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Abstract: The ever-increasing demand for intercity travel, as well as competition among all modes
of transportation, is an unavoidable reality that today’s urban rail transit system must deal with.
To meet this problem, urban railway companies must try to make better use of their existing plans
and resources. Analytical approaches or simulation modeling can be used to develop or change a
rail schedule to reflect the appropriate passenger demand. However, in the case of complex railway
networks with several interlocking zones, analytical methods frequently have drawbacks. The
goal of this article is to create a new simulation-based optimization model for the Bangkok railway
system that takes into account the real assumptions and requirements in the railway system, such
as uncertainty. The common particle swarm optimization (PSO) technique is combined with the
developed simulation model to optimize the headways for each period in each day. Two different
objective functions are incorporated into the models to consider both customer satisfaction by
reducing the average waiting time and railway management satisfaction by reducing needed energy
usage (e.g., reducing operating trains). The results obtained using a real dataset from the Bangkok
railway system demonstrate that the simulation-based optimization approach for robust train service
timetable scheduling, which incorporates both passenger waiting times and the number of operating
trains as equally important objectives, successfully achieved an average waiting time of 11.02 min
(with a standard deviation of 1.65 min) across all time intervals.

Keywords: simulation-based model; railway system; timetable scheduling; uncertainty; particle
swarm optimization

1. Introduction
1.1. Background of Study and Motivations

As the distance between people’s homes, centers, and services such as education,
entertainment, shopping, and health care has expanded, the necessity for everyday travel
has increased, and serving this high volume of travel requires appropriate transportation
platforms. The disparity between road network capacity and trip volume necessitates
the development of public transportation networks as an alternative to private vehicles.
From the standpoint of macroeconomic management, urban rail network infrastructure
appears to be more cost-effective in terms of issues that could have a long-term impact on
the country’s resources or result in an increase in public spending. Taking the example
of a subway train, it is 4.23 times more efficient than the most complete car with the
lowest fuel usage [1]. Over the years, as traffic volumes and pollution emissions have
increased, a greater emphasis has been placed on the development of more environmentally
aware transportation systems. A direct result is the pursuit of more efficient energy
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management. In railways, this improved management may be desired first and probably
most importantly during the planning phase, which is when timetables are constructed [2].
To be more specific, it is necessary to estimate the train running times between stations
during the planning phase to compute train schedules. It is also essential to compute
the energy-optimal train trajectories offline before communicating them to the driver
in the form of a roadmap, which he or she must adhere to by following the timetable
and predefined running times [3]. To maintain a high level of service during operations,
railway timetables must provide competitive travel times while also being able to withstand
delays, perturbations, and variations in operating conditions without losing functionality.
Several performance indicators related to individual train paths (running and dwelling),
dependencies between train paths (headways, turning, transferring, and so on), and
integrated train paths are used in the design of such a timetable (corridors and networks).
Infrastructure occupancy, timetable stability, feasibility, robustness, and resilience are some
of the performance indicators that are measured. How these performance indicators are
dealt with can be used to determine the overall quality of the timetable design process [4].
Due to the growth of its metropolitan areas, Bangkok is the top city in terms of worst
traffic congestion in the world. Bangkok demands an accessible railway transportation
system, which is the priority for improving the traffic congestion problem, leading to
lower air and noise pollution. In 2021, the Bangkok railway system carried a total of
approximately 180 million passengers, which averages to around 500,000 passengers per
day [5]. Therefore, Thailand’s government has committed to investing in and expanding
public transport, especially the Bangkok railway system, and hence the optimal management
of transportation that is flexible enough to deliver economical services to the large population
while considering Bangkok’s city infrastructure. To ensure the adaption of Bangkok railway
transportation by a citizen, much needs to be done to enhance the quality in terms of
service, resource optimization, access, and availability, which can be accomplished by
integrating intelligent technology. The optimization and simulation techniques will help in
developing and proposing a model for simulating the supportive approach for upgrading
the railway system to an intelligent transportation system soon. In the current study, we
develop a new simulation-based multi-objective optimization model for the optimization
of headway in the Bangkok railway system under uncertainty, which is then implemented
in practice. The emphasis is on developing a simulation model which is then used as a
foundation for optimizing the headway. In other words, a simulation model is used to
evaluate solutions generated by the PSO algorithm. The airport rail link (ARL) is the one
partner of this research for data acquisition which we researched and applied practically to
solve this problem. Some part of this research objective is from the focus problems that we
collected and observed in the Bangkok railway system, especially for the ARL, providing
data for observation of the focus problems in train headway optimization, as we mention
in Section 2.

1.2. Related Works

The problem of scheduling timetables has been approached in a variety of ways in the
literature with or without consideration of energy and involving one or more objectives
(see [6,7]). However, the application of evolutionary computation techniques to a real-world
complex train schedule multi-objective problem is still an open and challenging issue
that requires further investigation. Evolutionary computation techniques such as PSO,
the genetic algorithm (GA), and differential evolution (DE) have been used widely to
solve various single- and multi-objective optimization and learning problems. It was
demonstrated in [8] that evolutionary algorithms could be applied to a real-world complex
train schedule multi-objective problem by considering a GA and PSO and DE algorithms to
solve the train schedule optimization. They also compared the performances of these three
algorithms based on multi-objective train scheduling problems, and they found that the
DE approach produced the best simulation results out of the three evaluation algorithms.
With a particular emphasis on passenger railway services in Europe, the authors of [9]



Electronics 2023, 12, 3493 3 of 17

presented an extensive survey on practical applications and combinatorial optimization
models for railway timetable optimization, as well as methods for improving robust
timetabling models. A comprehensive study of multi-objective evolutionary algorithms and
the application of multi-objective evolutionary algorithms to a variety of optimization issues
was provided in [10]. The authors of [11] provided an overview and the characteristics
of multi-objective evolutionary algorithms, as well as an analysis of the strengths and
weaknesses of various evolutionary methods for multi-objective optimization algorithms
when their overall simulation results showed that not one of the methods was the most
superior when all aspects of the performance measures were taken into consideration.
Table 1 shows five recent studies which are close to the scope of the current work and in the
same area for simulation-based optimizing headway and train schedules in railway systems.
As for the present management of the railway network downtown, economical solutions to
satisfy the growing demand for transportation services, especially in an existing network
with very limited financial resources and management for infrastructure development [12],
the regular concept of the existing railway network management for economical services
and satisfaction of passengers depends on the approach to timetable management, speed
operation, train headway, average waiting time and traveling time of the passenger, etc. [13].

Table 1. Research classification of simulation-based optimization in railway systems.

Study Objective Optimization Solution Approach

25 Reducing passenger waiting time
and energy consumption. Timetable A fuzzy multi-objective

optimization algorithm

26

Find the most appropriate train
target speed profile to minimize
energy usage and enhance train

punctuality.

Train speed profiles Enhanced brute force, ant colony
optimization, and GA

27 Minimize the waiting time of
passengers and operation costs. Timetable Lagrangian duality theory

28 Average passenger travel time and
rate of carriage fullness. Headway Response surface methodology

(RSM)

29 Minimize headway by considering
trip time. Headway PSO algorithm

30 Energy saving and reducing
passenger waiting time. Timetable A Lagrangain relaxation-based and

heuristic algorithm

31 Minimize the total tractive energy
consumption. Timetable and speed profile Simulation-based genetic

algorithm incorporated

32
Minimize the total passenger travel
time, which consists of waiting and

riding time
Timetable The spatial branch and

bound algorithm

This study

1. Minimize average waiting time
(customer satisfaction).

2. Minimize operation cost (railway
management satisfaction).

Timetable (headways for each
operation period per day)

Develop Python-based simulation
and optimize using PSO

There are a few works which used a microscopic synchronous railway simulation
modeling program called “Opentrack simulation” to evaluate the performance of the
simulation for the improvement of the railway system in Thailand. Because of the expansion
of the Sukhumvit Green Line, the number of passengers has tended to increase. The research
in [14] proposed full-loop operation and two different short-term operations for solving
the unbalanced passenger usage between the existing and extended lines from Bearing to
Kheha-Samutprakarn. However, this also has limitations for actual usage, and delays may
occur at the turnback point. A new extended service concept has been introduced in
Bangkok’s operational railway system, the eastern high-speed train, to connect three
airports. Many different train service types are used the same rail route. With the
mixed-service operations and train configurations, it is a challenge to plan the timetable.
This study constructs feasible timetables for mixed-service operations, with the airport rail
link (ARL) and high-speed trains running on the same line.
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1.3. Main Contributions

In the current paper, our contributions to the modeling and simulation of Bangkok
rail transit systems include the following:

• Real data, including arrival and departure rates, were collected for one month (from 1
to 28 February 2021) from the control office of the railway. The collected data were
gathered separately for weekdays and weekends.

• Two conflicting objective functions are considered in the model: passenger satisfaction
(which is maximized by minimizing the average wait time) and railway operating
system costs (minimizing the required number of operating trains). When the wight
scale ω, is close to one, smaller headways are obtained for each time interval, and
when ω is close to zero, the headways become larger for all time intervals.

• Uncertainty in arrival rate is taken into account to investigate the sensitivity of the
obtained solutions against variability in the arrival rate. The effect of uncertainty
on the average wait time for three different uncertainty scenarios due to variability
in arrival rates on different days of the month is given in Section 5. The results in
Section 5 show that with the average arrival rate with a fixed coefficient of standard
deviation, the greater the number of passengers who arrived at the stations, the greater
average waiting time.

• Computation of the Pareto front with alternative optimal train headways is attended
to with a multi-objective PSO algorithm using the developed simulation model.

• Comprehensive results are developed and discussed to assist train operators of the
Bangkok railway system in determining the optimal real-time train schedules. A
maximum of 13.21 min and minimum of 7.60 min with a standard deviation of
1.65 min for the average waiting time for all time intervals, including crowd peak
times, are obtained.

The following sections comprise the remainder of the paper. Section 2 describes
the practical problem of the Bangkok railway system in detail. Section 3 presents a
simulation-based multi-objective optimization model of an uncertain railway system.
Section 4 presents the obtained results using the proposed model, followed by Section 5,
which concludes the paper.

2. Problem Statement
2.1. Bangkok Railway System

According to the operation characteristics of the Bangkok railway system, we develop
the simulation model described in this section. As for the stated problem and limitation of
existing management of the Bangkok railway system, the Bangkok Mass Transit System
(BTS), metropolitan rapid transit (MRT), and ARL are the three main downtown transportation
systems used by Bangkok citizens. To observe the problem and solution management
recommendations, an optimizer and simulation tools were proposed to deliver economical
services and adapt to the number of passengers. We repurposed the model for general
use in the Bangkok railway system. However, in this paper, the data and study were
limited to the ARL for implementation, which was supported by data from the airport rail
link of the State Railway of Thailand. The ARL is a Bangkok train service for passengers
between Bangkok downtown and the Bangkok-Suvarnabhumi Airport. The ARL was
established and began operations in 2010. Initially, the train service had two types of
operational train services. The train services consisted of both express services and the
city line. However, the express service was canceled due to the lower expected number
of passengers. At present, the ARL operates nine trains on the city line with the Siemens
Desiro UK class 360/2 train. The nine trains consist of two types of trains: the city line
train (5 trains with a maximum capacity of 745 passengers) and the modified express train
(4 trains with an approximate maximum capacity of 740 passengers). The modified express
service is expected to be upgraded to a maximum approximate capacity of 1000 passengers
in the near future. The operation’s approximate average train speed and maximum train
speed are 64 and 160 km/h, respectively. The ARL railway structure is 28.6 km long
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with 8 stations. The stations run between Suvarnabhumi Airport (A1-SVB), Lad Krabang
(A2-LKB), Ban Thap Chang (A3-BTC), Hua Mark (A4-HUM), Ramkhamhaeng (A5-RKH),
Makkasan (A6-MAS), Ratchaprarop (A7-RPR), andPhayathai (A8-PTH). The distance between
each station (PTH–RPH, RPR–MAS, MAS–RKH, RKH–HUM, HUM–BTC, BTC–LKB, and
LKB–SVB) is 0.8, 2.2, 4, 5, 5, 6, and 5 km, respectively. The schematic of the Bangkok railway
system in one direction is shown in Figure 1.

Figure 1. Structure of airport rail link (ARL).

2.2. Assumption and Requirements

With the improvement to railway operation, management needs the technology
for testing, designing, and evaluating the most capable effects for the service provided.
To reduce the imports of technology and promote our own country’s production, the country’s
development of railway system technology needs to be studied and developed by ourselves.
Consequently, research and development of the railway networks in Thailand is the key
point to obtaining the maximum efficiency of management, including the consideration
of the passengers serviced rate, which is compared to the service use time. Train system
management requires a system or software for station and timetable operation management.
Train operators could be carry out further development and adjustments by themselves in
the future. Therefore, the purpose of this research is to create a prototype of open-source
application software with simulation-based headway optimization to raise the management
efficiency of the Thai railway network in the future. This open-source simulator can reduce
the capital cost of software and intellectual copyright from the beginning of development
until the implementation step. This system prototype is developed by applying queuing
theory and a mathematical model to the basic train simulation model with the optimization
technique for a train management system. Thai train operators could use this training
system simulation prototype for implementation and apply it to further work by themselves.
However, the real traffic passengers’ data are supported by the ARL. Thus, the assumption
and requirements of this research are based on real passenger data optimization for
headway management of the ARL in the criterion of the average wait time and require a
number of operating trains, as we mentioned in the previous section.

2.3. Notation

For the current study, the main model parameters and indexes are summarized in
Table 2.

Table 2. Nomenclature.

Parameter Description

H = [h1, h1, . . ., hp]T Headway in each period p (minutes).
N The total number of trains traveling in a day.
S The total number of stations.
P The total number of time periods (hour) in a day.

NTp Number of trains traveling in period p = 1, 2, . . ., P.

TAn,s
The time (minutes) in which the nth train arrives at station s, where
n = 1, 2, . . ., N and s = 1, 2, . . ., S.

PSn,s The number of passengers in station s who succeeded in taking train n.
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Table 2. Cont.

Parameter Description

PRn,s
The number of passengers in station s that could not take train n
because of excess capacity of the train and waiting for the next train.

PTn,s
The total number of passengers inside train n after boarding at
station s.

PWn,s The total number of passengers waiting at station s to take train n.

TSs
Time (minutes) that the train stops at station s to pick up and drop
off passengers.

TTs→s+1
Travel time (minutes) of a train between station s and the next station
s + 1 (assuming a fixed average speed).

Ap,s
The arrival rate (number of passengers per second) arriving at station
s during period p.

an,s
The number of passengers arriving and waiting at station s to take
train n.

Dp,s
The drop off rate (number of passengers per second) of passengers
departing station s in period p.

dn,s The number of passengers dropped off from train n in station s.
Wn,s The waiting time (minutes) at station s related to the nth train.

3. Simulation-Based Optimization Model
3.1. Developed Simulation

In the current study, by considering almost all main requirements and assumptions, we
develop a comprehensive simulation model using the Python 3.9 environment according
to the requirements defined by the Bangkok railway system. Our Python simulation uses
the NumPy library to generate the number of passengers with random variables and the
TKinter library to create the graphical user interface. There are four main processes in our
Python simulation for the railway system.

3.1.1. Passenger Arrival

Passengers were generated into the system with the origin station, arrival time, and
destination. Given a(s,p,h), the number of arrival passengers at the station s in an hour-long
period p and waiting for the train for headway hp was computed using random variables
with a Poisson distribution, which is computed as follows:

Prob(as,p,h = k) =
(λs,php)ke−(λs,php)

k!
(1)

where λs,p is the expected values or passenger rate, which is calculated from our datasets
that provides As,p, which is the number of arriving passengers at station s and in period p.
To consider uncertainty in the rate of arrival of passengers, we assumed the three different
scenarios and obtained an optimization result for each scenario separately. Note that the
third scenario, called the worst-case scenario, is a common approach in robust optimization
methodology (see [15–17]):

First scenario: Avg(Arrival) + Std(Arrival)

Second scenario: Avg(Arrival) + 2 ∗ Std(Arrival)

Third scenario: Avg(Arrival) + 3 ∗ Std(Arrival)

(2)

We assumed a Gaussian (normal) distribution for the uncertainty scenario (U) for both
the arrival and departure rates. The first scenario covered 68.27% of the cases. The second
and third (worst-case) scenarios covered 95.45% and 99.7% of the cases, respectively (see
Figure 2). The generated passengers would wait for the train at the platform, which was
separated into two types based on the train line direction: outbound or inbound. When the
train arrived at the platform, the passengers would move to the train, and the waiting time
for each passenger was collected (see Figure 3).
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Figure 2. Different intervals and relevant probability for arrival and departure rates in model with
Gaussian probability distribution.

Figure 3. Model of passenger generator and platforms.

The total number of persons waiting at station s to take train n can be computed by

PWn,s = an,s,h + PRn−1,s (3)

where PRn−1,s depicts the number of passengers that remain from the previous train (n− 1)
and are still waiting to take the current train (n) while the expression an,s,h shows the
number of passengers that just arrived at the station and are waiting to take a train. The
number of passengers inside train n after boarding a train at station s is

PTn,s = PTn,s−1 + PWn,s − dn,s − PRn,s (4)

where in the first station (s = 1), for all trains n = 1, 2, . . ., N, we assume PTn,1 = 0.
In Equation (4), the expression PTn,s−1 shows the number of passengers on the train that
already came from the previous station, and the expression PRn,s shows the number of
passengers that could not take the current train (n) and had to wait until the next train
(n + 1) arrived. Meanwhile, dn,s reveals the number of passengers dropped off by train n
at the current station (s). The expression PPn,s = PTn,s−1 + PWn,s − dn,s depicts the total
number of possible passengers for train n. Therefore, the number of persons at station s
that could not take train n because of the excess capacity of a train and had to wait for the
next train is computed by

PRn,s =

{
PPn,s −Capacity, if PP(n,s) > Capacity
0, otherwise

(5)



Electronics 2023, 12, 3493 8 of 17

3.1.2. Train Scheduler

The trains were generated in the system by a schedule that defined the time between
trains (headway hp) for each hour. The time TAn,s when train n arrived in station s is
computed by

TAn,s = TAn,s−1 + TSs−1 + TT(s−1)→s (6)

where TSs is the time (in minutes) that the train stops at station s to pick up and drop off
passengers, TTs→s+1 is the travel time (minutes) of a train between station s and the next
station s + 1 (assuming a fixed average speed), n = 1, 2, . . ., N, and s = 1, 2, . . ., S. Let us
assume that TS0 = 0, TT0→1 = 0, and for the first station (s = 1), we have

TAn,1 = (n− 1)hp + 60(p− 1) (7)

The total number of trains N is computed by

NTp =
60
hp

+ 1, f or(p = 1, 2, . . ., P) N =
P

∑
p+1

NTp (8)

where NTp is the number of trains traveling in period p = 1, 2, . . ., P. The processes of the
train contain three states: idle, moving, and braking (see Figure 4):

• In the idle state, the train stops at the station for dropping off and picking up
passengers. If the number of passengers reaches the train’s capacity, then that train
cannot pick up more passengers. After the stopping time, a train will collect the data
on the number of passengers and enter the moving state.

• In the moving state, the speed of the train will accelerate until the maximum speed
with constant train acceleration. Then, the train will retain this speed until reaching
the braking distance and enter the braking state.

• In the braking state, the train will reduce its speed by deceleration, which is negative
acceleration. The train will breke until its speed is zero at the next train station and
reach the idle state again.

Figure 4. Arrival and departure rates of the train following the Gaussian probability distribution.

3.1.3. Parameter Declaration

This process involves the graphical user interface (GUI) for parameter declaration.
There are two types of parameters:

• Train parameters, including maximum speed, headway, acceleration, stopping time,
train capacity, and door time (see Figure 5);

• Station parameters, including station name, the position of the station, and passengers’
arrival rate (see Figure 6).



Electronics 2023, 12, 3493 9 of 17

Figure 5. States of trains.

Figure 6. Graphical user interface of train parameter configuration.

3.1.4. Animation

This subsection presents how the railway system is simulated in the GUI, shown in
Figure 7.

Figure 7. Graphical user interface of station parameter configuration.

The Python simulation started with a system time of zero. The passenger’s arrival
would be updated when the system time equaled the arrival time of the passenger.
The trains would be generated in the system by the train scheduler. Next, the system would
update all passengers’ and trains’ states and then display the system in the animation.
This loop would be continued until the end of the simulation time. Figure 8 shows the
illustrated flow diagram of our simulation procedure.
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Figure 8. Flow diagram of passenger and train simulation in railway system using Python.

3.2. Searching Optimal Headways

Following our developed simulation model, to run simulation experiments and
investigate the optimal headway for each time interval using a real dataset from the
Bangkok railway system, we integrated the common PSO algorithm with our simulation
prototype. The canonical PSO algorithm that simulates the swarm behaviors of social
animals, such as bird flocking or fish schooling, was proposed in [18]. The parameters of
PSO consist of the number of particles, position of the agent in the solution space, velocity,
and neighborhood of agents (communication of topology). The PSO algorithm begins
by initializing the population. The second step is calculating the fitness values of each
particle, followed by updating the individual and global bests, and later, the velocity and
the position of the particles are updated. The second through fourth steps are repeated until
the termination condition is satisfied. The PSO algorithm is formulated as follows [18]:

vt+1
id = vt

id + c1rand(0, 1)(pt
id − xt

id) + c2rand(0, 1)(pt
id − xt

id) (9)

xt+1
id = xt

id + vt
id (10)

where vt
id and xt

id are the particle velocity and particle position, respectively, d is the
dimension in the search space, i is the particle index, and t is the iteration number.
Expressions c1 and c2 represent the speed, regulating the length when flying toward
the most optimal particles of the whole swarm and the most optimal individual particle.
The term pi is the best position achieved thus far by particle i, and pg is the best position
found by the neighbors of particle i. The expression rand (0, 1) shows the random values
between 0 and 1. The exploration happens if either or both of the differences between the
particle’s best (pt

id) and the previous particle’s position (xt
id) and between the population’s
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all-time best (pt
id) and the previous particle’s position (xt

id) are large, and exploitation occurs
when these values are both small. PSO has attracted wide attention in timetable scheduling
and railway optimization problems due to its algorithmic simplicity and powerful search
performance (see [19–22]).

4. Experiments and Results
4.1. Simulation Set-Up and Parameter Adjustment

In this context, two objective functions include minimizing the average wait time
of passengers and minimizing the average number of operating trains [23,24]. The first
objective function is defined to take into account customer satisfaction, and the second
objective function considers the railway operating cost (operating trains) [25,26]. For this
purpose, we considered the two separate objective functions shown below:

f1 : average waiting time over all stations in each time interval (11)

f2 : number of trains operating in each time interval (12)

To combine both objective functions into an overall objective, we used the weighted
function below:

MinimizeF = ω f̃1 + (1−ω) f̃2 (13)

where ω is a weight factor (0 ≤ ω ≤ 1) and f̃1 and f̃2 are the first objective and the second
objective functions that are normalized in [0, 1] to be on the same scale, respectively [27,28].
According to Equation (13), the optimal result depends on the values of ω, which can be
chosen by the decision maker. Varying this magnitude provides the capture of the Pareto
frontier (also called the Pareto optimal efficiency) to make a trade-off between different
objectives. This approach is a classical method to solving optimization problems when
the model is faced with multiple criteria [29,30]. The set of optimal solutions obtained
from fluctuating ω in the range [0, 1] provides an estimate of the Pareto frontier. In the
current optimization model, the design variables are assumed to be a headway (gap of time
between travel for every two sequential trains) in each time interval [31,32]. (Here, 19 time
intervals were assumed regarding the working hours in a day.) The lower and upper
range for the headways were assumed to be [5, 15] min. Additionally, we assumed that the
difference in headways between the two following time intervals had to be less than 5 min.
Three uncertainty scenarios were considered for the arrival rate regarding the Gaussian
probability (see Section 3.1). The case study considered in this paper is an urban transit
network located within the metropolitan area of Bangkok, the capital city of Thailand.
The network currently includes eight stations (PTH, RPR, MAS, RKH, HUM, BTC, LKB,
and SVB) in two directions. More details on the Bangkok railway system were mentioned in
Section 2. The real data, including arrival and departure rates, were collected for one month
(from 1 to 28 February 2021) from the control office of the railway. The collected data were
gathered separately for weekdays and weekends. In the current study, in order to evaluate
our developed simulation model, we averaged all the data collected for one month based on
the arrival and departure rates for each direction, each station, and each time interval (i.e.,
working hours per day) separately for use as sample data in the simulator. To investigate
the optimal headways using the PSO optimizer, the initial population was adjusted to 40,
and the number of iterations was considered to be 30. The other parameters for PSO were
also adjusted as follows: min of inertia weight = 0.4, max of inertia weight = 0.9, and all the
three factors of the velocity clamping factor, cognitive constant, and social constant being
set to 2. The developed Python-based simulation was run, and the relevant results were
obtained. The overall collected results are provided and discussed in the next subsection.
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4.2. Result Optimization

In this section, we present the dataset and results obtained from the simulation
experiments and optimization algorithms. The developed Python-based simulator was
set up by considering assumptions and model parameters which were adjusted according
to the previous section. Here, the weight scale ω in Equation (13) was considered to be
0.5, which means both objective functions including an average wait time and a number of
required operating trains were assumed to be of the same importance in an optimization
procedure. In the railway system under study, two straight and return pathways from
and to Suvarnabhumi airport were considered. Figures 9 and 10 illustrate the collected
arrival and departure rates (number of passengers) at each station and for each pathway.
As mentioned before, we first employed the average arrival and departure rates from
the real data collected from the Bangkok railway system over one month and used these
rates in our simulator. The PSO optimizer was derived by connecting with the developed
Python-based simulation model to run simulation experiments and investigate the optimal
headway results. Table 3 provides the obtained optimal headways and the relevant two
objective functions accordingly. As can be seen from the table, the simulation provided
reliable results according to the total average wait time for all eight stations and also the
number of required trains in each time interval. In such a time interval faced with a higher
average number of passengers for all stations, the smaller headway (travel time between
every two following trains) computed provided small variability for the average wait
time and the number of operating trains. In other words, the maximum of 13.21 min and
minimum of 7.60 min with a standard deviation of 1.65 min for the average wait time for
all time intervals, including crowd peak times, were obtained. The same pattern can be
seen for the number of required trains that operated at each time interval per day.

Table 3. The optimal headways and objective functions (wait time and number of operating trains)
for ω = 0.5.

Time
Intervals

Optimal
Headway

Waiting Time Operating Trains

Minutes Avg. Std. Number Avg. Std.

5–6 am 6.79 12.63

11.02 1.65

5.00

6.54 0.50

6–7 10.11 7.86 5.91

7–8 6.94 7.60 6.08

8–9 6.21 9.11 6.75

9–10 6.63 10.71 7.20

10–11 10.12 10.25 7.17

11–12 6.30 9.95 7.08

12–13 8.87 9.72 7.12

13–14 10.98 10.01 6.95

14–15 11.15 10.43 6.77

15–16 13.34 11.21 6.63

16–17 12.05 11.90 6.50

17–18 7.68 12.01 6.45

18–19 8.62 12.15 6.45

19–20 7.11 12.47 6.47

20–21 8.26 12.46 6.51

21–22 10.70 12.70 6.47

22–23 13.93 12.97 6.42

23–24 10.95 13.21 6.38
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Figure 9. Schematic showing number of passengers that arrived at each station and each pathway.

Figure 10. Schematic showing number of passengers that departed from each station with regard to
each pathway.

5. Discussion

In this section, the sensitivity of the obtained results from the simulation-based
optimization model is analyzed regarding two aspects: the weight scale ω in Equation (13)
and according to the uncertainty in the arrival rate, referring to Equation (2). To analyze the
optimization model regarding ω, we ran the simulation model and used the optimization
algorithm for different values of ω, obtaining the Pareto frontier results. Figure 11 depicts
the optimal headways for different values of ω in Equation (13), and Figure 12 shows the
results of Pareto frontier estimation obtained by varying the weight scale parameter ω.
As can be seen from the results, when ω was close to one, this meant that the importance
of the first objective (average wait time) was greater than the second objective (number of
operating trains), and smaller headways were obtained for each time interval. Conversely,
when ω was close to zero, and the number of operating trains (railway system cost) was
more important, the headways became larger for all time intervals. Additionally, the same
trend is clear in the results shown in Figure 12. Aside from analyzing the model regarding
ω, we also analyzed the optimization results for the uncertainty in the arrival rate of
passengers. For this purpose, as described in subsection A, three different scenarios were
considered for the arrival rate, integrating the average and standard deviation of the arrival
rate obtained from collected data over all 28 days (February 2021) under study. We ran
the simulation model using the optimal headways that are already obtained considering
and computing the waiting time for different scenarios. Note that as we used the same
headways for all three scenarios, the number of operating trains did not change compared
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to the original model. As shown in Table 4, by adding the average arrival rate with a
fixed coefficient for the standard deviation and increasing the number of passengers who
arrived at the stations, there was a greater average wait time (as expected) in the practical
railway environment. This also confirms the effectiveness of our developed simulation
model in optimizing and analyzing the sensitivity of the Bangkok railway system in a
real-world environment.

Table 4. Effect of uncertainty over first objective function (average wait time) for three different
uncertainty scenarios due to variability in arrival rates on different days of month under study.

Weight
Factor

Average over
Arrival Rates

( for All Days)

Scenario 1
(Avg. + Std.)

Scenario 2
(Avg. + 2 Std.)

Scenario 3
(Avg. + 3 Std.)

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

1 4.55 1.62 18.56 6.48 10.58 3.05 5.09 0.48

0.9 6.94 1.68 41.52 23.52 30.08 15.50 16.19 6.40

0.8 8.82 1.58 51.44 33.82 37.53 17.21 18.20 5.00

0.7 8.87 2.06 54.98 42.23 41.19 24.16 20.85 6.65

0.6 12.59 1.78 53.56 27.92 41.81 17.92 25.85 7.96

0.5 11.02 1.65 51.74 33.79 43.12 22.83 26.46 10.95

0.4 20.81 5.37 63.75 41.95 58.34 38.03 45.46 23.27

0.3 30.27 10.92 66.82 42.94 61.34 40.91 53.95 30.01

0.2 43.04 22.36 87.51 61.42 74.55 50.74 58.76 36.24

0.1 58.34 31.43 124.20 70.43 100.82 58.73 81.08 47.96

0 55.76 33.33 117.07 70.81 93.90 61.78 75.90 46.38

Figure 11. Optimal headways regarding different values of ω in Equation (13).
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Figure 12. Varying the parameter ω in Equation (13) and Pareto frontier results for each of two
conflicting objective functions.

6. Conclusions and Future Work

In this work, we optimized the railway resource allocations (i.e., the required number
of operating trains) for a railway line which connects Suvarnabhumi Airport to the center
of Bangkok, called the airport rail link, while minimizing the passenger wait time to
enhance customer satisfaction. To achieve this, a multi-objective PSO method was derived
to compute the Pareto front with different optimal train headways, thereby identifying
the best real-time train timetables. As the past actual traffic data used to construct the
simulation-based optimization model were very comprehensive, where the arrival time
of each individual passenger was collected and exploited, the numerical results from our
proposed model can be readily deployed in practice. In addition, the optimum number of
operating trains was obtained for each hour in the day. Moreover, the proposed model can
provide an exchange between the number of operating trains and the passenger wait times,
which can be an effective service tool for railway operators. The results obtained using
a real dataset from the Bangkok railway system demonstrate that the simulation-based
optimization approach for robust train service timetable scheduling, which incorporates
both passenger wait times and the number of operating trains as equally important
objectives, successfully achieved an average waiting time of 11.02 min (with a standard
deviation of 1.65 min) across all time intervals. Due to the data and focus problem in the
ARL, these results represented that we can apply the PSO optimization technique with our
simulation tool to observing the headway in normal or uncertain situations. Anyway, this
technique and our open-source tool can be applied to other lines in Bangkok by modifying
the structure of the train within the condition of a single train line for now. Our tools with
the PSO optimizer can be improved for the other railway’s system in the near future.
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