field data. Based on the two techniques, the digital twin of a power
system is constructed. The CloudPSS-XStudio platform is deployed on a heterogeneous
cloud computing platform [11]. In this paper, it is installed on a server with an I7-12900K
processor and 32G RAM.

In this paper, CloudPSS-XStudio is used to construct a digital twin application for
power system oscillation source localization, and the construction process mainly consists
of the following three steps. First, the simulation model of the system to be studied is
constructed in CloudPSS SimStudio. Second, the data-driven and mechanism fusion oscilla-
tion source localization algorithm and program are encapsulated in CloudPSS FuncStudio.
Third, the User Interface (UI) and visualization interface are designed in CloudPSS AppStu-
dio to show the results of oscillation source localization in FuncStudio. The construction
of the simulation model can be referred to in [15], and the oscillation source localization
algorithm and application construction are described in detail in the following.

3. Oscillation Source Localization Algorithms

There is a need for real-time monitoring and fault location of broadband oscillations in
power systems with new energy access. At the same time, there are some practical problems
in engineering applications, such as the cost of computing hardware, the inconsistency
of Power Management Unit (PMU) sampling frequency, noise interference and data loss,
which may occur in the process of signal acquisition and transmission. Therefore, an
oscillation source location method is proposed, which includes three aspects: oscillation
signal preprocessing, oscillation mode analysis and oscillation source location.
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3.1. Acquired Signal Preprocessing
3.1.1. Generative Adversarial Imputation Network

The data-driven oscillation intelligent localization model requires good oscillation
samples as the training set. However, the field environment of the actual power system is
complex, and system failures or disturbances from the environment may occur in various
processes such as data acquisition, measurement, transmission and conversion. It may
result in uncertainties, such as missing abnormalities of the measurement data, and affect
the robustness and accuracy of the subsequent localization model [16]. In addition, the
sampling frequency of the measurement devices in the actual power system is low and
there may be differences in sampling frequency between different devices. Additionally,
the quality of the actual measurement samples is poor, which is not conducive to the
training of the localization model. Therefore, in this paper, the generative adversarial
imputation network (GAIN) is used to achieve highly accurate repair of missing samples.
At the same time, a super-resolution measurement of broadband oscillation is realized
based on super-resolution (SR) to ensure the synchronization of sampling frequency and
data integrity of broadband oscillation measurement samples, which is convenient for the
subsequent training of positioning models.

In order to solve the problem of missing data, classical mathematical methods, such
as mean completer and multiple imputation, are often applied to reconstruct missing
data. However, these methods ignore the time-series characteristics and correlation of
power system measurement data. The restoration accuracy does not meet the requirements
of engineering applications. In recent years, some studies have utilized emerging deep
learning technology for data restoration, such as residual U-network [17] and generative
adversarial network (GAN) [18]. However, such methods require a complete data sample
for training, and it is difficult to obtain a complete sample in the actual power system, so
the methods above are more limited in engineering applications. In contrast, the GAIN is
an unsupervised learning model based on GAN, which does not require a complete dataset
for training to repair the data [19]. A large number of examples have proved that GAIN
still has a high repair accuracy in the face of the complexity of data with random missing,
continuous missing and noise interference, and its structure is shown in Figure 2.
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Reference [20] describes the specific training process of the GAIN model. Instead of
training on complete data, GAIN uses missing data, as the model’s input and outputs
complete the data after imputation. In the training process, the mask matrix and random
matrix are constructed according to the missing corresponding positions of each element in
the original matrix. Then, the data matrix, random matrix and mask matrix are input into
GAIN; the generator G generates an interpolation matrix to approximate the data matrix,
and the discriminator D combines the hint matrix to distinguish whether each element in
the input matrix is a real element in the data matrix, and outputs the estimated mask matrix.
Through adversarial training, the generator can learn the distribution of real elements in
the data matrix. The objective function is:

min
G

max
D

V(D, G) = EX̂,M,H

[
MT log D

(
X̂, H

)
+ (1−M)T log

(
1− D

(
X̂, H

))]
, (1)

where M is the mask matrix; X̂ is the matrix after interpolation by G; and H is the hint
matrix generated by the hint generator, which provides the discriminator with partial
information about the missing data and helps to strengthen the antagonistic game process
of G and D.

After the training of the GAIN model is completed, the timing data of the oscillation
samples to be repaired are input into the generator of GAIN. The output is the completed
oscillation samples.

3.1.2. Super Resolution Measurement

To cope with the problem of differences between measurement devices with low
sampling frequencies, Super-Resolution [21] is used for the measurement processing of
broadband oscillation samples. It recovers multi-source, low-frequency data with dif-
ferent sampling frequencies to high-frequency data, with a unified sampling frequency
to support more accurate and reliable data analysis, model training, and other possible
application aspects.

When dealing with timing data of broadband oscillation samples, the method can be
summarized as follows:

For a given time period T, the dimension of the low-frequency data l is d, while the
dimension of corresponding high-frequency data h at the reference frequency is αd. The
super-resolution measure mapping is a function: F : Rd → Ra×d . It can be realized by a
deep neural network. The neural network is trained using the mean square error with the
loss function:

L
(
h, h′

)
= ‖h− h′‖2

2 (2)

The network is then optimized by minimizing the loss function:

θ′ = min
θ

L(h, F(l; θ)) = min
θ
‖h− F(l; θ)‖2

2, (3)

where θ is the parameter set of the deep neural network F. Due to the ill-definiteness of
the super-resolution measurement problem, regularization is needed to constrain the
solution. According to the maximum a posteriori estimation, given a low-frequency
sequence l, the corresponding high-frequency sequence h can be estimated by the following
optimization problem:

y′ = min
h
‖Ah− l‖2

2 + Ω(h), (4)

where min
h
‖Ah− l‖2

2 is the distortion measurement term under the Gaussian noise assump-

tion, while Ω(h) represents the regularization term containing prior information. This
equation shows that h’, shown in Equation (2), is a function of the input h and the down-
sampling matrix A. The maximum a posteriori estimated solution for super-resolution
measurements is equivalent to:

y′ = F(l, A; θ) (5)
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When A is fixed, it is equivalent to the super-resolution measurement map constructed
above. This equation shows that the prior information is actually contained in the network
parameter set θ. The deep neural network uses implied prior knowledge to estimate high-
frequency sequences. On the other hand, the proposed deep neural network not only
avoids directly modeling the prior distribution of h, but also transforms the optimization
problem into an inference problem, which improves the computational efficiency.

In (5), the function F is implemented using a deep convolutional neural network (CNN).
Since the goal of the CNN here is to generate high-frequency signals rather than classifica-
tion, it is necessary to design a neural network that can capture the timing relationships of
the data and satisfy the properties of the super-resolution metrology problem. Therefore, in
this paper, based on the super-resolution convolutional neural network (SRCNN) proposed
in the research of image super-resolution [22], its network structure and parameters are
improved to meet the requirements above. Additionally, the computational inefficiency
of the traditional CNN outputting one-dimensional sequential data is solved by adopting
a fully convolutional design and parallel processing method. Finally, by inputting the
low-frequency measurement data into the trained SRCNN and specifying the required
reference sampling frequency, the low-frequency measurement samples can be mapped
to the specified reference frequency. It facilitates subsequent tasks such as broadband
oscillation spectrum analysis and localization model training.

3.2. Modal Analysis of Oscillation

Accurate identification of oscillation modes can obtain the frequency, amplitude and
other information of the oscillation. It provides effective information support for the
subsequent localization of the oscillation source. In this paper, fast Fourier transform
(FFT) is used to process the measured values of PMU to obtain its spectral characteristics.
Therefore, the main oscillation components are judged and the oscillation modes are
identified through it.

Meanwhile, FFT analysis can be used to determine whether the system is experiencing
oscillations. Therefore, the modal analysis in this session can be used as a subsequent
startup criterion for the localization of the oscillation source, avoiding the waste of compu-
tational resources and transmission bandwidth caused by the real-time invocation of the
localization network.

3.3. Oscillation Source Localization
3.3.1. Mechanism and Data-Driven Fusion Methods for Oscillation Source Localization

Considering that traditional oscillation localization methods mostly rely on accurate
mechanism models, they can only be used in limited situations. Their accuracy and gener-
alization ability needs to be improved when dealing with new power system oscillation
localization problems with strong stochasticity and strong nonlinearity. Data-driven artifi-
cial intelligence methods are mostly engineering-oriented [23,24], taking actual electrical
data as input and building neural models to realize localization. They are more efficient but
less mathematically interpretable. Therefore, this paper intends to use the long short-term
memory (LSTM), CNN and other neural network models in the data-driven algorithm, com-
bined with the branch potential energy function, to propose a mechanism and data-driven
fusion oscillation source localization method.

• Oscillation Source Location Method Based on Branch Potential Energy Method

The branch potential method for oscillation localization in power systems is a classical
technique for power system oscillation localization. The core idea is to select a few key
branches in a power system and measure their parameters such as current, voltage and
phase, then calculate their power and potential energy. During the operation of the system,
the potential energy of these branch components will change periodically as the oscillation
occurs [25]. Therefore, it is possible to determine whether the oscillation occurs by the
potential energy change of these branch components.
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The branching potential energy method is briefly described below. To simplify the
analysis, the classical second-order generator model is used to construct the branch-circuit
potential energy function of the system. The rotor equation of motion of the generator is:{ dδ

dt = ω
dω
dt = 1

M [PM − PE(δ)− Dω]
, (6)

where M represents the inertia time constant of the generator, δ represents the rotor angle
of the generator with respect to the infinity system, ω represents the generator electri-
cal angular velocity deviation, PM represents the generator mechanical power, PE repre-
sents the generator electromagnetic power, and D represents the generator mechanical
damping coefficient.

Further, based on the classical second-order model of the generator, we can deduce
the transient energy function of the system specifically by taking the angular frequency of
a node as the reference angular frequency. The relative angular frequency of each node can
be defined as:

∆ωi = ωi −ωref (7)

Based on the system power balance, substituting Equation (7) into the generator rotor
equation of motion, the transient energy function of the system can be obtained as:

V = 1
2

m
∑

i=1
Mi∆ω2

Gi
+

n
∑

k=1

∫ t
t0
(Pk(t)− Ps

k )ωijdt +
∫ t

t0
(PL(t)− Ps

L)∆ωloaddt +
∫ t

t0
(DωN∆ωG

2)dt

= VK + VPb + VL + VD

, (8)

where VK represents the kinetic energy of the system, Vpb represents the sum of the potential
energy of the branch, VL represents the load energy, VD represents the damping energy, P(t)
represents the active power when oscillation occurs on the branch, and PS represents the
active power of the line when the branch is in steady state; the subscript k represents the
branch roads; the subscript L represents the loads; ωij represents the difference in angular
frequency between nodes i and j connected to the branch k; ∆ωG represents the relative
rotational speed of the generator; ∆ωG represents the relative rotational speed of the loads;
∆ωN represents the relative angular frequency of node connected to the loads; n is the
number of nodes of the system, and i is the number of generators in the system.

The branching potential in a network can be defined as:

VPi−j =
∫ t

t0
(Pk(t)− Ps

k )ωijdt, (9)

where PK is the active power of the branch when the oscillation occurs, and PS
K is the active

power of the line when the branch is in the steady state.
Oscillation source localization can be achieved based on the trend of the branch

potential energy time series trajectory. The potential energy of the branch near the center of
oscillation will change substantially [26].

• Data-Driven Oscillation Source Localization Method

In recent years, data-driven oscillation source localization methods are mostly engineering-
oriented, using actual electrical quantity data as their input to build a model to realize localiza-
tion. It can achieve the localization of low-frequency oscillation faults without a mechanism
model. Machine learning-based oscillation source localization methods can effectively ex-
tract and fit the oscillation features by training the network and achieving high localization
accuracy [27].

Deep neural networks contain multiple hidden layers. Based on the backpropagation
algorithm, the network models can extract effective information from the training samples.
In this paper, CNN and LSTM-based branch potential signal localization models are built,
respectively. The hidden layers of them realize feature extraction and data dimensionality
reduction, and the activation function of the output layer is chosen to be the Softmax
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function. The model can realize the localization of the oscillation source unit by inputting
the branch potential signal.

• Oscillation Source Localization Method Based on Mechanism and Data Fusion

In order to combine the advantages of mechanism-based and data-driven oscillation
source localization methods, this paper combines the branch potential energy method with
the data-driven model to build a model. The branch potential energy is used as the model
input to realize the precise location of the oscillation source.

Compared with directly taking the electrical quantity time series as input, the branch
potential energy can better represent the oscillation of the electrical quantity on the line.
Additionally, the branch potential energy function is relatively simple to construct, and the
required information is easier to obtain in actual engineering, which is more economical.
The branch potential energy reflects the energy flow direction and energy size on the line.
When oscillation occurs, the direction of the oscillation source can be inferred from it,
providing effective information for localization, and better training results can be obtained
with data-driven models.

3.3.2. Cross-Validation of Double Solvers

In the oscillation source localization process above, the results obtained by using
different computational models may also be different. It will have a negative impact on
the judgment. For this reason, this paper proposes a cross-validation method. Its specific
process is shown in Figure 3. First, the Kullback–Leibler divergence (KL divergence) of
the distribution results of different oscillation sources and all distribution samples are
calculated separately, and the smallest value is retained; then, the smallest KL divergence
is normalized and transformed into the reliability; finally, the weighted average is used to
obtain the final probability of the distribution of the oscillation sources.
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Figure 3. Cross-validation process.

For a system with a number n of PMUs, each prediction distribution result is calculated
to obtain a total of n KL divergences. In this paper, the minimum value is selected to enter
the next step of normalization. Since KL(p||q) ∈ (1,+∞) , the minimum divergence is
normalized to construct the reliability α, and the expression is shown in Formula (10).

α =
1

min(KL(p||q)) + 1
, (10)

where the KL divergence of the probability distributions P and Q is calculated as follows:

KL(p||q) = Σp(x)logq(x)p(x), (11)

where p(x), q(x) are the distribution functions of the two probability distributions.
From Equation (10), it is shown that α∈(0,1), and the smaller the KL divergence, the

larger α is, that is, the possibility of the corresponding result being correct is also larger,
and vice versa. It is shown that the α obtained after normalization can correctly reflect the
reliability of the results and can be used as valid data for the subsequent process.
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Further, the different results obtained by each algorithm are weighted averaged, using
the α above, to obtain the final oscillation source localization probability distribution. It is
shown in Equation (12):

αsum =
n
∑

i=1
αi

p f inal(x) =
n
∑

i=1

αi
αsum

pi(x)
(12)

where n is the number of solvers, and αi, pi(x) are the reliability and probability distribution
of the ith result, respectively.

Double-solver cross-validation unifies the prediction results of different solvers, im-
proving the accuracy and reliability of the prediction results.

4. Development of an Oscillation Source Location System Based on Digital Twin
Platform CloudPSS-XStuido

Because of the need for real-time monitoring and fault location of power system
oscillation of different modes, the authors decided to develop an oscillation source analysis
and location system for the above needs. At present, a new type of power system software
has been formed, which takes the mode analysis of oscillation and the source location as
the core. Its overall design route is shown in Figure 4.
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This software contains four important functions: example input, oscillation signal
acquisition, oscillation signal analysis and disturbance source analysis. Among them, the
oscillation signal acquisition part and the disturbance source analysis part are involved in
the GAIN in Section 3. CNN and LSTM and other deep learning technologies involve a large
number of computing tasks during local offline training, so TensorFlow, an open-source
deep learning framework developed by Google, is used for development. Based on C++
and CUDA language, TensorFlow realizes low-level computation and parallel computation,
which can perform large-scale matrix computation and vector computation quickly and
efficiently, and facilitate the rapid construction and training of various neural networks.

Further, the user interface of the oscillation analysis and oscillation source localization
system is designed and built based on JavaScript and the CloudPSS XStudio platform.

As shown in Figure 5, users can upload examples on the home page of the software
and observe and analyze the topological structure and electrical parameters. The topology
diagram of the example and the sunburst chart of the electrical parameters are presented in
an interactive form, which is convenient for users to grasp the specific information of the
example. In addition, the results of oscillation analysis and oscillation source location are
reserved in the lower right corner, which is convenient for users to visually observe and
analyze the relationship between calculation examples and oscillation.
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Figure 5. Disturbance source location system home page.

After importing the example, it enters the signal acquisition page, which is shown in
Figure 6, and the user can set the start time of signal acquisition. After it starts, the real-time
measurement signal curve and the current operation status will appear on the left side of
the interface. On the right side of the interface, users can read the pluralities, maximum
and minimum values of the sampling frequencies of all PMUs in the current system, as
well as the sampling frequency of a specified PMU. Next, the reference frequency and
interpolation method can be set according to the user’s needs, and then they can click the
Synchronize button to map the current PMU sampling frequency to the reference sampling
frequency for subsequent use.
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Figure 6. Oscillation signal acquisition page.

After the PMU sampling frequency is unified, spectrum analysis can be performed
on the collected oscillation signals. This page, shown in Figure 7, will display the results
in the form of tables, spectrum diagrams and radar diagrams, and identify the dominant
oscillation mode in the current calculation example.



Electronics 2023, 12, 3603 11 of 18

Electronics 2023, 12, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 6. Oscillation signal acquisition page. 

After the PMU sampling frequency is unified, spectrum analysis can be performed 
on the collected oscillation signals. This page, shown in Figure 7, will display the results 
in the form of tables, spectrum diagrams and radar diagrams, and identify the dominant 
oscillation mode in the current calculation example. 

 
Figure 7. Oscillation mode analysis page. 

After completing the spectrum analysis, click the Branch Potential Calculation on the 
Oscillation Source Location page, which is shown in Figure 8, to output the potential 
curves of each branch for analysis. Then, users can select any two of the four models for 
oscillation source localization to change the level of accuracy, and the results are presented 
in bar charts and distribution probability matrices. 

 
Figure 8. Disturbance source location page. 

Figure 7. Oscillation mode analysis page.

After completing the spectrum analysis, click the Branch Potential Calculation on the
Oscillation Source Location page, which is shown in Figure 8, to output the potential curves
of each branch for analysis. Then, users can select any two of the four models for oscillation
source localization to change the level of accuracy, and the results are presented in bar
charts and distribution probability matrices.
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5. Example Test Results
5.1. Example Introduction

In this paper, a four-machine, two-area system containing a 300 MW direct-drive wind
farm is used for example verification. The topology of the system is shown in Figure 9,
and PMU0 to PMU3 are installed at G1 to G4, respectively. The example is built based
on the CloudPSS SimStudio platform. Different oscillation scenarios are simulated by
setting parameters such as fault type, fault duration, and grounding resistance value. In
each oscillation scenario, the potential energy sequence and power sequence of the four
generator branches are calculated by the energy function. Then, the sequences are input
into the neural network.
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5.2. Data Preprocessing Algorithm Validation Test

First, add different proportions of missing data to the data set of the four-machine
two-area example. Further, select a variety of data restoration algorithms to interpolate
the missing data, and the completed data is compared with the original. The error of data
restoration results by different methods is shown in Table 1. The MSE (Mean Square Error)
and DTW (Dynamic Time Warping) indicators can measure the data repair accuracy from
different angles. It is shown from Table 1 that among the four repair algorithms, MSE and
DTW of GAIN repair results are both the smallest. It indicates that GAIN has the best
repair performance.

Table 1. Comparison of different repair methods.

Loss (%) Method MSE (×10−4) DTW

10
Mean interpolation 47.843 1.289

KNN 4.591 0.411
GAIN 0.782 0.181

20
Mean interpolation 108.252 3.033

KNN 11.625 1.090
GAIN 1.570 0.926

30
Mean interpolation 130.154 4.655

KNN 11.625 1.121
GAIN 1.570 0.091

40
Mean interpolation 216.434 4.759

KNN 28.299 1.182
GAIN 1.584 0.341

5.3. Oscillator Source Localization Algorithm Performance Validation Test
5.3.1. The Results of Localization Based on Branch Potential Energy Function

When low-frequency oscillations occur in the system, the potential energy function
of the branches near each generator is plotted and the results are shown in Figure 10. The
G1-G4 in Figure 10 legend represent branches connected to these four generators, namely
branches 1-6-7, 2-7, 3-12-11, and 4-11.
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As shown from Equation (9), when the generator power on the branch remains
unchanged, the branch potential energy also remains certain. The power angle of each
generator changes during oscillation, resulting in a change in output power, which means
that the oscillation starts at 3 s.

Therefore, it is shown that when the oscillation occurs, the potential energy of the
branches 1-6-7 and 2-7 in the same area decreases to varying degrees. However, the
potential energy of the 2-12-11 and 4-11 lines has not changed significantly. Therefore, it
can be determined that the oscillation source is in branch 1-6-7 and branch 2-7, but the
oscillation source cannot be precisely located.

5.3.2. The Results of Data-Driven Methods

The training process of CNN and LSTM neural networks is tested using the power
sequence of the generator as the input. The training period is set to 150 and the results are
shown in Figures 11 and 12, respectively.
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Figure 11. CNN loss value and accurate value curve under data-driven methods. (a) loss value curve.
(b) accurate value curve.
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The results above show that the accurate value does not improve with the increase in
the training period and stays consistently below 0.8. It indicates that inputting the generator
power sequence into the neural network is unable to pinpoint the source of oscillation.
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5.3.3. The Result of Data-driven Combined with Branch Potential Energy

The training process of CNN and LSTM neural networks is tested using the potential
energy sequence of each generator branch as input. The training period is set to 50 and the
results are shown in Figures 13 and 14, respectively.
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The loss values converged to 0.006 for CNN and 0.04 for LSTM and the accurate values
of both models converged to 1. It indicates that combining the branching potential function
with the data-driven method resulted in a substantial improvement in the localization of
the oscillating source. It takes 1.8980 ms to realize the source identification on the core
processor of Intel I7 12900K and the graphics card of Nvidia RTX 3080.

In order to further verify the validity of the proposed data-driven-mechanism fusion
power system oscillation source localization method, the IEEE-39 test system shown in
Figure 15 [28] is considered in the case studies.
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Figure 15. Schematic diagram of IEEE-39 test system. 

The training period is set to 500 and other test conditions remain unchanged. The test 
results are shown in Figure 16 and Figure 17, respectively. The loss values converged to 
0.0181 for CNN and 0.0894 for LSTM and the accurate values of both models converged 
to 1, too. It proves that our proposed method remains efficient and accurate in more com-
plex power systems. 
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Figure 15. Schematic diagram of IEEE-39 test system.

The training period is set to 500 and other test conditions remain unchanged. The test
results are shown in Figures 16 and 17, respectively. The loss values converged to 0.0181
for CNN and 0.0894 for LSTM and the accurate values of both models converged to 1, too.
It proves that our proposed method remains efficient and accurate in more complex power
systems.
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Figure 15. Schematic diagram of IEEE-39 test system. 

The training period is set to 500 and other test conditions remain unchanged. The test 
results are shown in Figure 16 and Figure 17, respectively. The loss values converged to 
0.0181 for CNN and 0.0894 for LSTM and the accurate values of both models converged 
to 1, too. It proves that our proposed method remains efficient and accurate in more com-
plex power systems. 

  
(a) (b) 

Figure 16. CNN loss value and accurate value curve under data-driven combined with branch
potential energy method, take 39 as an example. (a) loss value curve. (b) accurate value curve.
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Figure 17. LSTM loss value and accurate value curve under data-driven combined with branch
potential energy method, take 39 as an example. (a) loss value curve. (b) accurate value curve.

5.3.4. Comparison and Cross-Validation of the Effectiveness of Different Data-Driven
Methods Combined with Branching Potential Energy

From Figures 13 and 14, it is shown that the accurate value of the CNN converges to
1 in about 20 training cycles, while the accurate value of the LSTM converges to 1 in about
30 training cycles. Therefore, it is concluded that the CNN is more effective than the LSTM.

In addition, the two results can be cross-validated for comparison and confidence
analysis, which is helpful in confirming the accuracy and reliability of localization. The
localization results and reliability indexes are shown in Table 2 below. The results of the
two methods are consistent. It determines that the oscillation source is at PMU0.

Table 2. Functional validation of cross-validation methods.

Solver CNN LSTM Cross-Validation

Reliability 0.999 0.993
Location Result PMU0 PMU0 PMU0

6. Conclusions

In this paper, a digital twin-based solution for power system oscillation source lo-
calization is proposed in response to the complex oscillation problems occurring in new
power systems. It meets the real-time monitoring and fault localization needs of the power
system. A data repair method based on a GAIN network and a measurement method
of oscillation samples based on super-resolution technology are designed, respectively.
They solve the problems of missing data and low and inconsistent sampling frequency of
measurement devices in the actual power system. An intelligent localization algorithm for
the oscillation source is constructed by combining the branch potential function and the
data-driven fusion. Additionally, the corresponding data-driven localization algorithm is
matched for different oscillation modes. They realize the fast and accurate localization of
the oscillation source.
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