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Abstract: The synset induction task is to automatically cluster semantically identical instances,
which are often represented by texts and images. Previous works mainly consider textual parts,
while ignoring the visual counterparts. However, how to effectively employ the visual information
to enhance the semantic representation for the synset induction is challenging. In this paper, we
propose a Visually Enhanced NeUral Encoder (i.e., VENUE) to learn a multimodal representation
for the synset induction task. The key insight lies in how to construct multimodal representations
through intra-modal and inter-modal interactions among images and text. Specifically, we first
design the visual interaction module through the attention mechanism to capture the correlation
among images. To obtain the multi-granularity textual representations, we fuse the pre-trained tags
and word embeddings. Second, we design a masking module to filter out weakly relevant visual
information. Third, we present a gating module to adaptively regulate the modalities’ contributions
to semantics. A triplet loss is adopted to train the VENUE encoder for learning discriminative
multimodal representations. Then, we perform clustering algorithms on the obtained representations
to induce synsets. To verify our approach, we collect a multimodal dataset, i.e., MMAI-Synset, and
conduct extensive experiments. The experimental results demonstrate that our method outperforms
strong baselines on three groups of evaluation metrics.

Keywords: multi-modality; deep learning; synset induction; clustering

1. Introduction

The task of synset induction is to automatically cluster semantically identical instances,
which are represented by texts and images. Formally, synsets refer to sets of instances having
the same meanings. The synset induction task plays an important role in the domain of
multimodal machine learning [1–3]. Take the image captioning task [4–6] as an example, in
which the machine algorithm attempts to generate a descriptive sentence for a given image.
If the machine algorithm was equipped with a repository of massive multimodal synsets, it
could probably help generate more diverse descriptions. Take another example, there exist
various dishes in a restaurant’s menu. The same dish could have somewhat similar images
but totally different names in different restaurants, especially for Chinese food. Thus, it
would be helpful to build a system for clustering those names. With the recent explosive
growth of web pages, the synset induction task has become more attractive than ever.

Traditionally, the methods of collecting synsets are manually based on public resources
or websites, such as WordNet, Wikipedia, and Baidu Baike. These methods heavily depend
on domain experts and crowd-sourcing. Thus, the traditional methods are too expensive
for discovering synsets and lack generality. Even worse, with the massive increase in web
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users, thousands of novel instances of texts and images continuously emerge. Therefore,
the task of automatically inducing synsets has its challenges.

Most previous studies on the synset induction task are developed from the linguistic
perspective. Given a collection of tags, the synset induction algorithms aim to cluster the
tags such that each cluster refers to identical semantics. These methods can roughly be
grouped into two categories: corpus statistics and patterns based [7–12] and distributional
representation based [13–16]. Those methods generally achieve a promising performance.
However, these approaches from the textual perspective ignore the important contribution
of the visual counterparts of semantics when dealing with the task of synset induction.
Intuitively, the textual tags and the visual counterparts are complementary to semantics.
Social web users often share interesting photos and give them some tag words at the
same time. As shown in Figure 1, the scientific name ‘Helianthus Annuus’ could be
understood easily with the accompanied photos. Thus, the visual counterparts could, to
some extent, enhance the textual tag for semantic representation. To this end, Thomason and
Mooney [17] proposed a multimodal unsupervised clustering method. This method used
pre-trained visual and textual features to cluster multimodal instances, achieving a flexible
clustering capability. However, those previous approaches hardly consider the problem of
noise within visual counterparts for semantics. In other words, some semantically weakly-
relevant images could impair the discriminative capability of semantic representation. In
addition, the varying contributions of visual and textual modalities for semantics should
be paid attention to.

Figure 1. An illustration of multimodal instances. Two synsets, each composed of two instances, are
presented. The top synset is a collection of “four-wheel vehicles”, and the bottom is a collection of
“Turnsole Flowers”. Note that each tag is accompanied by multiple images, for example, the tag “Car”
is accompanied by fifty images in our setting.

To address the aforementioned problems, in this paper, we propose a Visually En-
hanced NeUral Encoder (i.e., VENUE) to learn the multimodal representation for the task of
synset induction. The VENUE encoder mainly consists of four modules: a visual interaction
module, a textual multi-granularity embedding module, a masking module, and a gating
module. Specifically, the visual interaction module emphasizes the intra-modal interac-
tion, which captures the correlation among images to produce attention-weighted visual
representations. The textual multi-granularity embedding module applies a word2vec
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training method to obtain the tag-level and word-level embeddings. Then, we use log-
sum-exp pooling and stacking to generate multi-granularity representations. The masking
module emphasizes the intra-modal interaction, which filters out the semantically weakly-
relevant images. Furthermore, the gating module is designed to fuse visual and textual
representations according to the modalities’ contributions to the semantics. We train our
VENUE encoder by adopting a triplet loss. At last, we use the trained VENUE to extract
the multimodal representations and then perform a clustering algorithm (e.g., k-means) to
induce the synsets. Moreover, to evaluate our proposed method, we collect a large-scale
multimodal dataset, MMAI-Synset, to evaluate the task of synset induction. Briefly, we use
all the phrase tags in the textual synset dataset [14] (only the Wikipedia subset adopted)
to crawl through the corresponding images from the Instagram website. Then, extensive
experiments are conducted on our built MMAI-Synset dataset. The experimental results
show that our proposed method gains significant performance.

Our major contributions are highlighted as follows.

• We propose the VENUE encoder to learn visually-enhanced multimodal representa-
tions for the task of synset induction. The entire network is trained in an end-to-end
fashion with a triplet loss. The learned representations are then used for clustering to
induce the synsets.

• We design the visual interaction and the masking modules to cope with the noise in
images. The former is built by capturing the inter-modal correlations among multiple
images. The latter is built by the inter-modal interaction between visual and textual
modalities. In addition, we design a gating module to regulate the visual and textual
contributions for semantics.

• We collect the MMAI-Synset dataset to evaluate the multimodal synset induction task.
Extensive experiments are conducted to show that our VENUE encoder outperforms
strong baselines on three groups of popular metrics. The MMAI-Synset dataset and
the source code for our experiments are made publicly available for advancing the
multimedia community (https://github.com/cgpeter96/MMAI-synset, accessed on
15 August 2023).

The remainder of this paper is organized as follows. Section 6 provides a concise
review of related works. We define the synset induction task with multimodal data in
Section 2. In Section 3, we formulate our visually enhanced neural encoder, VENUE.
Section 4 describes our experiment settings, including our dataset, evaluation metrics,
and baselines. The experimental results and detailed discussion are reported in Section 5.
Finally, Section 7 gives our conclusions and suggests future directions.

2. Problem Formulation

We formulate the synset induction task. A multimodal instance consists of a tag
t = {w1, w2, · · · , wNT} containing NT words and a visual collection V = {I1, I2, · · · , INV}
containing NV images. Thus, given a set of multimodal instances S = {(V1, t1, ), (V2, t2), · · · ,
(V N, tN)}, which are already illustrated in Figure 1, the task of synset induction aims to deter-
mine which instances belong to identical groups. In other words, the task of synset induction
needs to induce which tags belong to the same synsets. Then, the Synset induction task could
be formulated as follows,

{c1, c2, · · · , cM} = Φ(S; w) (1)

in which, the symbol Φ denotes the entire framework of synset induction, including the
training and inference phases. The symbol w denotes the learnable model parameters. The set
{c1, c2, · · · , cM} denotes the predicted synsets and each synset cm contains a few multimodal
instances.

3. Our Approach

The synset induction procedure using multimodal data consists of two steps. (1) Train-
ing the neural encoder model, VENUE. We feed the sampled triplet instances into our

https://github.com/cgpeter96/MMAI-synset
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VENUE to obtain the multimodal representation model. (2) Inducing the synsets. We use
the trained VENUE model to obtain multimodal representations and then induce synsets
through a clustering algorithm. Our visually enhanced neural encoder VENUE is shown in
Figure 2, in which the top diagram illustrates the training step of VENUE and the bottom
diagram illustrates the inference step of VENUE for synset induction. The VENUE model
consists of a visual interaction module, a multi-granularity embedding module, a masking
module, and a gating module. Next, we explain the details.
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Figure 2. The overview of our proposed VENUE. The top right shows the modules of VENUE.
Our method comprises two steps. First, we train our VENUE on the multimodal instances to learn
multimodal representations during the training phase. Then, we perform a clustering process on
multimodal representations extracted by the proposed VENUE to induce synsets.

3.1. Visual Interaction Module

We design the visual interaction module to deal with the noise in images by modeling
the potential associations between images. The visual interaction module consists of a
representation extractor and an attention mechanism. First, we use a pre-trained CNN net-
work to obtain the image representation v = {v1, v2, · · · , vNV}. The process is formulated
as follows,

v = ResNet
(

I1, I2, . . . , INV

)
(2)

where NV ∈ N+ denotes the total number of images within an instance, v ∈ RNV×DV .
After obtaining the primary visual representation of the image collection, we incor-

porate the attention mechanism to capture the associations between images and generate
visually enhanced representations inspired by [18]. The attention score for the n-th image
is formulated as follows,

an =
expWqvnWT

k vT
n

∑NV
m=1 expWqvmWT

k vT
m

(3)

in which, Wq and W k are learnable parameters for the attention network. Through this
attention operation, we can obtain the attention distribution an over images. Then, we
apply the attention distribution an to visually represent v, obtaining a weighted visual rep-
resentation vatt. In other words, we use the attention module to distinguish the importance
of images within a multimodal instance. Thus, we could improve the discriminative power
of image representations. The process is formulated as follows,

vatt =
NV

∑
n=1

anWvvn (4)

where Wv is the learnable parameter and an denotes the attention score for the n-th image.
This operation is also called self-attention, which computes the response at a position
in a set of images by attending to all elements and taking their weighted average in an
embedding space.
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Then, we apply the residual connection between the weighted visual representation
vatt and the initial visual representation v. The final attention representation vfatt is obtained.
The details are formulated as follows,

vfatt = vatt ⊕ v (5)

in which, the visual representation vfatt ∈ RNV×DV , and the symbol ⊕ denotes the residual
connection. This operation can effectively alleviate the gradient vanishing problem during
training and help the model converge more stably. Thus, we obtain the visually enhanced
representation vfatt through the aforementioned operations.

3.2. Multi-Granularity Embedding Module

In the task of synset induction, the tag is composed of only a few words. For example,
the tags of all four instances in Figure 1 only have one or two words, including Automotive,
Car, Helianthus Annuus, and Sunflowers. To sufficiently utilize the information in the
tag of each instance, we propose the multi-granularity embedding module. This module
obtains the tag-level embedding El and word-level tag embedding Ew through embedding
training methods with different granularity.

Specifically, for the word-level embedding, we adopt the word2vec [19] to train on an
external corpus obtaining the word vector. We first consider the entire tag and then train
the word2vec model in the same way to obtain the tag-level embedding ttle. The process of
obtaining tag-level embedding is formulated as follows,

ttle = El(t) (6)

where the symbol El denotes the embedding layer, which is initialized by a pre-trained
tag-level word2vec, and the embedding ttle ∈ RDT .

For the word-level tag embedding, we apply Ew to generate the corresponding word
vectors {tw

1 , tw
2 , · · · , tw

NT
}. The details are given as follows,{

tw
1 , tw

2 , · · · , tw
NT

}
= Ew(t) = El

(
w1, w2, . . . , wNT

)
(7)

in which, the embedding tw
n ∈ RDT .

Furthermore, for the tags, we note that the pooling scheme would affect their embed-
dings. For one thing, the average pooling treats each dimensionality of the embedding
equally. This would result in a lack of semantic discrimination. In contrast, max pooling
pays more attention to the local signal but cannot represent the comprehensive semantics.
To address this problem, inspired by Pinherio et al. [20], we incorporate the log-sum-
exp pooling (i.e., LSE) to balance the local attention and the global attention. LSE is a
smooth version and convex approximation of the max function. The definition of LSE is
given as follows,

twle = LSE
(

tw
1 , tw

2 .., tw
NT

)
= log

(
NV

∑
i=1

exp
(

r× ti
w

)) 1
r

(8)

where the representation twle ∈ RDT and the factor r is an adjustment parameter that
balances the average pooling and max pooling. The smaller r is, the closer it is to the
average pooling, and the larger r is, the closer it is to the max pooling.

Afterward, we adopt the concatenation operation to fuse tag-level embeddings and
word-level tag embeddings, i.e,

tmge =
[
ttle; twle

]
(9)

where the symbol [; ] denotes the concatenation operation, and the concatenated textual
representation tmge ∈ R2DT .
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3.3. Masking Module

For the multimodal instances, the noise in the images could decrease the effectiveness
of the multimodal representation. In the previous section, we consider intra-modal attention
to improve the visual representation. Here, we consider the inter-modal attention by
designing the masking module to further improve the visual representation.

The masking module takes the output (v f att, tmge) of the visual interaction module
and multi-granularity embedding module as input. We aim to generate strongly-relevant
visual representation vmsk. Specifically, we first perform the dimensionality reduction
operation to obtain compact visual and textual representations vc and tc, respectively. The
formulation of the visual modality is given as follows,

vc = tanh
(

W I
2

(
W I

1v f att + bI
1

)
+ bI

2

)
(10)

where the symbols W I
1 and W I

2 are learnable parameters, and the symbols bI
2 and bI

2 are
bias parameters. The visual representation vc ∈ RDc , in which the symbol Dc denotes the
dimensionality of the compact representation.

Identically, the textual compact representation tc ∈ RDc is formulated as follows,

tc = tanh
(

W T
2

(
W T

1 tmge + bT
1

)
+ bT

2

)
(11)

where the symbols W T
1 and W T

2 are learnable parameters, the symbols bT
1 and bT

2 are
bias parameters.

After obtaining these compact representations, we perform the intra-modal interaction
between modalities to generate the masking vector,

σ(vc, tc) =
1

1 + e−(vc�tc)
(12)

where the output vector has the dimensionality of NV , and the symbol � denotes the
element-wise product. The function of the masking vector takes the form of the Sigmoid
activation function.

Then, we apply the masking vector on the visual representation v f att to filter out the
noise as follows,

vmsk = v f att � σ(vc, tc). (13)

To obtain the global masked visual representation vgmsk, we aggregate all of NV visual
representations vmsk. The process is formulated as follows,

vgmsk =
1

NV

N

∑
j=1

W pvmsk
j (14)

where the symbol W p is the learnable parameter, and the symbol vmsk
j denotes the j-th row

vector in the visual representation vmsk. Through the masking module, we filter out the
noise in the images and further enhance the visual representations for learning semantics
in multimodal instances.

3.4. Gating Module

To further regulate the contributions between visual and textual modalities, we design
a gating module. First, due to the dimensional inconsistency of the multi-granularity
embedding tmge and the other representations, we apply a transform layer to generate the
compact textual representation. This formulation is given as follows,

tpjt = Dropout
(

WP
2

(
WP

1 tmge + bP
1

)
+ bP

2

)
(15)
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where the symbols W P
1 and W P

2 are learnable parameters, and the symbols bP
1 and bP

2 are
the bias parameters. The Dropout denotes the dropout layer, which can forget some neural
units randomly.

Then, we apply a gating operation on the global masked visual representation vgmsk

and the compact textual representation tpjt. Specifically, the gating operation consists of
two parallel fully-connected layers and a Sigmoid activation function. The process is given
as follows,

g = σ
(

W G
1 vgmsk + W G

2 tpjt
)

(16)

where the symbols W G
1 and W G

2 are learnable parameters, and the symbol σ denotes the
Sigmoid function σ(x) = 1/(1 + e−x). The gating vector g is activated by the Sigmoid
function. Its value falls within the interval [0, 1]. We apply the obtained gating vector g onto
the visual representation vgmsk and the textual representation tpjt. The detailed process is
formulated as follows,

vgate = g �
(

W G
3 vgmsk

)
, (17)

and

tgate = (1− g)�
(

W G
4 tpjt

)
, (18)

where the symbols W G
3 and W G

4 are learnable parameters.
Through this process, we regulate the contributions between visual and textual modal-

ities. Thus, we obtain the gated visual representation vgate ∈ RDg and the gated textual
representation tgate ∈ RDg . Finally, we concatenate these two representations vgate and tgate

to produce the final representation o, i.e.,

o =
[
vgate; tgate] (19)

in which o ∈ RDo . The dimensionality of the final representation equals two times that of
the visual representation, i.e., Do = 2Dg. The symbol [; ] denotes the vector concatenation
operation. The final representation is also called multimodal semantic embedding.

3.5. Loss Function and Training Algorithm

In order to train our VENUE encoder, we apply the triplet loss function [21,22] with
multimodal instances as follows,

L =
N

∑
i=1

max
(
0, d+i − d−i + m

)
. (20)

In this equation, the symbol d+ denotes the distance between an anchor and a positive,
and the symbol d− denotes the distance between an anchor and a negative. The symbol m
denotes the margin. The distance metric d is typically defined as a cos distance, i.e.,

cos(x, y) = 1− x · y
‖x‖‖y‖ . (21)

where x and y are the multimodal representations and the value cos(x, y) ∈ [0, 2]. Note
that the cosine distance here differs a little from the commonly used one, which has a
non-negative value. Specifically, we perform a translation of the common cosine function
to make it fit for the margin in the triplet loss. Thus, we can calculate the distances among
triplet instances.

We then collect all aforementioned procedures and the corresponding equations to
build our training algorithm. Specifically, we initialize the model parameters with a
Gaussian distribution, then we proceed as follows. We compute the visually enhanced
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representation and textual multi-granularity embedding from multimodal instances. Then
we compute the visually masked representation with mutlimodal instances interaction.
We compute gated multimodal representations for anchor, positive, and negative samples.
Thus, we calculate the loss and perform gradient descent to update the model parameters.
To make the training process more clear, we show the training procedure in Algorithm 1.

Algorithm 1 Training Algorithm of Our VENUE Model.

Require: multimodal instances S = {(V1, t1, ), ..., (V n, tn)}, learning rate η, iteration
EPOCHS, weights θ, margin m, batch size NB

Ensure: weights θ
1: Initialize weights θ with Gaussian distribution N (0, 1)
2: for epoch← 1 to EPOCHS do
3: mini_batch← batch_generator(S)
4: for idx← 1 to NB do
5: (V a, ta), (V p, tp), (V n, tn)←mini_batch[idx];
6: Compute visual enhanced representation v f att for all instances in a mini-batch

with Equations (2)–(5);
7: Compute textual multi-granularity embedding tmge for all instances in a mini-batch

with Equations (6)–(9);
8: Compute visual masked representation vgmsk for all instances in a mini-batch with

Equations (10)–(14);
9: Compute gated multimodal representation o for all instances in a mini-batch,

including those of anchor, positive and negative samples, oa, op, and on with
Equations (15)–(19);

10: Compute the loss with Equations (20) and (21),
L(θ)← ∑NB

a max
(
0, cos(oa, op)− cos(oa, on) + m

)
11: Update weights with gradient decent, i.e., θ ← θ − η δ

δθL(θ)
12: end for
13: end for

3.6. Inference

With the loss function given by Equation (20), we train our proposed VENUE model.
Then, we use the trained VENUE model to perform inference. This process is illustrated
at the bottom of Figure 2. Specifically, we first utilize the trained VENUE encoder to
extract multimodal representations for a given testing set. The multimodal representations
M ∈ Rn×Do of all testing instances can be obtained, where n is the number of instances
and Do is the dimensionality of multimodal representations. Specifically, we first utilize
the trained VENUE model to extract multimodal representations from the given testing
instance set.

Then, we perform a clustering process on multimodal representations M of all testing
instances, using k-means and hierarchical agglomerative clustering (i.e., HAC). For the k-
means, we choose k rows from multimodal representations M as initialization of clustering
centers and compute the distance between clustering centers and instances to iteratively-
grouped clusters. For the HAC algorithm, we compute the distance matrix between
instances and merge instances one by one with a distance threshold. Finally, the instances
that belong to identical semantics will be grouped into the same clusters, i.e., synsets.

4. Experimental Settings

In this section, we describe our experimental setting. First, we introduce our multi-
modal dataset for synset induction in Section 1 and the three groups of evaluation metrics
in Section 4.2. Second, we report the implementation details of our method in Section 4.3
and describe strong baseline methods to be compared in Section 4.4.
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4.1. Dataset

To evaluate our proposed model, we collect a new multimodal dataset for synset
induction. We describe the details of collecting our MMAI-Synset dataset for evaluation.
Basically, we adopt the Wikipedia text subset of the synset dataset [14] collected by the Uni-
versity of Illinois at Urbana-Champaign. Note that the other two subsets, NYT (New York
Times) and PubMed (Biomedical Literature) were not used because they are more or less
involved in professional domains and are not suitable for data sources. The details about
this dataset are available on the website https://github.com/jmshen1994/SynSetMine-
pytorch/tree/master/data, accessed on 15 August 2023.

To be brief, we used all of the noun phrases in the Wikipedia dataset to crawl their
corresponding images from the Instagram social media website. A few noun phrases, such
as “16_mm_film”, “wt”, and “ph.d.”, were removed because of the insufficient quantity of
corresponding images. Thus, 8509 noun phrases and their corresponding 425,450 images
were obtained. An instance in this dataset is composed of one noun phrase tag and its
corresponding 50 images. Here, we note that the number of images and the textual tags
are imbalanced, which is challenging in our multimodal synset induction. Based on the
division of the noun phrases in the aforementioned work, we divide the entire dataset
into two subsets for training and testing. The training set contains 7833 instances and the
testing set contains 676 instances. Synonyms are the same as the Wikipedia text synset
dataset, which contains 3911 synsets for training and 209 synsets for testing. The statistics
of our collected MMAI-Synset are shown in Table 1. Furthermore, we count the tag length
distribution over the entire dataset. The tag lengths in both the training set and the testing
set are almost the same. The statistics are reported in Table 2.

Table 1. The basic statistics of our MMAI-Synset dataset.

No. Characteristics Quantity

1 # Noun Phrases 8509
2 # Images 425,450
3 # Instances for Training 7833
4 # Instances for Testing 676
5 # Synonyms for Training 3911
6 # Synonyms for Testing 209

Table 2. The tag length distributions in our MMAI-Synset.

Tag Length Training Set (%) Testing Set (%)

1 49.60 46.62
2 37.60 38.80
3 10.50 11.50
4 0.22 0.74

4.2. Metrics

In order to evaluate the performance of our methods, we adopted three groups of
popular evaluation metrics. These metrics are briefly described as follows.

(1) The first group metric (h, c, v) involves entropy [23]. Specifically, the class entropy
of ground-truth C∗ and the predicted synsets C are defined. In addition, their conditional
entropy H(C|C∗) and H(C∗|C) are defined. The homogeneity (i.e., h) represents the degree
that each cluster consists of data points belonging to a single ground-truth class. h is
calculated as follows,

h =

{
1− H(C∗ |C)

H(C∗) if H(C∗) > 0

1 otherwise

https://github.com/jmshen1994/SynSetMine-pytorch/tree/master/data
https://github.com/jmshen1994/SynSetMine-pytorch/tree/master/data
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In contrast, the completeness (i.e., c) refers to the degree that each ground-truth class
consists of instances assigned to a single cluster. c is calculated as follows,

c =

{
1− H(C|C∗)

H(C) if H(C) > 0

1 otherwise

Furthermore, the v-measure (i.e., v) is defined as the harmonic mean of the above
metrics, i.e., v = 2(h× c)/(h + c).

(2) The second group metric (p, r, f ) is based on comparing the membership overlap

between clusters. Specifically, for each cluster Ci in predicted clusters we generate
(
|Ci|

2

)
,

where the cluster |Ci| is the number of instances in the cluster Ci ∈ C. Similarly, for the

ground-truth clusters, we generate
(
|C∗i |

2

)
instances for the cluster C∗i ∈ C∗. Next, precision

(i.e., p) can be defined as the number of common instance pairs between two sets to total
up to the number of pairs in the clusters,

p =
|U(C) ∩U(C∗)|
|U(C)|

where the symbol ∩ denotes the intersection and U(·) denotes the counting operation.
Meanwhile, recall (i.e., r) can be defined as the number of common instance pairs between
the two sets to the total number of pairs in the groundtruth,

r =
|U(C) ∩U(C∗)|
|U(C∗)|

Furthermore, the f 1-score is also defined as the harmonic mean of these above metrics,
i.e., f = 2(p× r)/(p + r).

(3) The third group of metrics, FMI, ARI, and NMI are described as follows. Fowlkes–
Mallows Index (i.e., FMI) [24] is an external evaluation method that is used to determine
the similarity between predicted clusters C and ground-truth clusters C∗. We calculate the
FMI as follows,

FMI =
√

TP
TP + FP

× TP
TP + FN

where the TP denotes the number of pairs of synonym words present in the same cluster
in both C and C∗, FP denotes the number of pairs of synonym words present in the same
cluster in C but not in C∗. FN denotes the number of pairs of synonym words present in
the same cluster in C∗ but not in C. TN denotes the number of pairs which are different
clusters in both C and C∗ clusters.

Adjusted Rand Index (i.e., ARI) [25] computes a similarity measure between two clusters.
This metric considers all pairs of instances and counting that are assigned in the same
or different clusters in the predicted clusters C and ground-truth clusters C∗. The ARI is
computed as follows,

ARI =
RI − E(RI)

max(RI)− E(RI)

in which, RI = (TP + TN)/N and N is the number of an instance. The max denotes the
maximum function and the symbol E denotes the expectation operator.

Normalized Mutual Information (i.e., NMI) [25] calculates the normalized mutual infor-
mation between two cluster assignments, which is used for measuring the degree of fitness
of the two cluster distributions, i.e.,

NMI(Ω, C) = 2× I(Ω; C)
H(Ω) + H(C)
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in which, H(·) denotes the entropy of clusters. The symbol I(Ω; C) denotes the mutual
information between predicted clusters and the groundtruth.

4.3. Implementation Details

In our experiments, we verify our model with three successive steps, including data
pre-processing, model training, and model inference. In our MMAI-Synset dataset, each
multimodal instance consists of 50 images and a textual tag containing a few words. This
results in a huge consumption of computing resources that we cannot afford. To balance
the model implementation requirements with limited computing resources, we adopt the
ResNet for the visual interaction module in VENUE separately. Specifically, we apply the
weakly supervised ResNet101 [26] as the visual backbone, which has been pre-trained in
3.5 billion public Instagram images to extract the primary image representations for images
in the multimodal instance. The dimensionality of image representation DI is set to 2048.
Then, we save the representation as an NPY file. Thus, we build the visual interaction
module under limited computing resources.

In the multi-granularity embedding module, the dimensionality of multi-granularity
embedding DT is set to be 200 and the adjustment factor r in Equation (8) is set to 1.6 em-
pirically. Specifically, we apply the Gensim [27] to obtain the tag-level representations and
the word-level representations. Here, the dimensionality for both of them is 100. In the
masking module, the dimensionality of the compact visual and textual representations Dc
is set to 512. In the gating module, the dimensionalities of the gated visual representation
and the gated textual representation are 512. Thus, the dimensionality of the multimodal
semantic embedding Do is set to 1024.

During the training stage, we build our VENUE model by the PyTorch Framework [28].
We use the RAdam optimizer [29] to optimize the VENUE model with the learning rate
1× 10−4. We apply a more effective technique called the online triplet mining strategy [21]
to accelerate the convergence rate of the model and reduce the training time. Specifically,
we first construct a mini-batch generator that generates at least two instances with identical
labels in each mini-batch. In addition, we use instances of the same labels as anchor
instances and positive instances and randomly select other instances of different labels
as negative instances. In the code implementation, we use matrix operation and mask
technology to quickly implement the online triplet mining strategy. More details are shown
in our code. Our model training environment is an NVIDIA RTX2080Ti installed with
64 GB memory.

During the inference, we apply the VENUE model to extract the multimodal represen-
tation of each instance in the testing set and then apply the clustering algorithm to induce
synsets. In all our experiments, we choose two popular algorithms, k-means and HAC,
for our task. The k-means initializes k different clusters, and the center of each cluster is
calculated using the average of the tag representation contained in the cluster, and the
cluster center is updated until it is stable to generate k clusters. The HAC algorithm treats
each instance as a singleton cluster at the outset. Then, HAC successively merges pairs of
clusters until all clusters have been merged into a single cluster that contains all instances.

4.4. Baseline

We compare our proposed approach with strong baseline methods. These methods
are briefly described as follows.

(1) word2vec + k-means/HAC. This approach takes the pretrained word2vec as the tag
representation and induces synset by the k-means or the HAC algorithm.

(2) CNN + k-means/HAC. This method takes the visual features extracted from the
convolutional neural network (i.e., CNN) and induces synset by the k-means or
HAC algorithms.

(3) [word2vec; CNN] + k-means/HAC. This approach takes the concatenated feature of
the pre-trained word2vec and visual features as input, then induces synset by the
k-means or HAC algorithm.
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(4) SynsetMine [14] is a text-based method. In our experiments, we keep only the textual
parts of multimodal instances, leaving out the visual parts. This method takes the pre-
trained word2vec as a tag representation and then induces synset through a proposed
SynsetMine framework. It builds a classifier to determine whether to merge a new
instance into the current set and then efficiently generates entity synonym sets from a
given tag set. In our experiments, we follow the experimental setting of SynsetMine
and use the pre-trained word2vec provided by the authors to initialize the embedding
layer. Then, we use the textual data to train the SynsetMine model with the supervised
signal. After the training, according to the semantics of words, SynsetMine performs
greedy clustering to induce synset by merging tags one by one.

(5) Infomap [30] is originally proposed for a community detection algorithm https:
//www.mapequation.org/infomap/ (accessed on 15 August 2023) based on the graph
structure and information theoretic approach. This method is widely used in com-
munity detection and synset induction. The basic idea of Infomap is first to generate
a sequence by constructing transition probabilities, random walk on the graph, and
then hierarchically encode the sequence to minimize the objective function. Finally,
Infomap achieves a clustering goal. In our experiment, we first use the pre-trained
word2vec to represent the tag. Then, we construct a graph based on the Euclidean
distance between words and apply the Infomap algorithm to synset induction.

(6) MWSI [17] proposes a multimodal unsupervised clustering method that uses pre-
trained visual and textual features to cluster multimodal instances. To fit our settings,
we use a variant of MWSI without performing synonymy detection. The reason is
that there is no ambiguity problem with our built MMAI-Synset dataset. In partic-
ular, we use the visual and textual features with an early fusion, which is proposed
in MWSI [17]. Then, we obtain the multimodal representations. Finally, we use
the hierarchical clustering algorithm to group the image sets which have identical
meanings.

(7) CLIP (Contrastive Language-Image Pretraining) [31] is a multimodal neural network
pre-trained model. This model is trained on a super large-scale dataset having 400 mil-
lion image-text pairs collected from the Internet. CLIP directly learns the multimodal
semantic correlations from the raw text of images, which leverages a much broader
source of supervision. This pre-trained model can enable the zero-cost transfer of the
model to downstream tasks non-trivially without the need for any dataset-specific
training. With this idea, in our experiments, we directly apply the CLIP model as an
encoder to extract multimodal representations without any modification or training.
We adopt the official version of CLIP https://github.com/openai/CLIP (accessed on
15 August 2023) with the vision transformer image encoder and prompt engineering
such as “a photo of #tag” for text encoding. Then, we perform the HAC algorithm
among the multimodal representations to cluster the target synsets.

5. Results and Analysis

In this section, we report our experimental results. First, we report and analyze the
performance of the proposed VENUE model compared with baseline methods in Section 5.1.
Second, we conduct ablation studies on the modules of the VENUE in Section 5.2. Third,
we report the effect of different parameter configurations in Section 5.3. Finally, we show
some qualitative results of our proposed method in Section 5.4.

5.1. Performance of Synset Induction

We report the experimental results of our VENUE model and the other baselines in
Table 3. First, we note that whether the k-means clustering algorithm or the HAC algorithm
were used, the vision-based methods (i.e., CNN + k-means/HAC) gave the worst results
among all methods. The CNN + k-means method merely obtained 80.38, 85.31, and 82.77
for homogeneity, completeness, and v-measure score, respectively; achieved 16.37, 33.91,
and 22.08 for precision, recall, and f 1-score respectively; and achieved 27.71, 23.56, and

https://www.mapequation.org/infomap/
https://www.mapequation.org/infomap/
https://github.com/openai/CLIP
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82.81 for ARI, FMI, and NMI score, respectively. The vision-based methods only rely on
a pre-trained CNN or a manual visual descriptor, which is difficult to accurately capture
the semantics represented simply based on the visual collection. Moreover, the decrease in
discriminative ability resulted in low performance for vision-based methods.

Table 3. The experimental results of comparison with baseline methods on three groups of evaluation
metrics. The encoders were combined with k-means or HAC clustering algorithms. The scores for all
metrics are shown in percentage (%). The score in boldface means the highest and that of underline is
second place.

Encoder Clustering h c v p r f ARI FMI NMI

word2vec
k-means

89.19 91.22 90.19 39.89 54.70 46.13 45.91 46.71 90.20
CNN 80.38 85.31 82.77 16.37 33.91 22.08 27.71 23.56 82.81

[word2vec; CNN] 83.07 87.18 85.07 22.62 41.58 29.30 28.98 30.67 85.10

word2vec
HAC

90.09 94.65 92.31 36.85 73.14 49.00 48.76 51.96 92.35
CNN 72.50 85.91 78.64 4.44 43.44 8.05 7.46 13.89 78.92

[word2vec; CNN] 85.31 92.09 88.57 22.26 62.99 32.90 32.54 37.45 88.64

SynsetMine [14] - 94.26 91.69 92.96 58.80 55.81 57.26 57.12 57.28 92.97
InfoMap [30] - 98.63 87.07 92.49 69.97 30.56 42.54 42.42 46.24 92.67

MWSI [17] HAC 94.11 93.49 93.80 53.19 66.09 58.94 58.78 59.29 93.80
CLIP [31] HAC 91.48 95.73 93.56 40.86 79.95 54.08 53.86 57.16 93.56

VENUE
k-means 92.53 94.72 93.61 53.60 73.64 62.04 61.89 62.83 93.61

HAC 96.41 93.79 95.08 62.81 67.95 65.28 65.15 65.33 95.08

The text-based methods (i.e., word2vec + k-means /HAC, InfoMap, and SynsetMine)
achieved better performance than the vision-based methods. The word2vec + k-means
achieved 89.19, 91.22, 90.19 for homogeneity, completeness, and v-measure score, respec-
tively; achieved 39.89, 54.70, and 46.13 for precision, recall, and f 1-score, respectively;
and achieved 45.91, 46.71, 90.2 for ARI, FMI, and NMI score, respectively. For the synset
induction task, the textual information is more semantically discriminative than that of
the visual information. Therefore, with an identical clustering algorithm, the performance
of the word2vec + k-means outperformed that of the CNN + k-means. In addition, the
InfoMap outperformed word2vec + k-means with 9.44 on the homogeneity score and 2.47
on the NMI score. The performance benefits from the construction of the word similarity
graph. Moreover, compared with word2vec + k-means, SynsetMine improved the ARI score
by 11.30, the FMI score by 10.57, and the NMI by 2.77. Through modeling the contextual
relations of tags, word2vec learns more synonymous relations than these vision-based
methods. In addition, the use of word2vec and supervision signal in the SynsetMine
increased the representative capability for better performance.

Furthermore, we observed that multimodal methods (i.e., (word2vec; CNN) + k-
means/HAC, MWSI, CLIP, and VENUE) achieved better performance than unimodal (text
or image) methods. For example, the MWSI method achieved 94.11, 93.49, and 93.80 for
homogeneity, completeness, and v-measure scores, respectively; achieved 53.19, 66.09,
and 58.94 for precision, recall, and f 1 scores, respectively; and achieved 58.78, 59.29, and
93.80 for ARI, FMI, and NMI scores, respectively. It is worth mentioning that the recently
proposed CLIP, a multimodal pre-trained encoder, achieved very comparable performance
and gave the best score for the recall metric. This demonstrates that multimodal pre-trained
encoders, such as CLIP, can be utilized for large-scale correlations between text and images.
However, due to the lack of a supervised signal, the previous multimodal representations
are “rough”, leaving room for improvement.

Next, our VENUE + HAC multimodal method outperformed the MWSI method on all
three groups of evaluated metrics. The VENUE + HAC method achieved 96.41, 93.79, and
95.08 for homogeneity, completeness, and v-measure scores, respectively; achieved 62.81,
67.95, and 65.28 for precision, recall, and f 1 scores, respectively; and achieved 65.15, 65.33,
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and 95.08 for ARI, FMI, and NMI scores, respectively. Compared with the CLIP-based
multimodal method, our VENUE + HAC still gained significant improvement. This shows
that our method has a more powerful representation learning capability. For the multimodal
representation based on our VENUE encoder, the HAC clustering outperformed the k-
means. In the collection of synsets, each semantic usually corresponds to only a small
number of instances, as previously shown in Figure 1. For the k-means algorithm, the small
number of instances would decrease the discriminative capability of the cluster centers. In
contrast, the HAC algorithm treats each instance as a singleton cluster and then successively
merges the most similar pairs of clusters. In other words, the HAC algorithm works more
stable for a small number of instances.

To summarize, in general, our VENUE method with k-means and HAC achieves better
performance compared with these strong baselines. To further verify the effectiveness of
the modules in our VENUE encoder, we next conduct thorough ablation studies in the
following section.

5.2. Ablation Studies

In order to show the effectiveness of all modules, we conduct ablation studies on
our proposed VENUE encoder. Specifically, we construct VEVE variants by removing all
combinations of modules to evaluate their performance. All of the experimental results are
reported in Table 4.

Table 4. Ablation studies on the VENUE model. Four variants with k-means and HAC clustering
algorithms are evaluated. The “w/o att” denotes that the visual interaction module is removed from
the VENUE. The “w/o mge” denotes that the multi-granularity embedding module is removed from
the VENUE. The “w/o mask” denotes the masking module is removed from the VENUE. The “w/o
gate” denotes the gating module is removed from the VENUE. The scores in boldface mean the
highest in the corresponding columns.

Encoder Clustering h c v p r f ARI FMI NMI

VENUE (w/o att)

k-means

89.55 90.97 90.26 44.31 54.46 48.86 48.85 49.12 90.26
VENUE (w/o mge) 87.64 89.40 88.52 36.19 47.52 41.09 40.85 41.47 88.52
VENUE (w/o mask) 92.29 93.37 92.83 55.61 64.98 59.93 59.78 60.11 92.83
VENUE (w/o gate) 91.65 93.14 92.39 52.76 65.10 58.28 58.12 58.60 92.39

VENUE 92.53 94.72 93.61 53.60 73.64 62.04 61.89 62.83 93.61

VENUE (w/o att)

HAC

91.33 95.71 93.47 40.70 79.33 53.80 53.58 56.82 93.47
VENUE (w/o mge) 93.16 92.38 92.77 50.25 61.51 55.31 55.14 55.60 92.77
VENUE (w/o mask) 94.96 94.20 94.58 54.51 70.30 61.41 61.25 61.90 94.58
VENUE (w/o gate) 95.13 92.87 93.99 53.73 63.37 58.15 57.99 58.35 93.99

VENUE 96.41 93.79 95.08 62.81 67.95 65.28 65.15 65.33 95.08

Firstly, we notice that the visual interaction module VENUE (w/o att) and the multi-
granularity embedding module VENUE (w/o mge) had a big impact on the performance
of our VENUE model. The scores of these two encoders for all nice metrics decreased
when using both k-means and HAC clustering methods. The visual interaction module
determines the semantic discriminative ability of visual representation, and the multi-
granularity embedding module determines the semantic discriminative ability of the
text representation.

Furthermore, we notice that the masking module VENUE (w/o mask) and the gating
module VENUE (w/o gate) also had an impact on the performance of our VENUE method.
Compared with the VENUE+HAC method, the VENUE (w/o mask) + HAC method had a
drop of 8.30 on precision, 3.87 on f 1-score, 3.90 on ARI score, 3.43 on FMI score, and 0.50 on
NMI score, respectively. However, the VENUE (w/o mask) + HAC method improved by
2.35 for the recall score. The masking module was responsible for those semantically weakly
relevant images. Once some images were masked, the semantically relevant text would
be improved. Thus, the representations obtained using the VENUE model without the
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masking module would lead to a lower precision but a higher score. To further verify the
effectiveness of the masking module, we present some examples in Figure 3. For example,
in the first line, the three images intuitively have weak relevance to the tag “pet”. Thus,
these images evaluated with low scores are filtered out. In other words, our designed
masking module indeed filtered out semantically weakly relevant images.

0.484 0.9830.9820.998 0.976 0.901

pet

0.4750.737 0.972 0.8210.502 0.966

0.3210.960 0.148 0.8270.863 0.607

camp

new jersey 

transit

Figure 3. The visualization of masking module’s effectiveness. Three tags and their accompanying six
images are given. The red rectangles denote that the images need to be masked. The corresponding
scores below all the images indicate the degree of relevance to their tags.

For the VENUE (w/o gate), removing the gating module of the precision score had
a larger effect than on the recall score. The VENUE (w/o gate) + HAC had a drop of
9.08 on the precision score and 4.58 on the recall. This is because the gating module is
responsible for regulating the modalities’ contributions. Thus, the VENUE model without
the gating module would produce a confusing representation, which would lead to a
lower performance.

In addition, we notice that, in general, the HAC algorithm achieves better performance
compared with the k-means algorithm on multiple metrics (i.e., f 1-score, ARI, FMI, and
NMI) with identical encoders. The k-means algorithm needs to obtain the global represen-
tations of the clustering centers by averaging pooled instances, so it has better robustness.
The VENUE + k-means achieved 73.64 for the recall score. The HAC clustering merges
instances with identical semantics iteratively, which is more concerned with the relationship
among instances. Thus, the VENUE + HAC achieved a higher precision score, i.e., 62.81 for
the precision score, 67.95 for the recall score, and 65.28 for the f 1-score. To summarize, the
modules we designed have different contributions to the full VENUE encoder. In our synset
induction task, the VENUE + HAC achieved the best performance for mostly all metrics.

5.3. Model Parameters

The configuration of hidden neural units Dc in the masking module and the number
of output neural units Dg in the gating module plays an important role in the performance
of our VENUE model. In our experiments, we explore the configurations of these two
parameters. We choose the VENUE + HAC method under investigation. The popular three
ARI, FMI, and NMI evaluation metrics are used. We change different configurations of
hidden and output neural units, keeping the other parameters fixed. The number of hidden
neural units was selected from the set {128, 256, 512, 1024, 2048}. The number of output
neural units was selected in the same manner as that of hidden neural units.

The experimental results of various configurations are shown in Figure 4. The NMI
metric varied slightly with the number of hidden neural units and that of the output neural
units. The other two metrics, FMI and NMI, changed similarly with these two parameters.



Electronics 2023, 12, 3521 16 of 21

When the number of the two parameters is less than 512, the model would fail in overfitting
and decrease the model’s generalization ability. When the number of the two parameters is
greater than 512, the model will easily underfit due to the increased parameters. This leads
to the performance decrease of the model in the testing set. When the number of the two
parameters is set to 512, the model achieved the best performance among all configurations.
Thus, we chose this configuration of the two parameters to achieve the best performance.

Figure 4. The model performance with different parameter configurations using the bar chart. The
X-label and Y-label denote the dimensionality of hidden and output neural units, i.e., Dc and Dg,
respectively. The results of the Z-label denote the evaluation index. The three sub-figures from the
left to the right are for ARI, FMI, and NMI indices, respectively. For clarity, the highest scores are
accordingly annotated.

5.4. Qualitative Analysis

In this section, we present some examples of induced synsets using our VENUE model
and the word2vec-based approach with the HAC clustering method in Table 5. In the
table, each row denotes the predicted synsets. Note that the italic examples are the wrong
predictions. The corresponding images for text are omitted for simplicity.

Table 5. Exemplar results given by the synset induction methods, word2vec and VENUE. A pair of
brackets {} denotes a synset. The italic tags are the predicted tags, which are out of the ground truth.
For example, the predicted tag “the_stones” is not in the ground truth synset, oil_paints, old_paint,
oil. The corresponding images are all omitted for clarity.

# Synset Ground Truth Word2Vec VENUE

1 {oil_paints, old_paint, oil} {oil_paints, oil_paint, oil, the_stones} {oil_paints, oil_paint, oil}

2 {king, monarch, queue}
{helena, king, queue}

{king, monarch, queue}
{monarch}

3 {streetcar, tram, trolley_car, trolley}
{trolley_car, trolley, njt} {streetcar, tram, trolley}

{streetcar, cp_rail, cpr, canadian_pacific_railway} {trolley_car, njt}

For the first row, the word2vec+HAC method predicts “oil_paints”, “oil_paint”, and
“the_stone” belonging to the same synset. The “the_stone” denotes the music band, and
the “oil_paints” denotes painting with paint. They both refer to the meaning of the art.
Therefore, this confuses the word2vec + HAC method. But, the VENUE + HAC method
accurately predicts the results. Compared with the word2vec-based method, our method
leverages more multimodal information to help the model distinguish which one is correct.
For the second row, the word2vec + HAC method has a wrong prediction “helana” and a
missing “monarch”. However, the VENUE-based method can correctly make predictions.
For the fourth row, however, the VENUE + HAC method also makes some wrong predic-
tions, such as “trolley_car” and “njt”. In our data, “trolley_car” denotes trains with tracks,
and “njt” denotes a new jersey transit. Thus, “trolley_car” and “njt” have partial similarity
in visual content and text content, which causes confusion for the VENUE model.
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6. Related Work

In this section, we review previous works from two categories, the synset induction
and the multimodal representation for multimodal instances.

6.1. Synset Induction

The task of synset induction is to automatically cluster semantically identical instances.
Most previous works on the synset induction task have been developed from the linguis-
tic perspective. In other words, only a collection of tags is given for clustering identical
semantics. To this end, these methods can roughly be grouped into two categories: cor-
pus statistics and pattern-based methods [7–11] and distributional representation-based
methods [13–16].

As a pioneer work, Turney et al. [7] proposed an unsupervised learning algorithm
with statistical information to recognize synonyms. To address the large-scale data,
Nakashole et al. [8] proposed a pattern-based algorithm to capture the synonyms explicitly
and construct a taxonomy using these synonyms. However, these methods lack semantic
understanding for effectively mining the synsets. Subsequently, Shen et al. [9] proposed a
ranking-based unsupervised ensemble method to expand the synsets, which selected con-
text features for calculating distributional similarity. Qu et al. [10] proposed a framework
that combined distributional features and textual patterns to predict synonym relation.
Zhang et al. [11] built a neural classifier using multiple contexts to determine whether two
entities had a synonym relationship and then discovered synonyms from a free-text corpus
without structured annotations. However, previous methods focus on the patterns, which
cannot effectively capture the semantics of tag words. In order to alleviate the problem,
inspired by the word2vec methods [19,32], the distributional representations have been
incorporated for the synset induction task [13–15]. Mamou et al. [13] presented an end-
to-end workflow to induce synsets, which were based on multi-context word embedding.
Furthermore, Shen et al. [14] proposed a SynsetMine method to learn the holistic semantics
of synset. The learned semantics were then used to mine entity synsets. Wang et al. [15]
proposed a SurfCon method to compute the semantic similarity between words, in which
the surface form, and global context information was used.

The aforementioned linguistic-based methods ignore the contributions of visual infor-
mation for the synset induction task. Fortunately, a few researchers started to notice this
point and use visual information. Yin et al. [33] proposed a framework for clustering the
visual instances by using the latent representation and the sparse coding. Chang et al. [34]
formulated the clustering problem into a pairwise binary classification framework to
determine whether an image pair belongs to the same cluster. Then, they proposed an
adaptive clustering method based on convolutional networks. Furthermore, Thomason
and Mooney [17] proposed a multimodal unsupervised clustering method, which used
pre-trained visual and textual features to cluster multimodal instances. Yao et al. [35] pre-
sented a framework which used images and the accompanying text from the web pages to
mine the same sense in images. Li et al. [36] proposed a single-stage contrastive clustering
method that simultaneously performed instance-level and cluster-level clustering, and
used different levels of contrastive loss guidance models to perform a joint representation
learning in an end-to-end fashion. However, these methods have not explicitly consid-
ered the noise problem in images for semantics, which would impair the discriminative
capability of the learned representations.

6.2. Learning Multimodal Semantic Representation

The key problem of synset induction with multimodal data is how to learn the dis-
criminative multimodal representation. Most previous methods have mainly focused on
the image-text balanced data, such as an image with a descriptive caption. Kiros et al. [37]
proposed a unifying visual-semantic embedding to learn the multimodal representation,
which used the vanilla CNN and Long Short-Term Memory (i.e., LSTM) to learn visual fea-
ture and textual feature, respectively. Furthermore, considering the partial order between
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images and language, Vendrov et al. [38] proposed an order multimodal embedding by
constructing a visual semantic hierarchy mapping. Mao et al. [39] applied the encoder–
decoder framework to learn semantic relationships by using a language model. Inspired by
the Faster R-CNN model [40], Anderson et al. [41] proposed a bottom-up and top-down
combined attention mechanism for a deep understanding of the image-text multimodal
information. Furthermore, very few works have considered image–text unbalanced data,
such as an instance composed of a tag and a collection of images. Kiela et al. [42] proposed a
combination of a pre-trained CNN and a skip-gram language model, which designed CNN-
Max and CNN-Mean to improve the semantic representations of the collection of images.
However, CNN-max and CNN-mean will introduce additional noise in the representation
dimension and impair the semantic representation.

In addition, previous works have implicitly considered the contributions of differ-
ent modalities. Thoma et al. [43] proposed a method for cross-modal knowledge fusion,
which verified that the fusion of modalities in a shared concept space can produce a more
comprehensive representation. Wang et al. [44] built a multimodal model to dynamically
fuse the semantic representations from different modalities according to different types
of words and proposed a dynamic fusion method to assign importance weights to each
modality. Furthermore, Wang et al. [45] designed associative multi-channel autoencoders
to learn the associations between textual and perceptual modalities and fuse these repre-
sentations. Berger et al. [46] proposed a novel computational model of child language
acquisition, which primarily simulates the multimodal manner of children learning mul-
timodal word categorization. To summarize, unbalanced text–image data have seldom
been considered for learning semantic representation. In addition, the difference between
visual and linguistic contributions has insufficiently been addressed for learning semantic
representation. Our work leverages intra-modal and inter-modal interactions to effectively
learn multimodal semantic representations.

7. Conclusions and Future Work

In this paper, we propose a neural encoder named VENUE to learn a visually enhanced
multimodal neural representation for the synset induction. The key insight lies with
multimodal representations through the intra-modal and inter-modal interactions. For the
intra-modal interaction, we use the attention mechanism to capture the correlation among
images. To obtain the multi-granularity textual representations, we fuse pre-trained tags
and word embedding. For the inter-modal interaction, we design a masking module to filter
out the weakly relevant visual information. Furthermore, we present a gating module to
adaptively regulate the modalities’ contributions to semantics. To train the VENUE encoder,
we adopt a triplet loss in an end-to-end fashion. Finally, clustering algorithms, such as
k-means and HAC, are used to induce synsets. Extensive experiments are conducted on our
collected MMAI-Synset. The results show that our proposed method outperforms strong
baselines on three groups of popular metrics.

Nevertheless, there is some interesting work to be investigated in the future. We notice
that existing multimodal synset induction methods pay less attention to very fine-grained
multimodal representation. Therefore, one line of work is to introduce a regional-level
masking mechanism to generate fine-grained multimodal representation. Another line
is to introduce reinforcement learning to narrow the gap between the training objective
and evaluation metrics in the synset induction task. We hope that these two directions
could improve the performance of the multimodal synset induction. Moreover, Multi-
modal Large Language Models (MLLMs) [47]—as a rising research topic—have attracted
various applications. How to apply the MLLMs on our targeted multimodal task is an
interesting problem.
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