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Abstract: This paper proposes a novel unit classification technique to enhance the accuracy of the
conventional pattern multiplication method by taking the mutual coupling effect and edge effect
into consideration. The proposed technique classifies antenna elements into different groups based
on their positions in arrays, specifically corner, edge, and inner groups. By simulating the radiation
patterns of antenna elements with different boundary conditions, the pattern multiplication method
is then used to calculate the radiation pattern of the antenna array based on the simulated results.
Several numerical examples, including a square array, a hexagonal array, and a phased array, are
provided to validate the effectiveness of the proposed method. The numerical results demonstrate
that the proposed method not only reduces the computational time and memory usage but also
significantly improves the accuracy. The proposed method provides a powerful tool for synthesizing
and predicting the radiation pattern of array antennas and offers new avenues for optimizing array
antennas and phased array antennas.
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1. Introduction

Array antennas have gained significant popularity in various modern radio systems,
such as radar and communication systems [1–5]. These systems often require antenna
arrays with high directivity, low sidelobe levels, and wide-angle scanning capabilities [6,7].
Thus, optimizing the design of array antennas is important work in modern electronics
system design [8]. Array antennas consist of multiple elements arranged in specific config-
urations [9,10]. By varying the number of elements, their arrangement, or excitation, the
radiation patterns of various arrays can be generated [11,12].

Currently, full-wave simulation software, including CST, HFSS, and FEKO, is widely
used for calculating the radiation pattern of array antennas [13,14]. However, for large-
scale array antennas, full-wave simulation can be time-consuming and computationally
intensive. The pattern multiplication method [15–17], which will be discussed in detail in
Section 2, offers a simple and efficient approach to calculating the radiation pattern of an
array antenna. Using this method, the radiation pattern of an array is calculated with the
product of the array factor and the element radiation pattern. However, the traditional
pattern multiplication method assumes that the radiation pattern of each antenna element
is unitary. In reality, mutual coupling and edge effects between the antenna elements
in an array introduce deviations from unity element radiation characteristics, leading to
errors when using the traditional multiplication method [18–20]. Therefore, improving the
pattern multiplication method by considering the mutual coupling effect and edge effect
is necessary. The active element pattern (AEP) method has been introduced to address
this issue [21–23]. The AEP has found applications in the synthesis of conformal phased
arrays [24] and the estimation of the antenna mode radar cross-section (AM-RCS) [25]. In
addition to the pattern multiplication method, researchers have proposed other effective
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methods for calculating the radiation pattern of array antennas and phased array antennas.
For instance, the conjugate gradient method has been used to achieve pattern synthesis
for array antennas with arbitrary geometry [26]. In recent years, artificial intelligence
techniques have been employed in the synthesis of array antenna radiation patterns [27,28].

In this study, a new method called the unit classification method is proposed based
on the traditional pattern multiplication method. This method incorporates the mutual
coupling effect and the edge effect to calculate the far-field radiation pattern. Furthermore,
it retains the advantages of the pattern multiplication method, including fast computation
speed and low memory consumption. Several numerical examples, including a square
array with patch antennas, a hexagonal array with patch antennas, and a phased array,
are discussed to validate the effectiveness and versatility of the proposed method. The
numerical results demonstrate the superiority of the proposed method. This paper is
organized as follows: Section 2 provides a detailed explanation of the calculation principle
of the radiation pattern for a planar array based on the pattern multiplication method.
Section 3 presents several numerical examples to validate the effectiveness of our method
by comparing it with full-wave simulations and the traditional multiplication method.
Section 4 presents discussions on the validation and applicable scenario. Finally, Section 5
provides the conclusion, summarizing the findings.

2. Calculation Principle
2.1. Pattern Multiplication Method

The pattern multiplication method is used to calculate the radiation pattern of array
antennas numerically. The process is based on Maxwell’s equations and the principle of
superposition of electromagnetic waves. It begins by solving the electromagnetic field of
the current with a current density of J at any point in free space, using full-wave simulations.
This solution is then applied to each element in the array antenna, considering each element
separately. Finally, the total radiation pattern of the entire array antenna at any point
in free space is obtained by summing up the individual patterns based on the principle
of superposition of waves. For the pattern multiplication method to be effective, the
radiation elements in the array are assumed to be identical and isolated units without
mutual coupling or edge effects considered. Consequently, it is desirable to design the
antenna array with a weak mutual coupling effect and edge effect to enable radiation
pattern calculation using the pattern multiplication method.

A planar array consists of elements arranged in a rectangular grid in the x-y plane,
forming a rectangular plane array of M × N elements, which is the most common form of
planar arrays. Assuming that M elements are distributed along the x-axis with a spacing of
dx, the radiation pattern of the M × 1 array can be expressed as

fax(θ, ϕ) = ∑M
m=1 EPm1 · Am1ej(m−1)(kdx sin θ cos ϕ) (1)

in which EPm1 represents the element pattern and Am1 represents the excitation.
Suppose N elements are distributed along the y-axis with a spacing of dy, and the

radiation pattern of the 1 × N array can be written as

fay(θ, ϕ) =
n=1

∑
N

EP1n · A1nej(n−1)(kdy sin θ sin ϕ) (2)

in which EP1n represents the element pattern and A1n represents the excitation.
The radiation pattern of M × N planar array can be written as

fa(θ, ϕ) = ∑M
m=1 ∑N

n=1

(
EPmn · Amnej(m−1)ψx ej(n−1)ψy

)
(3)

in which ψx = kdx sin θ cos ϕ, ψy = kdy sin θ sin ϕ.
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If the excitation Amn is only related to m when n is set and related to n when m is
set, the excitation Amn can be rewritten as Am1 × A1n. The element pattern EPmn is set to
identical as EP0 for simplification. Then, the radiation function of the M × N planar array
is the product of two one-dimensional radiation functions, which is given by

fa(θ, ϕ) = EP0 ·∑M
m=1 Am1ej(m−1)ψx ·∑N

n=1 A1nej(n−1)ψy (4)

Assuming Am1 = A11ej(m−1)σx and A1n = A11ej(n−1)σy , the radiation pattern function
of the phased array antenna is given by

fa(θ, ϕ) = EP0 · A11 · A11 ∑M
m=1 ej(m−1)ψx+σx ∑N

n=1 ej(n−1)ψy+σy (5)

When the number of array elements is small, the radiation pattern is easy to solve.
However, as the array size increases, the summation process becomes time-consuming. For
uniform grids, the radiation pattern can be calculated fast with the Fast Fourier-Transform
(FFT) method, which has a low time complexity, shortening the solution time.

2.2. Mutual Coupling Effect

In an array, radiation elements are typically coupled by neighboring elements. Mutual
coupling between antennas mainly occurs through three coupling paths: near-field cou-
pling, surface-wave coupling, and far-field coupling. Near-field coupling dominates when
antennas are within their individual near-field regions. The coupling effect strengthens
as the thickness of the substrate increases or the dielectric constant decreases. Near-field
coupling effects attenuate rapidly with increasing grid spacing, typically decreasing by
12–18 dB when the spacing doubles. The surface-wave coupling effect is another important
coupling path that introduces mutual coupling between antennas. The corresponding
coupling effect attenuates slowly as the grid spacing increases, typically decreasing by
only 3 dB when the spacing doubles. The far-field mutual coupling effect is mainly caused
by radiation and can be calculated based on the traveling path of the electromagnetic
waves [29].

2.3. Edge Effect

The presence of adjacent elements induces a current in the radiation field of an antenna
element, altering its radiation pattern compared to an isolated antenna. This mutual
coupling effect results in nonidentical input impedance for elements located at different
positions in the array, leading to differences in radiation patterns. The antenna element
located in the center and the boundary exhibit the largest difference, known as the edge
effect. In practical applications, the finite size of the antenna array leads to an infinite
periodic array that has been truncated on both the E-plane and H-plane. When the antenna
array is transformed from an infinite periodic array to a finite array, the coupling between
elements weakens due to a reduction in the number of elements. Consequently, the elements
most affected by the edge effect tend to be those located at the boundary and corners of
the array. To analyze the edge effect in finite arrays, the semi-infinite period method is
commonly used to obtain the edge effect in E-plane and H-plane truncations for tightly
coupled arrays [30].

3. Numeral Validations

The traditional multiplication method assumes the antenna element to be identical,
bringing errors to the radiation pattern calculation. In the proposed unit classification
method, antenna elements are classified into groups according to their mutual coupling
and edge effect, which is mainly determined by their positions in arrays. By using this
proposed method, radiation pattern calculation can be decomposed into several groups.
The multiplication method can still be used to calculate the radiation pattern of each sub
array with the same antenna element type, and the radiation pattern of the entire array
antenna can be obtained through the summation of the radiation pattern of every sub array.
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This section presents three cases to demonstrate the effectiveness of the unit classifica-
tion technique by comparing it with full-wave simulation and the traditional multiplication
method. All simulations were conducted using CST Studio Suite 2020 on an Ryzen Thread-
ripper 3960X 24-Core Processor operating at 3.79 GHz (manufactured by AMD, CA, USA)

3.1. Classification Method

To demonstrate the classification of the proposed method, a planar antenna array
consisting of 36 identical patch antenna elements with linear polarization was used. The
circular patch antennas, with a radius of 23.2 mm, were placed on a dielectric substrate
with a dielectric constant of 2.33 and a thickness of 2.8 mm. A metal background with a
thickness of 3.5 mm was placed beneath the substrate. The patch antennas operated at
2.4 GHz, and the element spacing was set to 60 mm.

By using the proposed method, the antennas were divided into different categories
based on the mutual coupling and edge effects, as shown in Figure 1. For square arrays, nine
categories were identified: corner type (units 2–5), edge type (units 6–9), and center type
(unit 1). These categories were simulated separately, and the results were used to calculate
the radiation pattern of the antenna array. This method, named the “Unit Classification
Technique”, was compared to the traditional method, which only considered element
radiation by simulating the element with open boundary conditions.
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Several cases are studied and analyzed in the following subsection to validate the
effectiveness and versatility of the proposed method, including a square array, a hexagonal
array, and a phased array with the mentioned patch antenna element.

3.2. Square Array with Patch Antennas

In this case, three methods were used to calculate the far-field radiation pattern of
a square array consisting of 900 elements. This array was simulated using commercial
full-wave software, and the radiation pattern result was obtained. During the simulation
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process, the computational memory usage was 3.42 GB, and the simulation time was
6.25 h. The results obtained from the full-wave simulation were used as a benchmark for
evaluating the traditional method and the proposed method.

The radiation pattern results calculated using the three methods were compared,
which are presented in Figure 2. It was observed that the proposed method showed a
significantly better fit with the full-wave simulation results compared to the traditional
method, especially when θ > 90◦. The directivity result obtained from the full-wave
simulation was 34.20 dB. Taking this as a benchmark, the error of the traditional method
was 0.13 dB, while the error of the proposed method was 0.07 dB. For the back lobe
(θ = 180◦), the error of the traditional method was as high as 18.01 dB, while the error
of the result calculated by the proposed method was only 3.47 dB. These results clearly
demonstrate that the unit classification technique can significantly improve the calculation
accuracy of the radiation pattern of the square antenna array compared to the traditional
multiplication method. Moreover, the proposed technique greatly saves computing time
and reduces the required computing memory. Further details will be discussed in Section 4.
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3.3. Hexagonal Array with Patch Antennas

In the previous case, the radiation pattern of a square array with patch antennas was
calculated and used to compare three methods. Similarly, the proposed method can be
applied to arrays with more irregular contours, such as the hexagonal array shown in
Figure 3a. This regular hexagonal array consists of 10 patch antennas on each side.
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According to the classification principle mentioned earlier, the irregular contours
require a finer division of the antenna elements in the array. In this case, the hexagonal array
with patch antenna is divided into 13 categories. The specific classification is displayed
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in Figure 3a. These 13 different types of antenna units were simulated separately, and
the obtained far-field patterns were used for multiplication calculations. Similar to the
previous example, the full-wave simulation of the hexagonal array is performed, with
the far-field radiation pattern using the traditional method, and the proposed method is
calculated. During the full-wave simulation, the computational memory usage was 977 MB,
and the simulation time was 1.83 h. All the results obtained using the three methods are
shown in Figure 3b. The radiation pattern obtained from the full-wave simulation was
30.17 dB, which was 0.022 dB higher than the results obtained using the proposed method
and 0.054 dB lower than the results obtained using the traditional multiplication method.
For the back lobe, the benchmark directivity was 1.45 dB, and the error of the traditional
method was 11.47 dB. The proposed method reduced the error to 2.05 dB. In this case, the
proposed unit classification technique can be applied to calculate the radiation pattern of
an antenna array with more irregular contours. However, this comes at the expense of a
more detailed classification of the antenna array.

3.4. Phased Array with Patch Antennas

In the previous two examples, all the antenna units in the array were stimulated
equally in phase and amplitude. In this section, a phased array antenna example is studied
to demonstrate the effectiveness of the unit classification technique.

A square antenna array consisting of 100 antenna elements is constructed, with
10 elements on each axis. By adjusting the phase of the excitations, the radiation pat-
tern of this array could be steered. As shown in Figure 4a, the element orders are shown
along the x-axis and y-axis, and the stimulated phase is the values in radius format. The
excitation phase of each antenna was increased by 20 degrees (0.35 radius) along the y-
axis. The calculated radiation pattern results of the phased array using three methods are
shown in Figure 4b. The proposed method can fit the full-wave simulation, especially for
the side lobes. A detailed comparison with the three methods will be presented in the
following section.
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4. Discussion

The computational time and memory usage for three examples using full-wave sim-
ulations and the unit classification method are summarized and provided in Table 1 for
comparison. The mean square error (MSE) values of the calculated directivity for each case
using the traditional multiplication method and the proposed method are also presented in
Table 2.
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Table 1. Computational memory and time of the full-wave simulation and the proposed method.

Method Numerical Examples Memory/GByte Time/Hours

Full-wave Simulation

30 × 30 square array 3.42 6.25

352-element hexagonal array 0.98 1.83

10 × 10 phased array 0.38 0.5

Proposed Method

30 × 30 square array 0.22, ↓ 94% 0.28, ↓ 96%

352-element hexagonal array 0.22, ↓ 76% 0.28, ↓ 85%

10 × 10 phased array 0.22, ↓ 42% 0.28, ↓ 44%

Table 2. MSE of the traditional method and the proposed method according to benchmark.

Method Numerical Examples MSE

Traditional Method

30 × 30 square array 100.30

352-element hexagonal array 109.20

10 × 10 phased array 96.78

Proposed Method

30 × 30 square array 33.85, ↓ 66%

352-element hexagonal array 22.15, ↓ 80%

10 × 10 phased array 32.18, ↓ 67%

The results presented in the tables demonstrate the efficiency and accuracy of the
proposed unit classification technique. The proposed method significantly reduces the
computational time and memory usage compared to full-wave simulation. The proposed
method is particularly advantageous for large-scale cases that require extensive compu-
tational resources. The memory usage can be reduced by 94%, and the computational
time can be reduced by 96% for the 30 × 30 square array. The MSE values of the pro-
posed method are significantly lower than those of the traditional method, indicating that
improved accuracy can be achieved.

Even though the numeral studies were only performed on planar array antennas
with linear polarization, the proposed method still works for non-planar arrays and other
polarizations since it is a general analytical solution. For arrays with circular polarization,
radiation patterns can be obtained with two orthogonal linear polarizations calculated
separately. But, for a non-planar array, mutual coupling between adjacent antennas can be
varied so much that a complicated and finer classification is needed for a more accurate
calculation result.

5. Conclusions

A unit classification technique based on the pattern multiplication method is proposed
for a fast and accurate calculation of the radiation pattern for array antennas. In the
proposed method, antenna elements are classified into groups according to their position
in arrays. Specific antenna elements with different mutual coupling effects and edge effects
are full-wave simulated using different boundaries. The multiplication method is then
adopted to calculate the radiation pattern of array antennas using simulated results for
each antenna element. Three examples are studied, including a square array, a hexagonal
array, and a phased array. The numeral results of the computational time and memory
usage are provided, as well as the MSE values of the calculated directivity. The numeral
study proves that the proposed method significantly improves accuracy while reducing
computational time and memory usage, especially for large-scale arrays. The proposed
method presents a promising approach for the design and optimization of array antennas
in diverse applications. In future research, it would be valuable to investigate the detailed
classification method for different array configurations.
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