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1. Wind Turbine Condition Monitoring in a Nutshell

There is a good probability that wind turbines will emerge as one of the predomi-
nant technologies for electricity production in the upcoming decades. As representative
examples, consider that more electricity has been produced from wind than from natural
gas in the first quarter of 2023 in the U.K. and that the European Commission has set
as an objective that half of the electricity produced in Europe should derive from wind.
Projections indicate that the global wind power capacity is poised to more than double
within a decade [1].

To mitigate the Levelized Cost Of Energy (LCOE), it is imperative to systematically
curtail the costs linked to the utilization of wind energy. Notably, the predominant outlay
in a wind farm project is related to operation and maintenance, which can scale up to
approximately 20–30% of the overall expenses, particularly for offshore installations due to
the intricate on-site accessibility challenges.

Hence, a pivotal avenue of innovation in the realm of wind farms’ O&M pertains
to predictive maintenance strategies [1]. This paradigm primarily encompasses precise
early-stage fault diagnosis, prognostication of impending failure times, and consequential
decision-making aimed at cost minimization. An analysis conducted by [2] reported that
assuming 25% of the generator and gearbox failures timely diagnosed the O&M costs and
the producible energy lost can decrease in the order of 10%.

Unfortunately, effective preventive diagnoses can be challenging to conduct since wind
turbines are complex machines subjected to non-stationary operation conditions. These
harsh conditions may hinder the accuracy of physical models for wind turbine condition
monitoring, which are seldom built, leading to the predominance of data-driven-based
methods in the scientific literature [3].

The adoption of data-driven models is supported by the massive data amount col-
lected by the Supervisory Control And Data Acquisition (SCADA) systems, which are
used for remote control and for monitoring and practically equipping all modern wind
turbines. Particularly, for each wind turbine, modern SCADA systems collect hundreds
of measurements at ten-minute intervals, offering a comprehensive overview of environ-
mental conditions, operational behavior, mechanical responses, thermal trends, electrical
characteristics, and power conversion dynamics. Moreover, based on cost considerations,
modern wind turbines can be outfitted with dedicated Turbine Condition Monitoring
(TCM) systems that measure and record vibrations in critical rotating components. These
systems operate at a sampling frequency that can extend to the order of tens of kHz.

Particularly, the expansion in dataset size promotes advances in the development of
wind turbine condition monitoring methods, which have been mostly based on Machine
Learning (ML) techniques. As an example, more than 700 studies from the 2010–2020
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decade deal with Artificial Intelligence applications for wind turbine condition monitoring
arising from the study conducted by [4]. A common ground characterized by the following
main aspects emerges from the latter study:

• Utilize data depicting normal operational conditions to construct a regression or
classification model.

• Employ a designated testing period to continuously monitor for any deviations from
the established normal behavior.

• If such anomalies are detected, trigger an alarm.

A drawback of these approaches is their heavy reliance on black-box models, which
expose them to a set of potential risks like over-parametrization and limited generality.
However, it is important to note that such concerns are not unique to the wind turbine
condition monitoring domain. Therefore, the researchers’ recent attention to the concepts
of interpretability and explainability is not surprising.

2. The Rise of eXplainable Artificial Intelligence Methods

Interpretability and explainability are closely related concepts, and their demarcation
is not always clear-cut. Interpretability primarily revolves around understanding the
relationship between causes and effects [5], whereas explainability encompasses a broader
notion of how to elucidate the contribution of a model’s parameters in influencing its
output [6].

A comprehensive examination of eXplainable Artificial Intelligence (XAI) techniques
for industrial applications is presented in [7], where they provide a set of guidelines for
constructing XAI-based regression models. Notably, in [7], it is recommended to retain
the physical units of both input and output variables—deviating from the conventional
practice with black-box models—due to their advantageous role in interpreting Shapley
coefficients. Particularly, the computation of the Shapley coefficients [8] is a powerful XAI
technique, which has been recently applied, for example, in [9,10] in the context of wind
turbine condition monitoring.

The utility of Shapley coefficients is pronounced when an output, such as the power
of a wind turbine in this instance, exhibits a multivariate dependence on various input
variables. In the context of [10], solely environmental variables were taken into account,
whereas [9] encompassed a broader range of variables, considering aspects related to
operational behavior, mechanical response, and internal temperatures.

In greater detail, the significance of the Shapley value corresponding to the i-th instance
of the j-th input variable involves quantifying how much the discrepancy between the
model’s estimation and the actual measurement depends on the particular i-th instance of
the j-th covariate. This is practically achieved through Monte Carlo sampling. The predicted
output value is calculated when incorporating all features, and then again when excluding
the j-th variable. The disparity between these two values signifies the contribution of the
j-th input variable to the model’s error, denoted as the Shapley value.

As exemplified in [10], the significance of environmental variables is assessed in terms
of their predictive relevance for wind turbine power. The analysis reveals that wind speed
overwhelmingly holds the most substantial influence, while wind direction, turbulence
intensity, wind shear, and ambient temperature also contribute meaningfully.

On the other hand, in [9], a combination of Sequential Features Selection (SFS) and
computation of the Shapley coefficients is employed for classifying the most important
features in a multivariate data-driven model for the power of a wind turbine. One of the
main peculiarities of this work is the cross-testing workflow on a fleet of similar wind
turbines from a farm, which allows the individuation of anomalous wind turbines and the
corresponding input variables (which means the sub-components of the system) mainly
linked to such anomalies. Particularly, in the conducted case study, incipient faults related
to the hydraulic or electrical control of the blade pitch are highlighted, which had not been
identified using state-of-the-art methods.
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A further experience is outlined in [11], where the employed method is a supervised
implementation of the Variational AutoEncoder (VAE) model. The outcomes of the work
are an indicator of the wind turbine health state, a classifier giving as output the diagnosis,
and a 2D plot that projects the wind turbine system behavior in a low-dimensional repre-
sentation space. The evolution of the wind turbine behavior is therefore an interpretable
trajectory in this 2D space and the Mahalanobis distance is used to compute the statistical
difference between a certain state and the cluster of healthy data. An alarm is possibly
raised through the Exponentially Weighted Moving Average (EWMA) method. The method
is shown to be effective in two test cases: a main bearing degradation and a wind turbine
stop due to icing.

Input variables interpretability is also assessed by using deep learning techniques
as proposed by [12–14]. Particularly, in [12], an interpretable normal-behavior model is
set up for wind turbine condition monitoring by modeling internal temperatures (namely,
the gearbox oil temperature) based on the spatial–temporal attention module and the gated
recurrent unit network (STAGN). The interpretability is given by expressing the spatial–
temporal correlations learned with attention weights, which allow comprehension of the
relation between the working variables (generator speed, impeller speed, active power,
ambient temperature, and grid current) and the target temperature.

In [13], a pattern mining data fusion algorithm is employed for wind turbine condition
monitoring. The general idea is to combine multiple data sources, which are the SCADA-
collected measurements with ten minutes of averaging time and the alarm logs. Test cases
of generator-bearing drive end and non-drive end faults are analyzed. Interpretable rules
for diagnosing the faults are formulated, which are based on conditions on meaningful
SCADA-collected measurements (as, for example, subcomponent temperatures) and on the
operating behavior (which is extracted from the alarm logs).

In [14], data spreading from TCM systems (thus, with high sampling frequency) are
processed for diagnosing wind turbine electromechanical faults. A scalable and lightweight
Convolutional Neural Network (CNN) framework is employed, which can combine data
from a variety of signals collected at the most important wind turbine subcomponents.
The employed interpretability techniques are multidimensional scaling and layer-wise
relevance propagation. These techniques allow for identifying the signal features, which
are relevant for fault identification (alarm raising and subcomponent individuation).

3. Research Directions

The aforementioned review of literature underscores the promising potential of XAI
techniques within the realm of wind turbine systems condition monitoring. In the research
field of wind energy, the current trajectory is undoubtedly data-centric, with a pronounced
emphasis on effective data utilization for predictive maintenance—a significant impend-
ing challenge.

The domain of wind farm management is rich with problem scenarios that entail
establishing relationships between pivotal output parameters and an array of input vari-
ables, spanning diverse categories such as environmental factors, grid-related aspects,
and various machine components. Similar to the scenario involving black-box models,
the formulation of universal methodologies for data-driven, XAI-based wind turbine con-
dition monitoring could prove challenging. Nonetheless, the overarching advantage of
XAI techniques lies in their capacity to elucidate a model’s output, thereby facilitating
the establishment of cause-and-effect relationships. Moreover, the inherent explainability
nurtured through such techniques offers the prospect of transferring knowledge garnered
from successful test cases into a broader context.

Consequently, the potential hazards associated with the proliferation of Machine Learning
literature—particularly the pitfalls of over-parameterization and limited generalization—may
be effectively mitigated through the strategic adoption of XAI methodologies.
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