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Abstract: Compared to traditional unimodal methods, multimodal audio-visual correspondence
learning has many advantages in the field of video understanding, but it also faces significant
challenges. In order to fully utilize the feature information from both modalities, we needs to ensure
accurate alignment of the semantic information from each modality, rather than simply concatenating
them together. This requires consideration of how to design fusion networks that can better perform
this task. Current algorithms heavily rely on the network’s output results for sound-object localization
while neglecting the potential issue of suppressed feature information due to the internal structure
of the network. Thus, we propose a sound promotion method (SPM), a self-supervised framework
that aims to increase the contribution of voices to produce better performance of the audiovisual
learning. We first cluster the audio separately to generate pseudo-labels and then use the clusters
to train the backbone of audio. Finally, we explore the impact of our method to several existing
approaches on MUSIC datasets and the results prove that our proposed method is able to produce
better performance.

Keywords: audiovisual learning; self-supervised; sound localization; multi-model

1. Introduction

As humans, we not only perceive the world through vision, but also use hearing,
tasting, touching, etc. If only an image is provided, the existing algorithm can already meet
most of people’s needs, such as object category recognition, action understanding, text
translation, etc. But if a video is provided, the original research in the field of single-modal
images cannot cover the understanding of the video well, because the video has not only
one more time dimension than the image, but also additional sound information, and
the image and sound in the video are naturally corresponding, which is the key to join them
in our network. Therefore, audio-visual correspondence learning is gradually separated
from the original image field and sound field, and combined into a new research direction.
Now, with the influx of a large number of researchers, this direction also has many branches,
such as speaker separation [1–4], sound source localization [5–7], speech recognition [8–11],
audio-visual retrieval [12,13], etc.

In this paper, we focus on the problem of sound source localization [14] which has
recently become one of the mainstream research projects of Audio-Visual Learning (AVL),
because we believe that the accuracy of the sound localization reflects the network’s
learning of the video. In addition, since there are various unlabeled videos on the In-
ternet, the common starting point of recent work is to learn the position information of
the sound in the video in a self-supervised or weakly supervised way. The earlier works
feed information from both modalities into the same network [5–7,15], like, for example,
Arandjelovic et al. [5], who utilized the audiovisual correspondence (AVC) to find the
sound localization in 2018. Then, Zhao et al. [16] proposed a mix-and-separate approach to
compute the sound of each pixel by an audio synthesizer network, and Senocak et al. [15]
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fused the information of two modalities by using the attention mechanism which can be
applied to supervised or un-supervised learning. In 2019, Hu et al. [17] clustered audio
and visual representations within each modality to calculate similarity through contrastive
learning. In 2021, Lin et al. [18] extended this method by using an iterative contrastive
learning algorithm. Based on this, Chen et al. [19] also proposed a tri-map method to divide
a picture into more detailed positive and negative samples, and in 2022, Song et al. [20] dis-
carded negative samples directly to form a negative-free method and propose a predictive
coding module (PCM) for feature alignment. At the same time, Senocak et al. [21] used
multi-task classification to train the backbone of the audiovisual network.

These methods did localize the sounding object, but they just focus on the image or
the image-to-audio relationship and ignore the audio. According to the conclusion in [21],
the feature extractor obtained through a classification task is applicable to the research on
sound source localization algorithms. Therefore, it can be inferred that the classification
accuracy of the two-modal feature extractor followed by a classifier reflects its contribution
to the final results. Based on this observation, we connected two classifiers after the image
and audio feature extractors, respectively. Through a series of training experiments, it was
found that the classification accuracy of the image channel is approximately 65%, while the
accuracy of the audio classifier is only about 27%. It turns out that the sound itself was not
fully exploited and utilized, which lead to the ambiguity of sound source location. Thus,
different from the aforementioned articles, we propose our sound promotion method (SPM)
which makes the network pay more attention to the audio and obtains a more precise
localization of the sound source. The procedure is as follows: First, since we want to
improve the contribution of audio, we cluster audio information features separately. Then,
we use the pseudo-label of sound to train the backbone of the audio (Figure 1). We freeze
this part and train the whole network, because we find that with the network training,
the entire network focuses on the image level, which makes the audio contribution decline.
Finally, the results indicate that our method greatly improves the accuracy, which proves
the effectiveness of our method.

Figure 1. Sound Promotion Method (SPM) is in the dashed frame: we cluster audio information
features separately. Then, we use the pseudo-label of sound to train the backbone of audio.

As Figure 1 shows, our method mainly includes three key parts: the audio image
feature extraction network, the sound promotion framework and the multi-modal fusion
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framework (AV localization). The audio and image feature extraction networks are designed
using the first five layers of a ResNet-18 model with a residual structure. Considering
that the audio input is a mel-log spectrum, i.e., a one-dimensional signal, the number of
audio channels is set to one in the first layer of the audio extractor. Meanwhile, for image
input, the image frames in the video are randomly selected as input. At the same time,
the image feature extraction network is obtained by pre-training on the ImageNet Datasets,
while the audio feature extraction network uses the sound promotion method (SPM)
proposed in this study which uses sound clustering to generate pseudo-label categories for
training, freezing its parameters and then performing transfer learning. Through these two
feature extraction networks, high-level semantic information of images and sounds can be
obtained. Subsequently, this information is input into the multi-modal fusion framework
for settlement. In this framework, by calculating the cosine similarity between the image
and the sound, and through a sigmoid function, a mask consistent with the size of the
image is generated to obtain the information of the sounding object in the image. Since
images and audio come from the same video, there is a natural correspondence between
them, so they are used as pseudo-labels to supervise the learning network to achieve the
goal of self-supervised learning. In the end, the mask generated by the network is able to
accurately localize the location of the sounding object.

Our main contributions of this work are summarized as follows: (1) We mine the
contribution of audio and image to the results. (2) We propose a novel sound promotion
method (SPM). It clusters the audio separately to generate pseudo-labels and then uses the
clusters to train the backbone of audio. (3) We explore the impact of our method on several
existing approaches on MUSIC datasets [18] which show that our method can improve the
sound source localization.

2. Materials and Methods

The goal of our model is to localize sound sources by increasing the contribution
of voice to the whole network. Most of the existing works [17,19,20,22] are all about
improvement in the field of image, and they do not consider optimizing audio as one of
the modalities to improve network performance.

Different from the aforementioned methods, our method is shown in Figure 1 in
the dashed frame and can be explained as follows. Because our method is validated on
DSOL [23] as the baseline, we first introduce the model of the baseline, and then introduce
our method.

2.1. Audiovisual Model of the Baseline

We obtain visual frames vi and audio spectrogram aj from video clips X = {vi , aj | vi ∈
RC×H×W , aj ∈ RC}; H and W are the spatial size. Then, we obtain their visual feature
representation Vi and audio feature representation Aj through vision embedding fv(·) and
audio embedding fa(·).

Vi = fv(vi), vi ∈ RC×H×W , (1)

Aj = fa
(
aj
)
, aj ∈ RC. (2)

Note that it is regarded as a positive sample that the audio and image are from the
same video, i.e., i = j. Otherwise, when they come from different videos, i.e., i 6= j, the
value is perceived as a negative sample.

In addition, the cosine similarities are computed in Equation (3) by feeding the vision
and audio features, Vi and Aj.

[
cosineij

]
uv =

〈
Aj, [Vi]:uv

〉∥∥Aj
∥∥‖[Vi]:uv‖

, uv ∈ [h]× [w]. (3)
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Then, we use the sigmoid function σ to obtain the mask of sounding object mij
as follows:

mij = σ
((

cosineij − ε
)
/τ
)
, (4)

where ε refers to the thresholding parameter and τ is the temperature. Hence, we can
extract potential object representation Oi which represents the degree of correlation between
audio and video,

Oi = GAP
(
fv(vi) ◦mij

)
, (5)

where GAP is the Global Average Pooling operation and ◦ is the Hadamard product.

2.2. Sound Similar Mining

As we have lots of audio information, clustering is the most efficient way for self-
supervision. We cluster the audio representation Aj obtained through audio embedding
fa(·) to generate pseudo-labels. Then, we use Equation (6) as the criterion for classification
and find the argmax Diµ which denotes the most comparable sound.

Diµ =
{

AT
i Aµ | i ∈ [1, n], µ ∈ [1, k]

}
, (6)

argmax Diµ,

where Aµ are the centroids of k categories, and n refers to the mounts of audio clips.

2.3. Audio Backbone Training

Inspired by [22], where it is demonstrated that the backbone trained by the classifier
can perform well on the sound localization task, we utilize the pseudo-labels of sound to
train our audio embedding layers and freeze this part of parameters in the following training.

And The overall training process of the algorithm is as Algorithm 1 shows.

Algorithm 1: Sound Promotion Method (SPM)
Input: visual frames vi , audio spectrogram aj
Output: sounding object Si

1 Step1:
2 Choose an initial set Aµ of k points as centroids.
3 do
4 Assign each Aj to the nearest centroid based on Equation (6);
5 Recalculate the new centroids by taking the mean of each cluster.
6 while the centroids no longer change;
7 Generate pseudo-labels L for each Aj.
8 Step2:
9 Train the classifier after the audio feature extractor.

10 for e = 1 to n do
11 cls←− g

(
fa
(
aj
))

;
12 Calculate loss l ←− XE(cls, L) ;
13 Update parameters ωt+1 ←− ωt − ∆η.
14 end
15 Step3:
16 Freeze the parameters ω of audio feature extractor and transfer them to the multimodel network.
17 for e = 1 to n do
18 Vi = fv(vi), Aj = fa

(
aj
)
;

19 Calculate
[
cosineij

]
uv, mij and Oi by Equations (3)–(5);

20 Calculate loss and update parameters.
21 end

2.4. Dataset

The MUSIC (Multimodal Sources of Instrument Combinations) dataset [18] contains
714 untrimmed videos of musical solos and duets, covering 11 classes of musical instru-
ments. To demonstrate the effectiveness of our approach, we perform the same job as that
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in the Hu et al. [23] work, where the first five/two videos of each instrument category in
solo/duet are used for testing, and the rest is used for training. Note that some videos are
now not available on YouTube. We finally obtained 422 videos.

3. Results
3.1. Evaluation Metric

We adopt Consensus Intersection over Union (CIoU) and Area Under Curve (AUC)
as the evaluation metrics to quantitatively analyze the results. The annotated bounding
boxes are generated by a Faster RCNN network [24] to evaluate the positioning accuracy
of the algorithm we proposed for the sounding object. The parameters of the Faster R-
CNN model are obtained by training the public datasets, Open Image Datasets. Since
this algorithm studies the detection of sounding objects, the instrument category in the
Open Image Datasets were selected as the training set when training the Faster R-CNN
model. During the training process, 15 musical instrument categories were selected from
the Open Image Datasets, and a total of more than 30,000 images participated in the training
of the Faster R-CNN model. These instrument categories include accordion, banjo, cello,
drum, guitar, harp, harmonica, oboe, piano, saxophone, trombone, trumpet, violin, flute
and horn. These 15 musical instrument categories basically cover the main categories of
common musical instruments, so the target detection model Faster R-CNN trained using
them can accurately identify musical instruments in the video and label relevant regions.
Although these 15 categories do not include all musical instruments, they meet the criteria
for this algorithm test. When detecting potential sounding objects in an actual video scene,
many detection results are obtained. In order to filter out the most valuable results, we only
keep the detection results with a confidence level higher than 90%, and manually clean up
the remaining detection boxes. After such a screening process, the obtained target detection
coordinates basically meet the requirements of the sound source localization test.

CIoU =
∑K

k=1 δk IoUk

∑K
k=1 δk

, (7)

where IoUk is computed by the predicted sounding object area and annotated bounding
box. The indicator is δk = 1 where the object is sounding, otherwise, it is 0.

3.2. Implementation Details

We divide each video equally into one-second clips with no intersection and randomly
sample one image from the divided clips as the visual inputs, which is resized to 256 × 256.
Then, we randomly crop them to a 224 × 224 size. As for audio, the inputs are first re-
sampled into 16 KHz, then translated into a spectrogram via Short Time Fourier Transform
(STFT). Log-Mel projection is performed over the spectrogram to better represent sound
features. The audio and visual input from the same video clip are regarded as a positive
sample. We use lightweight ResNet-18 [25] as audio and visual backbones. Our network is
trained with the Adam optimizer with a learning rate of 10−4. Similar to the baselines [23],
we pretrain the backbone of visual on ImageNet. In addition, we use θ = 0.65, τ = 0.03
and k = 11 as our network’s hyper-parameters. Finally, all these experiments are run on
the computer with a GPU of 3080 10 G, and it takes about three weeks to complete the
training stage.

3.3. Quantitative Results

In this section, we compare our method (SPM) with the existing sound localization on
the MUSIC dataset. First, in Figure 2, we show the reason why we separately improve the
audio contribution. With the increase in training time, the accuracy of the audio classifier
is much lower than that of the image classifier. According to the inference in [22], we
can deduce the classifier performance of sound to show its contribution to the final result
from the side. It was found that the accuracy of the image classifier was approximately
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65%, while the accuracy of the audio classifier was only about 27%. This indicates that
although both audio and images are used as inputs for network training, images contribute
more to the final results, while audio has a lower level of involvement. Through in-depth
analysis, it was discovered that the image feature extraction network, due to its pre-training,
may become stuck in the vicinity of local optima, resulting in the phenomenon of “weak
listening”. Thus, our method works in the freezing of the backbone of audio with a higher
extraction rate to help it better learn the sound features.
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ci
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on
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Figure 2. Category prediction accuracy. The accuracy of the audio classifier increases slowly, and the
speed is far lower than that of the image classifier.

Then, in Figure 3, it can be observed that at the beginning of training, the DSOL
algorithm performs well in overall accuracy because it is only pre-trained on images,
ignoring audio information. However, as training progresses, the accuracy of DSOL starts
oscillating and converges at 94.5%. In contrast, the convergence curve of our method shows
a steady improvement trend. Although the overall accuracy is lower than that of DSOL
at the beginning of training, with an increase in the number of iterations, the proposed
algorithm gradually surpasses the comparative algorithm and ultimately achieves an
accuracy of 96.5%. We believe that the multimodal fusion in the comparative network is
mainly dominated by visual information. When the visual network’s extractor reaches
its limit, the contribution of the audio extractor is lower, resulting in network oscillation.
In contrast, for our algorithm, the audio extractor is frozen, and only the image extractor
and the final classifier are trained. Due to the larger operatable space of image information,
the overall network can progress towards the optimal point, avoiding the oscillation
phenomenon. This indicates that increasing the contribution of audio features can lead to
higher accuracy, bringing the network closer to the global optimum.
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Figure 3. Training precision. Our method is close to the global optimal point.

In Table 1, it is shown that the method we propose outperforms the existing method on
the test set. Due to the lack of data or the use of undisclosed optimization algorithms in the
comparative algorithms during training, we cannot fully reproduce the experimental results
from other papers. Therefore, we can only compare the accuracy provided in the other
papers. Even so, the algorithm we propose still demonstrates better performance. When
the CIoU is set to 0.3, in comparison to the best DSOL algorithm, our method improves
by 2.8 percentage points and significantly surpasses the benchmark results of previous
studies. We hypothesize that because the previous method did not have the operation
like that of our model, the network could not escape from the local optimum when it
converged. After the addition of our method, the network successfully converges to the
better optimum, thereby improving the accuracy.

Table 1. Quantitative results on the MUSIC testset. Note that the CIoU reported in this table is
CIoU@0.3, and our method outperforms the existing method on the test set.

Methods CIoU(0.3) AUC

Sound-of-Pixel [18] 8.1 11.8
Object-Sound [5] 3.7 10.2

DMC [17] 7.0 16.3
DSOL [23] 30.6 22.4

Ours 33.4 24.7

3.4. Qualitative Results

We visualize the prediction results in Figure 4, and we can find that our proposed
method can produce a smaller and more precise heatmap output on the MUSIC dataset.
Even in cases where the comparative algorithms fail to detect musical instruments, the al-
gorithm we propose is still capable of detecting the position of the instruments, further
confirming the effectiveness of our method. We hypothesize that, due to the frozen audio
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network and a large amount of redundant information that can be discarded in the image
field, we keep the audio representation still and the network achieves better effect by
adjusting image learning.

Figure 4. Qualitative Results on MUSIC dataset.

3.5. Alation Study

From the results shown in Figure 5, it can be observed that if only our algorithm
is used for pre-training involving audio, the accuracy of the final network gradually
approaches that of the DSOL algorithm, reaching only a 94.3% accuracy. A deep analysis
of the curve reveals that after the first epoch of training, the accuracy of not freezing
the audio extractor starts to decline compared to that of the proposed algorithm. This is
because the performance of the audio extractor is affected, leading to an overall decrease in
performance. The results eventually converging near the accuracy of DSOL also confirm
the “weak listening” phenomenon mentioned above, where regardless of whether the
audio extractor is involved in pre-training or not, the network tends to be biased towards
visual dominance, suppressing the contribution of audio information. This validates the
effectiveness of our algorithm once again.

The comparative results of the ablation experiments further demonstrate the supe-
riority of the proposed algorithm and emphasize the importance of audio features. It is
necessary to enhance their contribution by freezing the audio extractor in order to achieve
better localization accuracy.
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Figure 5. Ablation study on MUSIC dataset.

3.6. Additional Study

In the current situation, due to the large storage space occupied by large video datasets,
there is no fixed packaging method available for download. Thus, the number of samples
and the distribution of datasets that each person can obtain vary, which leads to biases in
experimental results.

Figure 6 shows the number of samples in each category after removing five test
samples from each category. It can be observed that the accordion, guitar, and cello have 50,
54, and 49 different samples, respectively, while the saxophone and xylophone only have
18 and 30 samples. This significant sample difference inevitably leads to dataset imbalance
and can also affect the accuracy of the final results.

In response to the complexity of multimodal data augmentation, we attempted the
following three experimental approaches to enhance the modal-specific features. By com-
paring these three different data augmentation methods, the optimal strategy can be
determined, and further improvements can be made in the performance and accuracy of
the multimodal sound source localization task.

Method A: Different frames are selected as image inputs within the same video while
still using the original audio corresponding to the video for data augmentation.

Method B: The same frame of the video is selected as the image input, but the most
similar audio to the original audio is found using Equation (6) as a replacement.

Method C: Different frames of the video are used as image inputs, and the most similar
audio is found using Equation (6) as the corresponding audio.

Based on the results shown in Figure 7 and Table 2, the CIoU under the three data
augmentation methods and the comparative results can be observed. In Figure 7, the CIoU
values for different categories under the three methods are depicted. Table 2 provides
detailed data comparisons for the categories with the highest and lowest values, as well as
the overall results.
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Figure 6. Quantity of each category.

For Method A, overall performance is inferior to that of Methods B and Method
C, indicating that augmenting the image with the original audio yields inferior results
compared to replacing the audio. This aligns with the expectations for traditional data aug-
mentation methods, which do not apply well to multimodal tasks. The results demonstrate
that merely enhancing the image while keeping the audio unchanged does not achieve
optimal performance.

In comparison, there is little difference between Method B and Method C, but Method
C slightly outperforms Method B. This suggests that better performance can be achieved
by leveraging the diversity of images and audio and maintaining their correspondence.
Method C, which comprehensively considers the characteristics of both image and audio
in multimodal data augmentation, achieves favorable results.
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Figure 7. Comparisons of all classes.
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Table 2. Comparison of three data enhancement methods.

Methods Accordion Acoustic_Guitar Saxophone Xylophone All _Classes
A 35.0 35.4 33.6 33.7 34.4
B 35.7 36.1 33.8 34.3 35.6
C 36.2 35.8 34.1 34.5 35.8

4. Discussion

We investigate and explore the task of sound source localization in audio-visual
correspondence learning, and we propose a self-supervised sound promotion method
and achieves remarkable results. However, the algorithm we propose still has some
limitations. The following are the issues that are worth further research and discussion:
a. consideration of visual information temporal coherence factor; b. limitations of feature
extraction algorithms. It is hoped that more and more researchers can enter this field to
explore and help make the tasks related to audio-visual correspondence learning more
universal and robust.

5. Conclusions

In this paper, we mine the inherent audiovisual contribution to the result and present a
self-supervised sound promotion method to tackle the problem of low sound contribution.
We validate our method on benchmarks showing great improvement. Experimental results
indicate that our approach does increase the proportion of sound in the result, which
also improves the accuracy of sound localization, as shown in Figure 4. Furthermore, fu-
ture work should put emphasis on the more specific balance between vision and audio,
because we believe in the following: the more balanced, the more accurate.
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