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Abstract: In deep reinforcement learning, agent exploration still has certain limitations, while low
efficiency exploration further leads to the problem of low sample efficiency. In order to solve the
exploration dilemma caused by white noise interference and the separation derailment problem in
the environment, we present an innovative approach by introducing an intricately honed feature
extraction module to harness the predictive errors, generate intrinsic rewards, and use an ancillary
agent training paradigm that effectively solves the above problems and significantly enhances the
agent’s capacity for comprehensive exploration within environments characterized by sparse reward
distribution. The efficacy of the optimized feature extraction module is substantiated through com-
parative experiments conducted within the arduous exploration problem scenarios often employed
in reinforcement learning investigations. Furthermore, a comprehensive performance analysis of
our method is executed within the esteemed Atari 2600 experimental setting, yielding noteworthy
advancements in performance and showcasing the attainment of superior outcomes in six selected

experimental environments.

Keywords: deep reinforcement learning; feature optimization; auxiliary agent; sample efficiency;
exploration strategy

1. Introduction

In recent times, deep reinforcement learning (DRL) has attained remarkable triumphs
across a diverse range of domains, including Go [1,2], Atari [3], StarCraft [4,5], and Robot [6].
This unequivocally unveils the profound potential of deep reinforcement learning, which
is widely recognized as the most auspicious solution for real-world sequential decision-
making predicaments. However, amid their accomplishments in numerous arenas, one
pivotal quandary persists: the proclivity of the deep reinforcement learning method to be
unduly inefficient with samples [7], necessitating millions of interactions even in ostensibly
uncomplicated game scenarios. For instance, though Agent57 [8] stands as the premier
deep reinforcement learning algorithm capable of surpassing the average human player
across all 57 Atari games, it generally mandates orders of magnitude more interactions
than its human counterpart. The crux of the sample inefficiency quandary lies in achieving
a delicate equilibrium between exploring and exploiting the active quest for uncharted
states and behaviors that hold the promise of yielding elevated rewards and long-term
gains [9], juxtaposed against the knowledge acquired thus far to maximize instantaneous
returns. The key conundrum revolves around how an agent ought to judiciously navigate
the trade-off between venturing into novel actions and selecting the optimal course of
action based on its accrued wisdom. A superlative strategy pertaining to exploration can
effectively unravel the enigmatic realms of the unknown environment, facilitating the
accumulation of informational experience, thereby hastening the agent’s learning pace,
accelerating convergence, eliciting greater rewards, and amplifying the overall performance
of the agent.
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However, current approaches suffer from some problems when uncontrollable Gaus-
sian noise permeates the visual domain, whereby only a minute fraction of the pixel space
actually comprises pertinent, utilitarian imagery. Consequently, the agent’s capacity to
accurately assess the present state is compromised, impeding its ability to select the appro-
priate course of action for exploration. And, regrettably, existing exploration algorithms
persist in exploring while the agent progresses toward the target state, thereby causing a
deviation from the original trajectory and ultimately thwarting the agent’s arrival at the
exploration boundary.

The concept of constructing intrinsic rewards predicated upon predictive models was
originally proposed in 1991. A profoundly intuitive approach entails leveraging forward
dynamic prediction models to generate prediction errors, which can be formally captured
as follows:

flstat) = s <y

where the model takes the present state s; and the current action 4; as inputs, employing
either a linear function or a neural network to approximate the ensuing state s, as
dictated by the environment. This model epitomizes the agent’s aptitude to prognosticate
the consequences of its actions. Naturally, prediction models engender prediction errors
within certain states:

e(st,ar) = |f(st,at) — sp41f3 )

Consequently, these prediction errors, specifically e(s;, a;), can be harnessed to furnish
the agent with an intrinsic reward for exploration. The magnitude of this reward is inversely
correlated with familiarity pertaining to the current state. Higher values of e(s;, a;) signify a
lesser degree of acquaintance, thereby meriting augmented rewards intended to encourage
exploratory endeavors within unfamiliar territories.

For state-finite Markov decision processes, several rudimentary exploration heuristics
are available, such as the epsilon-greedy strategy [10] and entropy regularization [11]. Nev-
ertheless, with the amalgamation of deep learning and reinforcement learning techniques
in recent years, certain methodologies have employed neural networks to evaluate Markov
decision-making strategies. While they have attained remarkable achievements in various
domains, they soon encountered the predicament posed by exceedingly prodigious state
spaces. The traditional approach of storing pertinent information concerning the Markov
decision process via tabulation becomes untenable, owing to the vast number of states
involved. In these instances, conventional exploration strategies fail to yield efficacious
outcomes, as the agent finds itself ensnared within a limited subset of states. Moreover,
reinforcement learning algorithms are meticulously tailored and assessed within simulated
environments replete with dense rewards. However, the real-world milieu is characterized
by a scarcity of rewards, with the agent exclusively updating its policies upon reaping
rewards [12]. Consequently, the agent’s exploration strategy is bestowed with the added
responsibility of adroitly eschewing perilous states, thereby imposing more exacting de-
mands. This necessitates not only astute discernment of sparse rewards but also a cautious
avoidance of hazardous circumstances.

The challenges posed by deep reinforcement learning dilemmas are further com-
pounded as the state-action space burgeons. Consider, for instance, real-world robots
equipped with high-dimensional state inputs like images or high-frequency radar sig-
nals [13], coupled with intricate operations mandating an extensive range of degrees of
freedom. In essence, profound state—action spaces impede the efficacy and robustness of
deep reinforcement learning algorithms. In more complex scenarios, the state-action space
may exhibit a labyrinthine underlying structure, replete with causal dependencies between
states or a prescribed order of access, wherein certain states are accessed with disparate
probabilities. Furthermore, unlike the conventionally investigated continuous or uniformly
distributed action spaces, actions may encompass a combination of discrete and continuous
components. These pragmatic quandaries pose even more formidable challenges to the
realm of efficient exploration.
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Real-world environments often exhibit a high degree of randomness, wherein unfore-
seen elements frequently manifest within both their state and action spaces. To illustrate,
consider the visual observations of a self-driving car [14,15], which may include extraneous
details such as the shifting positions and contours of clouds. In certain exploratory method-
ologies, white noise is commonly employed to generate states of heightened entropy,
infusing the environment with an element of unpredictability [16,17].

Following extensive training, it becomes necessary to diminish the novelty associ-
ated with frequently recurring states, along with the exploration rewards assigned to
them. However, empirical investigations have uncovered a predicament arising in spe-
cific experimental settings, whereby the rapid decay of exploration rewards engenders
additional challenges. For instance, consider a maze game environment composed of
numerous diminutive chambers, wherein the agent consistently respawns within a sin-
gular, distinctive room. Each iteration necessitates the agent’s departure from its initial
confinement, proceeding to explore the wider expanse. Yet, when the number of iterations
surpasses a certain threshold, the exploration reward assigned to the path leading away
from the original room diminishes to such an extent that the agent is incapable of exiting
its initial confinement.

The Go-Explore algorithm [18] encapsulates the aforementioned quandaries and
identifies two fundamental issues plaguing contemporary curiosity-driven exploration
approaches: “separation” and “derailment”. The concept of separation denotes that while
an exploration algorithm can incentivize the agent to traverse uncharted regions of the
state space, it fails to motivate the agent to transcend the boundaries established by prior
exploration rewards and venture toward novel frontiers for continued exploration. A
discernible “separation” exists between the current state and unexplored states. To address
this separation predicament, an intuitive solution emerges promoting the agent to return to
a previously explored state boundary before embarking on exploration anew.

We mainly aim to solve the above-mentioned white noise and separation derailment
problems. By using the optimized feature extraction module and adding auxiliary agents
to form a new training paradigm, we focus on improving the model performance of the
agent in the case of sparse rewards and obvious environmental changes. Through the
improvement of the above method we can make the agent not fall into the exploration
dilemma in the difficult exploration environment and still maintain a better performance.

2. Related Work

In sparse-reward environments, it is often imperative to incorporate intrinsic reward
signals [19] in order to augment the overall reward acquired by the agent, thereby fos-
tering exploration of the environment and eventual attainment of the ultimate objective.
The methods for executing exploration strategies can be broadly categorized into three
types, contingent upon the manner in which the intrinsic rewards are obtained: (1) explo-
ration based on state counting; (2) exploration based on information enhancement; and
(3) exploration based on curiosity rewards.

2.1. Exploration Based on State Counting

Exploration strategies rooted in state counting rely on tallying state—action pairs by
converting these counts into rewards. The UCB algorithm [20] (Upper Confidence Bounds)
stimulates model exploration by selecting the action that maximizes the reward. Con-
trasted with the direct utilization of environmental rewards, the UCB method amplifies
the likelihood of states with fewer visits. The MBIE-EB method [21] (Model-Based Interval
Estimation—-Exploration Bonus) utilizes tables to tabulate state-behavior pairs and con-
sequently appends supplementary reward signals to instigate exploration of states with
scant visitation.

Divergent from the conventional counting-based approach, a pseudo counting tech-
nique based on the state density model [22] has been proposed alongside the UCB frame-
work. The pseudo count is assigned via the construction of a density model, subsequently
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employed to calculate additional rewards. DQN + SR [23] (Deep Q-Network + successor
representation) employs the norm of the successor representation as an intrinsic reward,
showcasing superior performance relative to the density model within continuous spaces.

The aforementioned methodologies aid the training process by incorporating auxil-
iary rewards in the form of state counts alongside the primary environmental rewards.
However, when confronted with a white noise environment, deploying Gaussian noise
devoid of any informative value for learning as a novel state serves to spur the model
towards exploration, inadvertently leading it astray from the intended goal. Our proposed
approach effectively mitigates the issue of white noise through the utilization of an op-
timized feature extraction module, thereby endowing this methodology with enhanced
efficacy in challenging exploration environments.

2.2. Exploration Based on Information Enhancement

The pursuit of information-enriched exploration propels the agent to embark on
its quest by harnessing the intrinsic reward of information gain while diminishing the
allure of random regions. Information gain, a reward bestowed upon the reduction of
environmental uncertainty, serves as their compass. Their objective is to glean novel
insights as they traverse uncharted states, identifying those endowed with greater potential
for information gain as the most coveted destinations.

VIME [24] (Variational Information Maximizing Exploration) aspires for each expe-
dition to amass a bounty of environmental knowledge. This method employs variational
inference within the Bayesian neural network framework to formalize the process of learn-
ing. Hierarchical reinforcement learning [25] partitions the policy into two components, the
primary policy and the sub-policy, wherein the former manipulates the latter, which in turn
dictates the original action. A subsequent approach proposes acquiring the optimal strategy
for the exploration mechanism by solving the alternative Markov decision process [26],
thus ensuring the safety of exploration while attaining an improved exploration strategy.

The aforementioned methods fortify agent training by incorporating information
gain as a supplementary reward during the model learning phase, thereby mitigating
the impact of random states on the agent throughout the training process. Nevertheless,
when confronted with issues of reconnection and derailment, such methodologies prove
inadequate in liberating the agent from the quagmire of learning stagnation and pushing it
towards the frontier of uncharted environments. Our method resolves this quandary by
aiding the agent via collaborative training. With the inclusion of auxiliary rewards, the
arduous aspects of exploration are significantly diminished, affording the agent the means
to engage in superior exploratory endeavors.

2.3. Exploration Based on Curiosity Rewards

Curiosity-based reward exploration entails the formulation of an intrinsic reward
system predicated on calculating the disparity between the predicted state and the real
state, thereby quantifying the prediction error and guiding the agent’s exploration of
the environment.

The ICM module [27] confers intrinsic rewards to the agent based on curiosity, em-
ploying a forward model to forecast forthcoming states and utilizing the disparity between
predicted and actual states as an additional intrinsic reward. ECR [28] (Episodic Curiosity
through Reachability) proposes an intrinsic reward mechanism grounded in episodic reach-
ability, whereby diverse intrinsic rewards are dispensed by comparing the reachability of
the current state with previously encountered states stored in memory.

Our method leverages the contrast between future and predicted states as an intrinsic
reward, optimizing feature embeddings to enhance the model’s predictive capabilities,
while employing an auxiliary agent to circumvent the predicament of agents becoming
disoriented within the environment.
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2.4. Random Distillation Network

In the realm of research pertaining to the exploration algorithm based on prediction
errors, certain scholars have discovered that prediction tasks unrelated to the environmental
dynamics can still facilitate the agent’s expeditions within the said environment. Amongst
these methodologies, Random Network Distillation (RND) [29] stands as an exemplary
representation. The modus operandi of RND involves incorporating a prediction task
independent of the reinforcement learning objective. This entails designing two neural
networks equipped with identical structures for the prediction task:

Target network: denoted as f : S — RF wherein the network parameters @ are ran-
domly initialized and fixed. It receives the current state s; as input and outputs a predeter-
mined value f(s¢).

Prediction network: denoted as f : S — R¥ wherein the network parameters 6 are
randomly initialized. It receives the current state s; as input and produces a corresponding
prediction of the aforementioned fixed value f(s;), namely f(s;).

The procedure unfolds as follows: predicting the target network f(s) by evaluating the
network f(s). For any given state s; in time, the final outcome f(s) is derived and utilized
as input for the neural network. Subsequently, it undergoes evaluation by the deterministic
function f(s) to obtain the result f(s;). Consequently, the discrepancy between the two
outcomes is quantified as the RND exploration reward under state s, formulated as:

= fs0) = £s0)| ©)

The network error also serves as the loss function for the prediction task, enabling the
update of the neural network f (s|6) throughout said task. Therefore, training the RND model
typically consists of two stages, each corresponding to the prediction task and the reinforce-
ment learning task. The model derived from the prediction task is subsequently employed in
training the reinforcement learning model, with both stages conducted alternately.

This paper’s methodology builds upon the enhancements made to the RND approach.
It introduces an optimized feature extractor to generate an intrinsic reward module, referred
to as ESSRND (Enhanced Self-Supervised Random Network Distillation), which aids in
agent training. Furthermore, it leverages the auxiliary agent training framework (E252RND)
to further enhance the method’s performance.

3. Method

We improve upon RND and propose a new agent training scheme to address the
common derailment problem in intrinsic reward-based exploration methods. The state
feature extraction module is used to model the model observations, and before using the
RND to calculate the intrinsic rewards, similar states can be distinguished to improve
the accuracy of generating intrinsic rewards based on prediction errors. In the training
phase, an auxiliary agent is introduced, and the interaction data with the environment
is generated when the main agent falls into a difficult exploration through trajectory
playback and random exploration. The following sections introduce the exploration model
ESSRND and the agent training framework E25S2RND proposed in this paper from these
two improvement directions.

3.1. ESSRND

We combine the optimized feature extractor with the RND original network to con-
struct a new intrinsic reward generation module ESSRND. First, the feature representation
¢(st) of the current state is obtained through the trained feature extractor. According to the
division of the feature space, in the optimized feature representation, we remove the state
features that the agent cannot control and that do not affect the part of the agent. Then
¢(st) replaces s; as the input of the target network and prediction network in RND. Its
prediction error is calculated and the corresponding exploration reward is generated, as
shown in Formula (4):



Electronics 2023, 12, 3508

6 of 14

= || f(p(sa1)) = flo(si:1) | @

The features of the current state indicate that ¢(s;) cancels the process of rounding up

and down, and uses the LeakeyReLU activation function in the last layer of the embedded
network. The modified feature embedding network module structure is shown in Figure 1.

Tnput:4*84*84 W conv
%, POOL
Leakey
2 Rel.U
Output:1024

Figure 1. Embedded network module structure.

Therefore, the training phase of the prediction task needs to be divided into two
parts: (1) Embedding network update: the interaction data between the agent and the
environment is obtained by sampling from the Replay-Buffer, and the parameter 6, of the
feature embedding network is optimized according to the error of the action prediction; (2)
Prediction network update: the parameter 6. of the embedding network is fixed, and the
parameter 0, of the prediction network is optimized according to the generated exploration
reward error (Formula (4)). The formula of the loss function can be rewritten as:

L(st,a, s¢+1) = NLLLoss(a, a') (5)

The agent training phase is the same as in RND, using RND to generate the intrinsic
reward function, and sampling the update strategy 7 from the Replay-Buffer:

En(st;Gn) [Z(Tt + rlt)
t

By introducing a feature extraction module, the influence of white noise in the original
state space is reduced. And the error prediction of auxiliary tasks is performed in the
optimized feature space, which can better distinguish similar or different states, and the
generated exploration rewards are more meaningful. Thereby this improves the overall
exploration ability and performance of the agent. The overall network model of the
integrated ESSRND is shown in Figure 2.

(6)

Replay-Buffer
(S, gy 7t St41)

—_——— e ———

F@(s))

stgw‘ Embed-network 7t =||f(@(s0) - F(@GE)|

f ((I)(St))

Figure 2. Neural network model of ESSRND.
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3.2. E2S2RND

To address the separation and derailment issues, this paper proposes a novel agent
training framework and combines it with ESSRND. The agent is made to generate ex-
ploration rewards according to the prediction error in the process of interacting with the
environment. When an exploration dilemma occurs, the auxiliary agent is used to interact
with the environment, and the main agent is updated according to the interaction fragments
of the auxiliary agent to optimize its strategy to obtain better results.

The agent training framework (Figure 3) proposed in this paper can be divided into
two stages: In stage one, the original training method is adopted. The agent continuously
interacts with the environment, generates exploration rewards based on prediction errors
through the ESSRND module, stores all interaction data in the Replay-Buffer, and updates
the agent strategy by sampling selected data in the subsequent process. For a state and
trajectory with high novelty, it needs to be stored in the Trajectory-Memory according to the
rules. Trajectory-Memory is a storage space of size M. In the process of interaction between
the agent and the environment, the stored judgment is made according to the following
formula:

Random a,

Environment Auxiliary agents

n=rf+1

Sgr N

St

; i\ (M}
ry > (T’k) ,St & St (7)
k=1
5 i ~

\
/ Phase 1 \ sl
| | [ (ifry <€)
: | Ifrf > min(r,f)g:i, store Trajectoky 7
| Real | |
| cal agent I 6, I Trajectory-Memory
| | l
| ' |
| | |
| | |
| N =1 AT : (l:cpéay;B:ffcr) | ¢ Update 7
: e | & At) e, Se41 l
| 2 l
| | ‘
| | [
| ; |
| ' |

| |

' |
' |
' |
! |
| J

——— e ————— —

Figure 3. The framework of E2S2RND.

Among them, St represents the termination state set. If the exploration reward of the
current state is greater than the minimum value in the storage space, it is added to the
storage space and its action track is recorded.

Phase two starts when the agent receives less reward from the environment than a set
threshold e. In phase two, we use an auxiliary agent for subsequent exploration. First, the
corresponding trajectory is taken out from the Trajectory-Memory, and the auxiliary agent
returns to the exploration boundary s; according to the action trajectory in the memory.
The auxiliary agent performs random exploration in this state and stores the interaction
data in the Replay-Buffer. Here multiple auxiliary agents can be used simultaneously to
interact with the environment. After all the auxiliary agents finish exploring, samples are
drawn from the Replay-Buffer to train the main agent. After the training is completed,
the first stage is restarted, and the two stages are carried out alternately in the subsequent
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training. The entire process of the E2S2RND algorithm proposed in this paper is shown in

Algorithm 1.

Algorithm 1. E252RND

1: Input:

2:

19:

20:
21:
22:
23:
24:

Initialize the parameter 0 of the policy network, the parameter 6, of the embedded network, and predict
the network parameter 0,,.
Initialize Trajectory-Memory, size M;; initialize Replay-Buffer, size M.

. Iteration:

Pre-trained embedded network model;
for each iteration j do {

}

The agent interacts with the environment and collects (s, a¢, 7+, 5¢+1) data based on the current strategy 7;

ifri > <r;<>ifl} then {
Store trajectory and exploration reward information in Trajectory-Memory;

)

if r; < ¢ then {
Start the auxiliary agent, select a trajectory from Trajectory-Memory and backtrack;
Perform random exploration from the exploration boundary, and store the interaction record in the Replay-Buffer;
All auxiliary agents are stopped, and the main agent is trained by sampling from the Replay-Buffer;

J

Store the collected samples in the Replay-Buffer;

if j mod ey pgas = O then {
Sampling from the Replay-Buffer and updating the prediction neural network according to the loss function
of Formula (4);
Sampling from the Replay-Buffer and updating the embedded neural network according to the loss function
of Formula (5);

}

if j mod 71, p4qte = O then {
Sampling from the Replay-Buffer to train the main agent;

}

4. Results

8 of 14

We first verified the effectiveness of the ESSRND algorithm in a random noise maze
environment. The random noise maze is a reinforcement learning environment constructed
based on the pycolab game engine, and it is a typical white noise environment. By testing its
exploration ability in the experimental environment and comparing it with other methods,
it is verified that the ESSRND method can effectively solve the white noise problem and
has better performance for difficult exploration problems. Subsequent experiments were
mainly carried out on the Atari 2600, and were carried out for many of the experimental
environments that were difficult to explore. The performance of the game was mainly tested
in the Montezuma'’s Revenge environment [30], and related hyperparameter experiments
were carried out. The performance of the E2S2RND algorithm was compared and analyzed
through the Atari 2600 experimental environment, and it was verified that the E2S2RND
algorithm trained with an auxiliary agent can effectively improve the agent’s exploration
ability and alleviate the impact of “separation” and “derailment” problems on the agent.

4.1. ESSRND Effectiveness Experiment

Compared with the original RND, we introduced the state feature extraction module
to solve the white noise problem. In order to verify its effectiveness, related experiments
were carried out in the random noise maze experimental environment.

Based on the setting of color transformation, the original state space is not large, but the
probability of visiting two identical states is extremely low, thus transforming this problem
into a difficult exploration problem. The experimental environment is shown in Figure 4.
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T

Figure 4. The random noise maze is a 21 x 21 grid maze, in which the green square represents the
agent, the black represents the passage in the maze, and other colors (including five colors in total)
represent the walls. The maze is regenerated every time it is initialized. The agent can choose four
actions: left, right, up, and down, and the walls of the maze undergo random color changes after each
action. When the agent touches the wall, it directly restarts the next round. (a,b) represent different

moments in the maze.

In the experiment, the ratio of the explored space to the total size of the state space is
used as the evaluation index of the agent’s exploration ability. The experimental results
are shown in Figure 5. Due to the effect of color transformation in the environment, both
the randomly embedded features (blue) and the original RND (green) are trapped in white
noise, and cannot learn an effective policy. Optimizing feature embedding (orange) can
filter out the influence of white noise and increase the exploration utilization rate of the
environment as the number of agent interaction steps increases, allowing the gradual
learning of useful strategies. Our method can effectively alleviate the white noise problem
in the training environment. Compared with random feature embedding and original RND,
ESSRND can not only filter out the environment features irrelevant to the agent through
optimized feature embedding, but also reach convergence.

100 - i ' A - -
Ny 1 2l A Al { Al ..‘J’l“ ‘\l l- ’,’."1’ \/ N/ )
"AY A \{’ W "\ | ' Y
80~ Vi I
< A
8 AJ NIV
2 l '
~ 1 ~ ESSRND 0
] — Random Embedding
g 40- | — Baseline RND !
9
20~ L
WWMWWWMMW
0 s ' ' . - -
0 50,000 100,000 150,000 200,000 250,000

Learner Updates

Figure 5. Experimental result in Random Disco Maze. In the figure, the original RND (green curve:
Baseline RND), random feature embedding (blue curve: Random Embedding) and optimized feature
embedding (orange curve: ESSRND) are used for comparison, where the horizontal axis represents the
number of agent interaction steps, and the vertical axis represents the environment state exploration

utilization.
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The background in the maze environment is changing all the time, which greatly
affects the ability of the agent to judge the path, so the ability of feature extraction is
particularly important. Due to the addition of an optimized feature extraction module in
this paper, the ability of the encoder to extract features has been enhanced, and adding the
intrinsic rewards described in this paper on the basis of environmental rewards can help
the agent to explore better in the maze, and the function convergence is relatively stable
and is not affected by environmental changes.

4.2. E2S2RND Algorithm Performance Experiment

We conducted comparative experiments in the Montezuma'’s Revenge experimental
environment, mainly comparing the performance of E252RND and the original RND
method, and the experimental results are shown in Figure 6. As can be seen from the
figure, our proposed ESSRND method (green) and the auxiliary agent training framework
E252RND (orange) have a significant performance improvement compared to the original
RND method (red). Moreover, the convergence speed of our method during the training
process is also slightly improved compared with the original RND method. E2S2RND has
higher rewards than ESSRND in most parameter update steps, and E252RND maintains a
certain upward trend compared with the peak value of ESSRND. It can be seen that after
applying the E2S2RND algorithm training framework, the performance of the agent is still
subject to a degree of performance improvement.

1200 4
10004
8004
6004

4004

Mean Episodic Return

2001

0 100 200 300 400

Parameter Updates(K)

Figure 6. Experimental results in Montezuma’s Revenge. In the figure, we compare the performance
of four methods, including baseline (blue curve), original RND (red curve), ESSRND optimized fea-
ture embedding (green curve) and E252RND assisted agent algorithm (orange curve). The horizontal
axis represents the number of model parameter update steps, and the vertical axis represents the
average reward during the agent interaction process.

This result can prove that using the auxiliary agent training framework (E2S2RND) for
training on the basis of ESSRND can help the agent understand the derailment problem, jump
out of the predicament, make it better for performing exploration in unknown areas, and
improve the learning ability of the agent. Using this training framework can also increase the
upper learning limit of the agent, so that it can finally achieve better performance.

We also conducted comparative experiments for different methods, and the results are
shown in Table 1. The experimental results of the optimized feature embedding ESSRND
and the auxiliary agent training framework E252RND are all better than the original RND
baseline method. It can be concluded that our method has greatly improved the final
performance of the agent. After using the auxiliary agent framework for training, the
experimental results are better than the ESSRND method without framework training,
and achieve the best performance in the Pitfall, PrivateEye, Montezuma, and Venture
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environments, so our proposed auxiliary agent training framework has a certain role in
difficult exploration environments and can help agents learn more diverse data and then
learn better strategies.

Table 1. Performance comparison experiments on Atari games. Comparative experiments were
carried out on six environments such as Gravitar and Montezuma’s Revenge [30]. Among them,
the original RND algorithm is used as the benchmark for comparison. Avg.Human represents the
average score of humans; ESSRND and E2S2RND are the results of our method. In the experiment,
10 M interactions are performed on each environment.

Pitfall PrivateEye = Gravitar =~ Montezuma  Solaris Venture

RND [29] -3 8666 3906 8152 3282 1859

PPO [31] 0 105 3426 2497 3387 0
Dynamics 0 33 3371 400 3246 1712
R2D2 [32] —0.19 30,345 7090 2666 17,741 1958
NGU [33] 7800 65,600 14,200 8900 4400 1700
Avg.Human 6464 69,571 3351 4753 12,327 1188

ESSRND 8403 58,776 8349 9237 4632 1901
E252RND 9421 83,224 11,274 10,436 5568 1984

The R2D2 method [29] introduces Behavior Transfer (BT), a technique that utilizes pre-
trained policies for exploration. Compared with the R2D2 method, our method is higher
than the R2D2 method except for the experimental results on the Solaris environment.

The NGU method [30] uses the same neural network to simultaneously learn multiple
directed exploration strategies, with different trade-offs between exploration and exploita-
tion. The NGU method still has the best performance in the Gravitar environment, but our
method outperforms the NGU method in the other five environments.

The rewards for the six difficult exploration environments in Atari are relatively sparse.
Since the auxiliary agent framework is used in the training, it can effectively help the main
agent jump out of the current state when encountering exploration difficulties and continue
to perform subsequent exploration steps. When falling into a local optimum during the
loss optimization process, the agent must jump out of the current suboptimal state and try
to reach a better state as much as possible.

4.3. Auxiliary Agent Quantity Experiment

In our proposed framework E252RND, the second training phase uses an auxiliary
agent for random exploration. However, multiple auxiliary agents can be used at the same
time, so we explored the effect of the number of auxiliary agents on the performance of the
main agent, and the experimental results are shown in Figure 7. It can be seen from the
experimental results that the more the auxiliary agents, the better the exploration speed
and final performance of the main agent.

However, in the actual experiment, because the auxiliary agent occupies a large
amount of resources, and due to the limitation of the Replay-Buffer size, too many auxiliary
agents does not improve the final performance. And because there are too many auxiliary
agents, the data in the buffer area may not be updated in time and the auxiliary agents may
lag behind, which may lead to performance fluctuations in the learning process of the main
agent (the orange curve in Figure 7 has down and up swings). Therefore, when choosing
the number of auxiliary agents, many aspects need to be considered.
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Figure 7. Experimental results in Montezuma’s Revenge. We used three numbers of auxiliary agents
for comparative experiments, including 256 agents (orange), 128 agents (green), and 32 agents (blue),
where the horizontal axis represents the model parameter update step, and the vertical axis represents
the average return reward of the main agent.

4.4. Ablation Experiment

Here we also performed a simple ablation of the optimized feature extraction module
and the auxiliary agent training framework in the Montezuma environment, and the
experimental results are shown in Table 2. By comparing with the baseline method RND,
two improvements in this paper are analyzed.

Table 2. Ablation experiments in the Montezuma environment. RND indicates the baseline method,
and the other three are ablated on the basis of RND; ESSRND indicates that only the optimized
feature extraction module is added; “RND + auxiliary agent” indicates that only the auxiliary agent
training framework is used; E2S2RND indicates that the optimized feature extraction module and
auxiliary agent training framework were used. Raise ratio is the percentage improvement compared
to RND.

Montezuma Raise Ratio (%)
RND [29] 8152
ESSRND 9237 13.3
RND + auxiliary agent 8724 7.0
E2S2RND 10,436 28.0

In Table 2, using only the optimized feature extraction module, only using the auxiliary
agent training framework, or using both combined improves the results relative to the
baseline RND by 13.3%, 7.0%, and 28.0%, respectively.

Only using the optimized feature extraction module improves the results by 6.3 per-
centage points compared with only using the auxiliary agent training framework, in which
can be seen that the former contributes more to the method in this paper. Although the
auxiliary agent can alleviate the problem of the exploration dilemma, in the face of the
ever-changing white noise environment, only using the auxiliary agent is far from enough
to solve the impact of the environment changing at any time, and the optimized feature
extraction module can learn from the encoder phase to solve this problem.

And the results of using only one improvement point for the experiment are smaller
than the results of using both at the same time. It can be concluded that although using one
of the parts alone can improve the model effect, the degree of improvement is less than the
combination of the two. Therefore, the two improvements we proposed can both improve
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the performance of the model in difficult exploration environments, and the effect of using
both at the same time is better.

5. Conclusions

We present a novel and sophisticated approach, namely E252RND, which employs an
intricate error prediction mechanism hinged upon finely-tuned features. Additionally, we
harness the power of an auxiliary agent to facilitate comprehensive training. By leveraging
the predictive errors as a means to engender intrinsic rewards, we introduce a ground-
breaking paradigm for refining the exploration methodology plagued by challenges such
as separation and derailment. Through meticulous enhancements to the RND method
coupled with the incorporation of an optimized feature extraction module, we elevate the
resilience of the RND technique against the adversities posed by white noise interferences.
Ultimately, the experimental section substantiates the formidable efficacy of our proposed
method.

Similarly, since our method is mainly used to solve the problem of exploration diffi-
culty in environments with sparse rewards, the results obtained by our method in other
environments with dense rewards are not satisfactory, compared with the current optimal
method. There is a big gap.

In future research, we also plan to extend the method of this paper to reward intensive
environments, so that it can have a larger scope of application and perform well in different
types of environments.
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