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Abstract: With the development of few-shot learning, significant progress has been achieved in
hyperspectral image classification using related networks, leading to improved classification out-
comes. However, practical few-shot hyperspectral image classification encounters challenges such
as network overfitting and insufficient feature extraction during the model training process. To ad-
dress these issues, we propose a model called CRSSNet (Convolutional Residuals and SAM Siamese
Networks) for few-shot hyperspectral image classification. In this model, we deepen the network
depth and employ the convolutional residual technique to enhance the feature extraction capabilities
and alleviate the problem of network gradient degradation. Additionally, we introduce the Spatial
Attention Mechanism (SAM) to effectively leverage spatial information features in hyperspectral
images. Lastly, metric learning is employed by comparing the distance between two output feature
vectors to determine the label category. Experimental results demonstrate that our method achieves
superior classification performance compared to other methods.

Keywords: hyperspectral image classification; few-shot learning; metric learning; Siamese networks;
space attention mechanism

1. Introduction

Hyperspectral images (HSI) are obtained and compiled using hyperspectral sen-
sors or imaging spectrometers, which contain numerous continuous bands that offer
abundant spectral and spatial information. As a result, hyperspectral images find valu-
able applications in mineral resources [1], agricultural production [2], environmental
monitoring [3,4], and astronomy [5]. Previous studies have employed various meth-
ods for hyperspectral image classification, as depicted in Figure 1a, including Support
Vector Machines (SVM) [6], Random Forests (RF) [7], sparse representation-based [8]
and K Nearest Neighbors (KNN) [9]. However, these classification approaches are not
well-suited for multi-classification problems and fail to effectively leverage the high-
dimensional hyperspectral data. Consequently, they do not fully exploit the abundant
spectral and spatial information available in hyperspectral images, leading to unsatisfactory
classification results.

With the growing significance of deep learning in computer vision, deep-learning
models exhibit greater network depth and enhanced data-mining capabilities compared
to traditional network structures [10]. In the realm of deep learning, various structural
models have been applied to hyperspectral image classification, as illustrated in Figure 1b,
including Convolutional Neural Networks (CNN) [11], Stacked Autoencoder Networks
(SAN) [12], Deep-Belief Networks (DBN) [13], and Recurrent Neural Networks (RNN) [14].
Among them, the Convolutional Neural Network (CNN) has emerged as the primary
method for hyperspectral image classification. Yang et al. [15] proposed a multilevel
spectral–spatial transformation network (MSTNet) for hyperspectral image classification
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(HSIC). The network utilizes transformer encoders to learn feature representations and
decoders to integrate multi-level features, resulting in accurate classification results. VG-
GNet [16], introduced by Simonyan K et al., utilizes small convolutional kernels (3× 3) and
small pooling kernels (3 × 3), allowing for deeper network models while managing com-
putational growth. ResNet [17], also devised by He K M et al., enhances overall network
performance through residual learning using convolutional layers and increased network
depth. These advancements aim to improve the effectiveness of hyperspectral image clas-
sification. Zhu et al. [18]. introduced a short-range and long-range graph convolution
(SLGConv) based on the graph convolutional neural network. They utilized a three-layer
SLGConv to construct the short- and long-range graph convolution network (SLGCN) for
extracting both global and local spatial–spectral information to improve hyperspectral im-
age classification. However, Liao et al. [19] proposed a spectral–spatial fusion transformer
network (S2FTNet) for HSI classification. S2FTNet leverages the transformer framework
to create a spatial transformer module (SpaFormer) and a spectrum converter module
(SpeFormer) to capture long-distance dependencies between image space and spectrum,
enhancing the classification performance.
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Figure 1. The main classification methods of hyperspectral images: (a) Hyperspectral image classi-
fication based on machine learning; (b) Hyperspectral image classification based on deep learning; 
(c) Hyperspectral image classification based on few-shot learning. 
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Figure 1. The main classification methods of hyperspectral images: (a) Hyperspectral image classifi-
cation based on machine learning; (b) Hyperspectral image classification based on deep learning;
(c) Hyperspectral image classification based on few-shot learning.

Although deep learning demonstrates excellent performance in hyperspectral image
classification, its effectiveness heavily relies on a substantial number of labeled samples.
Unfortunately, the process of labeling hyperspectral image samples is labor-intensive and
costly, resulting in the limited availability of labeled data [20].

The scarcity of labeled samples poses challenges such as overfitting the deep-learning
model and reduced accuracy. Consequently, the primary focus of future hyperspectral
image classification lies in achieving satisfactory results with limited samples. Finding ways
to optimize deep-learning models under such circumstances is a key research direction in
the field.

In recent years, few-shot learning has gained popularity and is commonly applied to
few-shot target classification tasks. Two prominent approaches in few-shot learning are
metric learning and meta learning, as depicted in Figure 1c. Metric-learning methods focus
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on learning feature embeddings or similarity measures to enable classification based on dis-
criminative similarities between query set labels and support set-labeled examples. These
methods often employ episodic training mechanisms to acquire transferable knowledge.
Meanwhile, the meta-learning method aims to learn an optimal initialization or optimizer
that can generalize the model to unseen tasks. For instance, recurrent neural networks are
employed to train cross-task meta-learners, enhancing knowledge transfers across different
tasks and improving generalization performance. Both approaches share the common
objective of learning a model capable of classifying query set labels with limited support
set labels.

This paper combines various common classification methods for hyperspectral im-
agery with approaches used to address the issue of limited samples in traditional image
processing. The main structure of this article is outlined as follows:

• Related work: This section primarily focuses on presenting the relevant theories of met-
ric learning and identifying the deficiencies in existing partial networks, subsequently
leading to the introduction of the main innovations of our proposed network.

• Materials and methods: We provide a concise overview of the designed network
architecture, followed by a more detailed exposition of the concepts related to the
spectral module, spatial module, and loss function.

• Experimental results: This section encompasses the introduction of three commonly
used hyperspectral image datasets, the description of the relevant experimental proce-
dures, and a comprehensive analysis and discussion of the experimental results.

• Conclusions: This section summarizes the main findings of the study, reviews the key
points of the paper, and identifies the current limitations of the research, followed by
proposing suggestions for future work.

2. Related Work
2.1. Few-Shot Learning Based on Metric Learning

Metric learning, also known as similarity learning, is a type of the few-shot learning
approach based on migration learning [21]. It involves calculating the distance between
the sample to be classified and known samples, analyzing the distances to measure their
similarity, and finding the nearest matching sample for classification [22].

The Siamese network is a neural network model based on metric learning. In this
model, pairs of samples are fed into the dual-channel Siamese network for feature extraction.
For the input sample pair belonging to the same class, it is labeled as a positive sample
(Label 1), while input sample pairs from different classes are labeled as negative samples
(Label 0). The ratio of positive and negative samples has an impact on the network’s feature
extraction classification accuracy. To ensure a balanced effect, this paper maintains a 1:1
ratio between positive and negative samples. The input data is then transformed into a
target space using the Siamese network. Subsequently, a similarity calculation is performed
using the distance function. This involves computing the distance between the output
feature vectors of the two samples being tested and the feature vectors of the known samples
in the feature vector space. The known labeled sample with the smallest distance to the test
sample is selected as its classification class, thus completing the classification process.

The utilization of the dual-channel Siamese network, which employs metric learning
in the few-shot learning method, leads to enhanced classification performance on samples.
In contrast to the traditional single-channel network as depicted in Figure 2, which solely
focuses on simple inter-class sample classification, it lacks the ability to effectively discern
relationships and distinguish between different samples. However, the dual-channel
Siamese network addresses this limitation by establishing stronger connections within
the same categories while expanding the separation between different categories. This is
accomplished by leveraging input sample pairs that facilitate differentiation of various
categories, consequently leading to improved classification outcomes.
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2.2. Related Network Models

There are three main types of few-shot networks currently applied to hyperspectral
image classification [23]: prototypical networks, relation networks, and Siamese networks.

Tang et al. [24]. proposed a novel multiscale spatial spectroscopic PN (MSSPN). The
network is a multi-scale spatial spectral feature extraction algorithm based on a trapezoidal
structure, effectively achieving fusion of spatial spectral features at different scales. It also
designs a multi-scale spatial spectral prototype representation based on the trapezoidal
structure extraction algorithm theory, which offers improved scalability and better classifica-
tion effectiveness. Zhang [25] proposed a “Global Prototypical Network” for hyperspectral
image classification using a prototype network. Although the current prototype network
shows effectiveness in classifying hyperspectral images, its generalization ability to new
samples is limited. When encountering unseen samples, the classification performance
trend decreases.

Sung F et al. proposed the relation network [26], in which the network initially pro-
cesses randomly selected samples from the query set and sample set through the embedding
layer to process and obtain the feature map. These feature maps are then concatenated and
passed through the relation network to calculate the relation score, determining whether
the samples belong to the same category. Gao et al. [27] employed a meta-learning strategy
to design a feature-learning module and a relation-learning module, aiming to enhance the
effectiveness of hyperspectral classification. However, the method based on the relational
network relies on the selection and quantity of sample data. An insufficient sample size, or
poor sample quality, can lead to the underutilization of hyperspectral image sample infor-
mation in small sample scenarios, impacting feature extraction capabilities and resulting in
decreased classification accuracy.

Wang et al. [28] propose a Siamese CNN with a soft-loss function that adapts based
on coupling substitution data enhancement. This approach effectively addresses the
HSI classification challenge with limited training samples. Huang et al. [29] utilized a
bidirectional Siamese network to separately fuse spectral space features, thereby enhancing
the network’s capability for feature extraction in hyperspectral images. However, the
Siamese network is susceptible to overfitting or underfitting when dealing with small
samples. In the context of hyperspectral image classification, the high dimensionality of
the data and the limited number of samples can lead to good performance on the training
set but poor performance on the test set.

To address the aforementioned challenges, this paper presents a few-shot hyperspectral
image classification based on convolutional residuals and SAM Siamese networks. The key
contributions are as follows:
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• We propose a novel dual-channel Siamese network architecture for spatial–spectral
feature extraction in hyperspectral images. This model leverages convolutional neural
networks of different dimensions, employing one-dimensional convolution for spectral
feature extraction and two-dimensional convolution for spatial feature extraction.

• We introduce a feature residual-extraction module specifically tailored for hyperspec-
tral image classification. This module not only reduces the network’s 0complexity, but
it also leverages multi-layer features to effectively extract spectral–spatial information.

• In order to enhance the utilization of spatial information, we incorporate a Spatial
Attention Mechanism (SAM) into the spatial feature-extraction module. Additionally,
to mitigate overfitting caused by network deepening and improve the model’s gener-
alization ability, we adopt a superior label-smoothing cross-entropy loss function [30].

3. Materials and Methods

The network architecture of this study is depicted in Figure 3. Initially, the hyperspec-
tral image data samples are divided into a training set and test set. Each data sample is
further segmented into data blocks of varying sizes, denoted as W1 × H1 for larger data
blocks and W2 × H2 for smaller data blocks. During the training process, the data blocks
of all samples are randomly selected and paired to create positive and negative sample
pairs. These pairs are then input into the feature extraction network of the dual-channel
Siamese network to extract deeper spectral and spatial information of hyperspectral data.
The network model is continuously optimized through metric learning, which involves
extracting feature vectors from hyperspectral image data. This enables the network to
learn the classification ability for different classes. The parameters of the feature extraction
module are adjusted via back-propagation of the loss function, facilitating the fine-tuning
of the network.

During the testing process, the sample data in the test set is divided into a support
set and a query set. The query set consists of the data to be detected, while the support set
consists of the known class data. These two sets form a sample pair, where each pair is
composed of a data block from the query set and a data block from the support set. The
sample pairs are then input into the trained model. The trained model outputs feature
vectors for each sample pair. The distance between the feature vector of the data in the
query set and the feature vector of the data in the support set is calculated. The sample
pair with the highest similarity in terms of feature vectors, specifically between the feature
vectors of the support set and the query set, is selected. The predicted class for the data in
the query set is determined based on this selected sample pair. This process completes the
classification of hyperspectral images.
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3.1. Model Method
3.1.1. Spectral Feature Residual Extraction Module

In the scenario of limited samples, the deep-learning network often encounters the
issue of vanishing gradients as the number of network layers increases. To address this
problem, the convolution residual method is incorporated into the spectral extraction
module, which helps mitigate gradient degradation during the deepening of network. A
lightweight implementation of the residual method is adopted. Each lightweight residual
extractor, as depicted in Figure 4, comprises convolutional layers, Batch Normalization
(BN) layers, and ReLU layers, applied in sequence.
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As illustrated in Figure 4, the initial data input to the lightweight residual extractor
is denoted as x. Each convolutional layer is subsequently followed by a Batch Norm
layer [31], facilitating network convergence and improving generalization ability. This data
processing results in an output following a normal distribution with a mean value of 0
and a variance of 1. Furthermore, a Rectified Linear Unit (ReLU) activation function is
employed to reduce network computational complexity and address the issue of gradient
vanishing in deep network.

Y(x) = G(x) + F(x) (1)

The spectral residual-extraction module is depicted in Figure 5. In the first lightweight
residual extractor, the convolution has a kernel size of 3 × 1 × 1 and 16 channels. For
the second lightweight residual extractor, the convolution layer has a kernel size of
3 × 1 × 1 and 32 channels. The third lightweight residual extractor has a convolution layer
with a kernel size of 3 × 1 × 1 and 64 channels. Additionally, the output of the first ReLU
activation function F(x) is added to the output of the third ReLU activation function,G(x),
to obtain the overall output Y(x). The computation process is shown in Equation (1). The
output Y(x) is passed to the next lightweight residual extractor. The feature map obtained
after extraction by three lightweight residual extractors is denoted as Z ∈ R(W×H×1×64).
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Due to the limited number of samples in the few-shot scenario, it is important to con-
trol the number of parameters in the network model. Therefore, in the spectral feature-
extraction part of the network, the special size of the three-dimensional convolution is set 
to 1, which effectively reduces the model parameters by 2/3. 
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Due to the limited number of samples in the few-shot scenario, it is important to
control the number of parameters in the network model. Therefore, in the spectral feature-
extraction part of the network, the special size of the three-dimensional convolution is set
to 1, which effectively reduces the model parameters by 2/3.

The implementation of one-dimensional convolution in the network involves setting
the spatial size of the three-dimensional convolution to 1, as shown in Equation (2). The
value vxyz

ij of the one-dimensional convolution represents the computation of the neu-
ron at position (x, y, z) in the j-th feature map of the i-th layer and is provided by the
following equation:

vxyz
ij = f (bij + ∑

m

1

∑
p=1

1

∑
q=1

Ri−1

∑
r=0

wpqr
ijmvxy(z+r)

(i−1)m ) (2)

where m represents the index of the feature map connected to the j-th feature map in the
(i− 1)-th layer, Ri is the size of the convolution kernel along with the spectrum dimension;
p denotes the length of the spatial convolution kernel, q denotes the width of the spatial
convolution kernel, and p and q are both set to 1; wpqr

ijm is the value connected to the position
(p, q, r) in the m-th feature map; bij is the bias of the j-th feature map in the i-th layer; the
function f (•) is the ReLU activation function.

3.1.2. Spatial Feature Extraction Module

In scenarios of limited samples, effectively utilizing spatial information can signif-
icantly enhance hyperspectral image-classification capabilities. Based on the structural
characteristics of HSI, this paper proposes a novel spatial feature extractor, depicted in
Figure 6. The spatial feature extractor primarily consists of a spatial residual feature
extractor and a spatial attention mechanism.
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Spatial Residual Feature Extractor

The spatial feature-extraction component is illustrated in Figure 6. The spatial feature-
extraction module effectively captures the spatial information of the feature map obtained
from generating the spectral spatial-connection layer. This is achieved by employing
a combination of a two-dimensional convolution residual block and a spatial attention
mechanism. The resulting feature map generated by this module contains discriminative
information related to different classes of hyperspectral images. In this process, the feature
map Z ∈ R(W×H×1×64) is transformed into Z ∈ R(W×H×K) through the utilization of this
module, where K represents the dimension of the feature map.

Using a similar approach to one-dimensional convolution, the spatial feature extraction
component sets the spatial size of the three-dimensional convolution to 3 × 3, forming a
two-dimensional convolution. The vxy

ij of the two-dimensional convolution represents the
calculated value of the neuron at the position (x, y) in the jth feature map of the ith layer,
as shown in Equation (3):

vxy
ij = f (bij + ∑

m

pi−1

∑
p=0

qi−1

∑
q=0

wpq
ijmv(x+p)(y+q)

(i−1)m ) (3)

where m represents the index of the feature map connected to the j-th feature map in
the (i− 1)-th layer; pi represents the length of the spatial convolution kernel in the i-th
layer, and qi represents the width of the spatial convolution kernel in the i-th layer; wpq

ijm
represents the value connected to the position (p, q) of the m-th feature map; bij is the
bias of the j-th feature map in the i-th layer; and the function f (•) represents the ReLU
activation function.

Spatial Attention Mechanisms

The feature map Z ∈ R(W×H×K), obtained from the two-dimensional convolutional
layer, serves as the input feature map of the spatial attention mechanism, as depicted in
Figure 7 below. Initially, the input feature map is fed into the spatial attention mechanism,
where maximum pooling and average pooling operations are performed to capture differ-
ent information. This result in two feature maps of Z ∈ R(W×H×1), each of size W × H × 1,
where every pixel in the generated image incorporates features from all channels at
that position.

Then, the two generated feature maps Z, both of size Z ∈ R(W×H×1), are then concate-
nated along the channel dimension. Subsequently, a 7 × 7 convolutional layer is applied
to transform the feature map into a single-channel representation Z of size Z ∈ R(W×H×1).
The Sigmoid activation function is utilized to map the pixel values in the feature map
to the probability space of 0 to 1, capturing the more prominent feature information in
the image. This mapping generates spatial attention weight coefficients Ms. Finally, the
attention weights are multiplied element-wise, channel-by-channel, with the input feature
map of the module, denoted as “Ms × input features”, resulting in a new feature Z of size
Z ∈ R(W×H×K). The attention mechanism is expressed by Equation (4).

Ms(F) = σ
(

f 7×7([AvgPool(F), MaxPool(F)])
)

(4)

where Ms represents the attention weight coefficient, F represents the input feature, σ
represents the Sigmoid activation function, f 7×7 represents the 7 × 7 convolution kernel,
and AvgPool and MaxPool represent average pooling and maximum pooling respectively.
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3.2. Loss Function

In the training process of the dual-channel Siamese network, the loss function is
calculated using a weighted-comparison loss function and a label-smoothing cross-entropy
loss function for each training iteration. The total loss function is expressed as Equation (5):

L = Lctr + Lsce (5)

where Lctr is the weighted contrast loss function, and Lsce is the label-smoothing cross-
entropy loss function.

The dual-channel Siamese network outputs two feature maps of different sizes,
Z1 ∈ RH1×H1×K and Z2 ∈ RH2×H2×K, and extracts their center vectors, L1 ∈ R1×K and
L2 ∈ R1×K, respectively, where H1 and H2 represent the sizes of two feature maps. The
cosine distance w between two input sample pairs can be calculated using Equation (6),
and the weighted comparison loss function is defined by Equation (7):

w =
L1 × L2

‖L1‖‖L2‖
(6)

Lctr(y, dpos, dneg) = y× (1− w)× dpos + (1− y)× w×max(m− dneg, 0) (7)

Equation (7) represents the weighted comparison loss function, where (1 − w) is
multiplied by the positive sample y pair, and w is multiplied by the negative sample
pair; dpos denotes the distance between the feature vectors of the same class samples in
a sample pair, while dneg represents the distance between the feature vectors of different
class samples in a sample pair. The variable m represents the maximum distance between
different samples.

The dual-channel Siamese network receives different information, resulting in a di-
versification of the output feature vector. To optimize the network parameters effectively,
noise is introduced simultaneously to prevent excessive confidence in the correct label and
enhance the network’s generalization ability. Hence, the label-smoothing cross-entropy
loss function is introduced, defined by Equation (10) as follows:

pk =
exT

wk
L
∑

l=1
exT wl

(8)
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yk = yk(1− α) +
α

K
(9)

Lsce =
K

∑
k=1
−yk log(pk) (10)

In Equation (8), pk represents the probability of each category of data, wk corresponds
to the weights associated with the k-th category sample pairs, and x is the vector of
activations from the second-to-last layer of the network. T denotes the transpose of x.

In Equations (9) and (10), yk represents the label vector, α is the label-smoothing factor,
and K represents the total number of categories being classified.

4. Experimental Results
4.1. Experimental Datasets

To evaluate the efficacy of the proposed few-shot hyperspectral image classification
method, three publicly available hyperspectral image datasets were chosen for experimental
validation: the University of Pavia, Indian Pines, and Salinas [32]. The University of Pavia
and Salinas datasets represent agricultural farmland hyperspectral image datasets, while
the University of Pavia dataset pertains to an urban hyperspectral image dataset. Table 1
provides detailed information regarding these three public datasets, including the pseudo-
color image and the ground-truth image. Please refer to Figure 8 for visual representations
of the datasets.

Table 1. Details of the three hyperspectral image datasets.

Indian Pines Pavia University Salinas

Pixel resolution 145 × 145 610 × 310 512 × 217
Spectral range (nm) 400–2500 430–860 400–2500
Number of bands 200 103 204

Spatial resolution (m) 20 1.3 3.7
Sensor AVIRIS ROSIS AVIRIS

Number of categories 16 9 16
Total number of pixels 21,025 207,400 111,104
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Figure 8. Indian Pines datasets. (a) False-color composite image; (b) Ground-truth map; University
of Pavia datasets. (c) False-color composite image; (d) Ground-truth map; Salinas datasets. (e) False-
color composite image; (f) Ground-truth map.

4.2. Experiment Setup

The experimental hardware computer configuration consists of Intel® Core™i7-6700 K
CPU @4.00 GHz RAM 32 GB and NVIDIA TITAN X (Pascal) 12 GB graphics card. The
training and testing are conducted using the Pytorch neural network framework.

In the network, the Patch Size for hyperspectral input is set to 13 × 13 and 7 × 7 for
two channels [23]. During training, five labeled samples are randomly selected for each
class for model training, while the remaining samples are used for testing. The model is
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optimized by the Adam optimizer, with a learning rate of 0.001. This setting effectively
trains the network, accelerates its convergence, and reduces the training time. To mitigate
the impact of random results on the classification performance, all experimental data in this
study are averaged over 10 experimental results obtained with randomly selected samples.

In this paper, the quantitative evaluation indicators for assessing the performance of
hyperspectral image classification methods are as follow: overall accuracy (OA), average
accuracy (AA), and the Kappa coefficient. The overall accuracy represents the ratio of
correctly classified pixels to the total number of tested pixels in the hyperspectral data. Its
calculation equation for overall accuracy is as follows:

OAi =
Cii
N

(11)

In the Equation, N represents the total sample size, and C represents the confusion
matrix of size n× n.

The average classification accuracy represents the average accuracy of each category’s
classification. Its calculation equation is as follows:

AA =

n
∑

i=1
OAi

N
(12)

In the Equation, N represents the total number of samples, and n represents the
number of hyperspectral image categories.

The Kappa coefficient is used as an indicator to measure the agreement between
the classification results of the hyperspectral dataset and the actual effect. Typically, the
Kappa coefficient ranges from 0 and 1. A Kappa value of 1 indicates complete agreement,
Kappa ≥ 0.75 indicates satisfactory agreement, and Kappa < 0.4 indicates a less-than-ideal
agreement. The calculation equation for the Kappa coefficient is as follows:

Kappa =

N
n
∑

i=1
Cii −

n
∑

i=1
Cii × Ni

N2 −
n
∑

i=1
Cii × Ni

(13)

In the Equation, N represents the total number of samples, n represents the number of
hyperspectral image categories, Ni represents the number of samples of the i-th class, and
C represents the confusion matrix of size n× n.

To evaluate the impact of label factors in the label-smoothing loss function on OA,
AA, and Kappa coefficients, this study conducts experiments on three datasets by varying
the label factor from 0.1 to 0.9. The experimental results are depicted in Figure 9. It is
observed that when the label factor is set to 0.2, the OA value is generally higher than
other parameter settings. Therefore, for subsequent ablation experiments and comparative
experiments, a label factor of 0.2 is chosen.

4.3. Ablation Experiments

To verify the improvement in overall accuracy of the residual feature extractor and
the spatial attention mechanism in the proposed CRSSNet method, it is compared with the
enhanced network CRSSNet (no SAM) that does not utilize the spatial attention mecha-
nism, as well as the unimproved original network S3net. Two sets of ablation experiments
are conducted on three datasets to validate the effectiveness of the residual feature ex-
tractor and spatial attention mechanism in the CRSSNet method. The flat average OA,
AA, and Kappa data from 10 experiments of the two ablation models are presented in
Tables 2–4, respectively.
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Table 2. Classification accuracy of Pavia University dataset ablation experiments.

Number Category S3Net CRSSNet
(No SAM) CRSSNet

1 Asphalt 83.72 77.46 80.05
2 Meadows 82.29 87.01 89.48
3 Gravel 79.61 93.51 88.79
4 Tress 91.29 92.14 91.73
5 Sheets 99.66 100.00 100.00
6 Bare soil 81.31 89.64 84.17
7 Bitumen 99.65 99.95 99.99
8 Bricks 84.73 71.67 86.29
9 Shadow 91.23 94.98 93.94

OA% 84.40 86.19 88.00
AA% 88.16 89.59 90.49

Kappa% 80.11 82.19 84.34
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Table 3. Classification accuracy of Indian Pines dataset ablation experiments.

Number Category S3Net CRSSNet (No
SAM) CRSSNet

1 Alfalfa 100.00 100.00 100.00
2 Corn Notill 59.44 76.87 75.32
3 Corn Mintill 62.72 61.79 62.39
4 Corn 92.72 99.35 99.66
5 Grass Pasture 81.21 89.18 89.41
6 Grass Tree 92.46 91.56 90.97

7 Grass Pasture
Mowed 100.00 100.00 100.00

8 Hay Windrowed 99.49 98.05 97.93
9 Oats 100.00 100.00 100.00

10 Soybean Notill 73.21 60.72 58.13
11 Soybean Mintill 65.98 63.76 68.99
12 Soybean Clean 67.40 63.27 60.82
13 Wheat 97.35 89.85 90.30
14 Woods 95.02 99.03 99.01

15 Buildings Grass
Tress Drives 90.21 91.99 95.33

16 Stone Steel
Towers 97.16 98.64 99.20

OA% 75.99 77.22 78.03
AA% 85.89 86.50 86.72

Kappa% 73.08 74.47 75.33

Table 4. Classification accuracy of Salinas dataset ablation experiments.

Number Category S3Net CRSSNet (No SAM) CRSSNet

1 Brocoli–Green–Weeds–1 99.04 100.00 100.00
2 Brocoli–Green–Weeds–2 99.13 99.99 99.97
3 Fallow 98.80 100.00 100.00
4 Fallow–Rough–Plow 99.47 99.89 99.83
5 Fallow–Smooth 95.89 96.35 95.57
6 Stubble 98.50 99.11 99.55
7 Celery 99.79 99.94 100.00
8 Grapes–Untrained 82.63 88.16 88.91
9 Soil–Vinyard–Develop 99.89 99.72 99.71

10 Corn–Senesced–Green–
Weeds 92.44 96.73 96.49

11 Lettuce–Romain–4wk 99.50 99.29 99.45
12 Lettuce–Romain–5wk 93.64 98.17 97.97
13 Lettuce–Romain–6wk 94.00 91.68 93.12
14 Lettuce–Romain–7wk 93.05 98.42 98.21
15 Vinyard–Untrained 93.47 92.55 94.24
16 Vinyard–Vertical–Trellis 98.82 96.81 98.06

OA% 94.03 95.69 96.20
AA% 96.12 97.30 97.63

Kappa × 100% 93.38 95.21 95.73

From Tables 2–4, it can be observed that there is a significant performance improve-
ment in OA when using the residual volume feature extractor in the network. The sample
cases make full use of their hyperspectral data for training. Additionally, after incorporating
the spatial-attention mechanism, the network’s OA also slightly increases, indicating that
the spatial feature extraction part, using SAM after the spatial residual feature extractor
extracts, further utilizes spatial information and enhances the network’s ability to utilize
spatial information, resulting in higher accuracy. Furthermore, from the results of the
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Kappa coefficient, it can be observed that CRSSNet also exhibits a significant improvement
in terms of consistency compared to CRSSNet (no SAM) and S3Net.

From the ablation experimental-feature classification diagram in Figure 10, it can
be observed that the output features are transformed into two-dimensional space using
PCA. The Siamese network reduces the intra-class distance and increases the inter-class
distance, making the network highly separable. However, compared to S3Net, CRSSNet
further improves the separability of the feature maps due to enhanced feature-extraction
capabilities, leading to better classification accuracy.

4.4. Performance on Cross-Scene HSI Classification

To validate the effectiveness of the proposed method in this paper, classic and ad-
vanced hyperspectral image classification methods are selected, including 3DCNN [33],
SSRN [34], DFSL + SVM [35], Gia-CFSL [36], DCFSL [37], and S3Net, among other methods.
In the aforementioned method experiment, a random selection of five labeled samples per
class is performed for training. Comparative analysis is conducted to verify the effective-
ness of the proposed method.

Under the setting of a label factor of 0.2, the label-smoothing loss function, the experi-
mental results of the proposed method in this paper and the above-mentioned hyperspectral
image classification methods on the Indian Pines, Pavia University, and Salinas datasets
are presented in Tables 5–7, respectively.
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Table 5. Classification accuracy of hyperspectral remote-sensing image dataset of Indian Pines.

Number 3DCNN SSRN DFSL +
SVM Gia–CFSL DCFSL S3Net Ours

1 95.12 18.38 96.75 95.12 95.37 100 100
2 37.70 64.79 36.38 47.36 43.26 59.44 75.32
3 19.77 27.65 38.34 37.94 57.95 62.72 62.39
4 32.51 26.97 77.16 78.45 80.60 92.72 99.66
5 88.45 80.76 73.92 72.80 72.91 81.21 89.41
6 73.65 86.87 86.25 73.38 87.96 92.46 90.97
7 81.82 32.24 97.10 100 99.57 100 100
8 53.35 100 81.82 91.54 86.26 99.49 97.93
9 100 57.69 75.56 100 99.33 100 100
10 41.35 59.69 52.22 66.91 62.44 73.21 58.13
11 66.71 70.87 59.96 67.02 62.75 65.98 68.99
12 37.40 45.00 36.56 27.38 48.72 67.40 60.82
13 85.71 88.29 98.00 96.50 99.35 97.35 90.30
14 62.57 97.18 84.63 91.59 85.40 95.02 99.01
15 56.42 36.64 74.10 63.78 66.69 90.21 95.33
16 90.36 60.98 100 98.86 97.61 97.16 99.20

OA% 54.76 61.36 61.69 65.75 66.81 75.99 78.03
AA% 63.93 59.75 73.05 75.54 77.89 85.89 86.72

Kappa ×
100% 48.72 56.91 56.78 61.24 62.64 73.08 75.33

Table 6. Classification accuracy of hyperspectral remote-sensing image dataset of Pavia University.

Number 3DCNN SSRN DFSL +
SVM Gia-CFSL DCFSL S3Net Ours

1 59.82 91.84 73.43 79.94 82.20 83.72 80.05
2 63.05 95.13 89.25 85.88 87.74 82.29 89.48
3 68.91 55.23 48.09 47.66 67.46 79.61 88.79
4 77.31 78.02 84.72 96.08 93.16 91.29 91.73
5 90.77 98.34 99.65 99.93 99.49 99.66 100
6 63.40 53.56 67.81 65.55 77.32 81.31 84.17
7 87.64 60.07 64.48 77.28 81.18 99.65 99.99
8 57.27 85.34 67.37 62.93 66.73 84.73 86.29
9 95.57 98.08 92.92 99.79 98.66 91.23 93.94

OA% 65.74 76.26 79.63 79.93 83.65 84.40 88.00
AA% 73.72 79.51 76.41 79.45 83.77 88.16 90.49

Kappa ×
100% 57.37 70.56 73.05 73.81 78.70 80.11 84.34

Table 7. Classification accuracy of hyperspectral remote-sensing image dataset of Salinas.

Number 3DCNN SSRN DFSL +
SVM Gia-CFSL DCFSL S3Net Ours

1 95.29 97.55 73.92 97.85 99.40 99.04 100
2 97.20 98.97 96.85 99.76 99.76 99.13 99.97
3 91.45 92.47 96.28 99.54 91.96 98.80 100
4 97.31 96.50 99.11 95.39 99.55 99.47 99.83
5 91.24 94.20 80.72 91.58 92.70 95.89 95.57
6 98.80 99.28 91.63 99.80 99.52 98.50 99.55
7 99.69 99.98 97.73 98.77 98.88 99.79 100
8 66.40 86.90 82.33 77.36 74.57 82.63 88.91
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Table 7. Cont.

Number 3DCNN SSRN DFSL +
SVM Gia-CFSL DCFSL S3Net Ours

9 96.25 99.64 94.44 99.14 99.59 99.89 99.71
10 70.72 92.01 80.96 66.97 96.42 92.44 96.49
11 93.15 95.86 93.38 90.59 96.61 99.50 99.45
12 99.65 99.15 97.94 99.95 99.93 93.64 97.97
13 92.63 83.24 95.79 99.34 99.30 94.00 93.12
14 93.56 95.15 98.87 98.40 98.85 93.05 98.21
15 68.02 55.97 91.13 70.45 75.38 93.47 94.24
16 81.41 98.91 90.57 92.97 92.22 98.82 98.06

OA% 84.20 86.39 86.95 88.00 89.34 94.03 96.20
AA% 89.56 93.24 90.08 92.36 94.04 96.12 97.63

Kappa ×
100% 82.46 84.95 85.51 86.64 88.17 93.38 95.73

According to the results of Indian Pines, Pavia University, and Salinas datasets in
Table 5, Table 6, and Table 7, respectively, this method achieves the highest overall clas-
sification accuracy of 78.03%, 88.00%, and 96.20%. Compared with Siamese network
S3Net in transfer learning, the overall classification accuracy of the proposed algorithm
increased by 2.04%, 3.6%, and 2.17%, the average classification accuracy increased by
0.83%, 2.33% and 1.51%, and the Kappa coefficient increased by 0.0225, 0.0423, and 0.0235,
respectively. Compared with cross-domain method DCFSL in transfer learning, the overall
classification accuracy increased by 11.22%, 4.35%, and 6.86%, the average classification
accuracy increased by 8.83%, 6.72%, and 3.59%, and the Kappa coefficient increased by
0.1269, 0.0564, and 0.0756, respectively. This method improves the network structure by
using a residual feature extractor and introducing a spatial-attention mechanism. These
enhancements enable the feature-extraction network to have better feature extraction ca-
pabilities for both spectral and spatial information in hyperspectral data. Additionally,
the inclusion of the label smooth cross-entropy loss function helps reduce network overfit-
ting. Compared to alternative approaches, the classification performance of hyperspectral
images can be notably enhanced, especially in scenarios with limited sample sizes. Exper-
imental results from three distinct datasets demonstrate the superior consistency of the
proposed method.

As depicted in the visualization results presented in Figures 11–13, CRSSNet exhibits
superior classification performance compared to other methods. In the Indian Pines dataset
shown in Figure 11, it is evident that different classification methods exhibit certain clas-
sification errors and fail to achieve satisfactory results with limited samples. However,
when compared to other methods, the proposed method achieves the best classification
performance in the categories of Corn and Buildings Grass Tress Drives, among others. In
the classification results of the Pavia University dataset in Figure 12, compared to other
methods, CRSSNet shows lower misclassifications in the categories of Sheets and Bare soil,
resulting in a superior classification effect map. In the Salinas dataset, shown in Figure 13,
the classification effect map generated by CRSSNet closely resembles the real image, with
only a few misclassifications observed in individual categories such as Grapes untrained.
However, in categories like Brocoli Green Weeds_2 and Fallow, among others, CRSSNet
demonstratess the best classification performance.
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5. Conclusions

To address the challenges of insufficient spatial and spectral information extraction, as
well as network overfitting in small-sample hyperspectral image classification, a method
based on convolutional residuals and SAM Siamese networks is proposed. This method
incorporates a feature residual-extraction module and a spatial attention mechanism to
enhance feature information extraction. Furthermore, a more effective loss function is
employed, which introduces noise and explores label factors to improve the classification
capability of hyperspectral images with limited samples. Experimental results demonstrate
the effectiveness of the proposed method on publicly available hyperspectral datasets,
including Indian Pines, Pavia University, and Salinas. When compared to other methods,
the proposed approach achieves superior classification performance in metrics such as OA,
AA, and Kappa. These results highlight the method’s enhanced classification performance
and improved generalization ability. However, there are still some challenges that need to
be addressed. As observed from Figures 11–13, the classification accuracy is relatively low
when dealing with similar categories.

Currently, there are still challenges in solving the classification of hyperspectral images
with limited samples, especially regarding the inherent high-dimensional nature of such
images. Although our proposed network incorporates PCA for dimensionality reduction,
the issue of high dimensionality persists due to the oversampling of the spectral dimensions
in hyperspectral images. Recently, some graph-based methods for dimensionality reduction
of hyperspectral images have been proposed. For instance, Luo et al. [38] introduced an
Enhanced Hybrid Graph Discriminative Learning (EHGDL) based on hypergraphs, while
Zhang et al. [39] presented Multilayer Graph Spectral Analysis of Hyperspectral Images
using Multilayer Graph Signal Processing (M–GSP), among others, which have shown
promising results. In future research, it would be beneficial to explore and build upon
these graph-based methods to achieve better dimensionality reduction performance in
hyperspectral image classification tasks.

Moreover, despite the need for a limited number of labeled samples in hyperspectral
image classification, the reliance on manual labeling for training remains crucial. Therefore,
future research should explore the potential of conducting hyperspectral image classifi-
cation without the dependence on labeled samples. Such developments hold significant
promise in contributing to the field and its practical applications.
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