
Citation: Hong, J.; Dong, Z.; Zhang,

X.; Song, N.; Cao, P. A Fast Gradient

Iterative Affine Motion Estimation

Algorithm Based on Edge Detection

for Versatile Video Coding.

Electronics 2023, 12, 3414.

https://doi.org/10.3390/

electronics12163414

Academic Editor: Stefanos Kollias

Received: 14 July 2023

Revised: 6 August 2023

Accepted: 9 August 2023

Published: 11 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Fast Gradient Iterative Affine Motion Estimation Algorithm
Based on Edge Detection for Versatile Video Coding
Jingping Hong, Zhihong Dong *, Xue Zhang, Nannan Song and Peng Cao

College of Information Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China;
hongjingping2022@163.com (J.H.); zxfk9158@163.com (X.Z.); nancyyo1881@gmail.com (N.S.);
pc@bigc.edu.cn (P.C.)
* Correspondence: dongzhihong@bigc.edu.cn

Abstract: In the Versatile Video Coding (VVC) standard, affine motion models have been applied
to enhance the resolution of complex motion patterns. However, due to the high computational
complexity involved in affine motion estimation, real-time video processing applications face sig-
nificant challenges. This paper focuses on optimizing affine motion estimation algorithms in the
VVC environment and proposes a fast gradient iterative algorithm based on edge detection for effi-
cient computation. Firstly, we establish judging conditions during the construction of affine motion
candidate lists to streamline the redundant judging process. Secondly, we employ the Canny edge
detection method for gradient assessment in the affine motion estimation process, thereby enhancing
the iteration speed of affine motion vectors. The experimentalresults show that the encoding time
of the affine motion estimation algorithm is about 15–35% lower than the overall encoding time of
the anchor algorithm encoder, the average encoding time of the affine motion estimation part of the
inter-frame prediction part is reduced by 24.79%, and the peak signal-to-noise ratio (PSNR) is only
reduced by 0.04.

Keywords: versatile video coding; inter-prediction; affine motion estimation; edge detection

1. Introduction

With the increasing amount of video data and the growing demand for high-quality
video services, efficient video coding technology plays a crucial role in reducing bandwidth
requirements and improving video compression performance. The H.266/VVC standard is
the latest video coding standard developed by the Joint Video Expert Group (JVET) [1–3],
aiming to provide significantly improved coding efficiency compared to previous standards
and achieve a better coding performance than high-efficiency video coding (HEVC) [4–7].
The goal of the H.266/VVC standard is to provide higher compression rates under the
same video quality. To achieve this goal, H.266/VVC adopts a series of innovative tech-
nologies, including the fast affine motion estimation algorithm (AME), advanced motion
vector prediction (AMVP), prediction value correction based on the optical flow field,
and inter-frame weighted prediction. For bidirectional prediction, decoder-side motion
vector refinement (DMVR) [8], bidirectional optical flow (BDOF) [9,10], and affine motion
compensation (AMC) [11–13] are employed at the decoding end to optimize the precision
of the prediction, thereby enhancing its overall accuracy.

Affine motion estimation is a crucial step in video coding, serving to characterize
inter-frame motion and facilitate differential frame encoding. Compared to previous
motion estimation algorithms, affine motion models are more suitable for processing high-
definition video content due to their ability to handle complex video scenes that involve the
translation, rotation, and scaling of objects. However, traditional affine motion estimation
algorithms suffer from high computational complexity and insufficient accuracy, which
limits the efficiency and quality of video coding. VVC provides two types of affine motion
estimation models in the affine motion estimation module, namely the four-parameter

Electronics 2023, 12, 3414. https://doi.org/10.3390/electronics12163414 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12163414
https://doi.org/10.3390/electronics12163414
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12163414
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12163414?type=check_update&version=1

Electronics 2023, 12, 3414 2 of 15

affine model and the six-parameter affine model. In the affine motion estimation module,
the structure of the current coding unit (CU) is 4 × 4 sub-blocks, and the motion vector
of each sub-block can be obtained from the control point motion vector (CPMV) of the
two affine motion models. Figure 1 shows these three transformations of the image. The
three images (a–c) below describe the rotation, translation, and scaling of an image, where
α denotes the rotation angle of the image, (∆x, ∆y) denotes the translation of the image,
and s denotes the scaling.

α

(x,y)

(x1,y2)

(a)

(x,y)

(x1,y2)

(b)

 x
 y

(c)

s

Figure 1. Three transformations of the image: (a) rotation, (b) translation, (c) zooming.

The affine motion model depicts the motion of an object or image in two-dimensional
space under transformations such as translation, rotation, scaling, and misalignment. Affine
transformations can be expressed as a combination of linear transformations and transla-
tions while preserving their affine properties. Through affine transformation, the image
can be geometrically corrected, scaled, and aligned to improve the accuracy and stability
of image processing and analysis. The affine transformation model of an image can be
obtained through dimensionality reduction, utilizing the translation properties of Fourier
transform and estimation theory for log-polar transformed images. Assuming that image
fp2(x, y) is the result of a translation of the image fp1(x, y) by (∆x, ∆y), the relationship
between the two images is shown in Formula (1), with the Fourier transform relationship
as Formula (2) and the energy spectrum (amplitude spectrum) represented by Formula (3).

fp2(x, y) = fp1(x− ∆x, y− ∆y) (1)

F2(ξ, η) = e−j2π(ξ∆x+η∆y)F1(ξ, η) (2)

M2(ξ, η) = M1(ξ, η) (3)

where M2 and M1 are the energy spectra of F2 and F1. Firstly, through spectral transfor-
mation, we convert the geometric transformations (rotation and scaling) of the image into
frequency domain translations. This allows for simpler and more efficient operations in the
frequency domain, where image rotation and scaling can be achieved by straightforwardly
shifting frequency components, reducing the complexity of geometric transformation calcu-
lations. The statement implies that the amplitude spectrum of the image translation remains
unchanged in the frequency domain, which can be utilized for dimensionality reduction
estimation of image transformation. Assuming that the positional relationship of the image
satisfies Formula (4), Formula (5) is the relationship expression between two images.

(x1, y1)
′ = sR(α)(x, y)′ + T (4)

Electronics 2023, 12, 3414 3 of 15

{
x1 = sx cos α + sy sin α + ∆x
y1 = −sx sin α + sy cos α + ∆y

(5)

where R(α) =

(
cos α sin α
− sin α cos α

)
, T = (∆x, ∆y)′, (x1, y1) represents the coordinates in

the transformed image, (x, y) represents the coordinates in the original image, and s is the
zooming factor, describing how the point (x, y) is stretched or shrunk in the horizontal and
vertical directions after the rotation. If s is greater than 1, it indicates an enlargement; if
s is between 0 and 1, it represents a reduction; if s is a negative value, it might involve a
reflection. α is the rotation angle, describing the degree to which the point (x, y) is rotated
around the origin. If α is a positive value, it indicates a counterclockwise rotation; if α is a
negative value, it represents a clockwise rotation. The unit of angle is typically in radians,
and (∆x, ∆y) are displacements in x and y directions. mvh

(x,y) and mvv
(x,y) are horizontal

and vertical MVs determined by a, b, and (∆x, ∆y). Replacing s cos α and s sin α with a and
b can obtain a concise form of MVs.{

mvh
(x,y) = x1 − x = ax + by + ∆x

mvv
(x,y) = y1 − y = −bx + ay + ∆y

(6)

The nonlinear mapping of the image is realized by bilinear interpolation. In this
way, the rotation and scaling transformation of the image are reduced to the translation
transformation, and the four-parameter motion model can be obtained.

The motion vectors of the sub-blocks based on the current coding block can be obtained
by an affine motion model with four and six parameters of two control point motion
vectors CPMV1 and CPMV2, or three control point motion vectors CPMV1, CPMV2,
and CPMV3, as shown in Figure 2, where the x-coordinate and y-coordinate denote the
horizontal and vertical components of the motion vector, (a) is a four-parameter affine
motion model and (b) is a six-parameter affine motion model, and CPMV1, CPMV2,
and CPMV3 are the motion vectors of the upper left corner control point, upper right corner
motion vector, and lower left corner control point motion vectors of the current coding unit.
The motion vectors of the sub-blocks centered on (x, y) in Figure 2 can be calculated by the
following equation: mvh

(x,y) =
mvh

2−mvh
1

W−1 x− mvv
2−mvv

1
W−1 y + mvh

1

mvv
(x,y) =

mvv
2−mvv

1
W−1 x +

mvh
2−mvh

1
W−1 y + mvv

1

(7)

where mvh
(x,y) and mvv

(x,y) represent the motion vectors in the horizontal and vertical
directions of the current encoding sub-blocks (x, y), and W is the width of the current
encoding unit; thus, (W − 1) is the distance between Control-point 1 and Control-point 2,
and mvh

2, mvh
1, mvv

2, and mvv
1 are the MV components of Control-point 1 and Control-

point 2. The results of the four parameters (a, b, T) are delivered only by mv1 and mv2.
Through this method, the current encoding unit can be obtained from the motion vectors
of 4 × 4 sub-blocks.

Formula (7) can also be rewritten in the form of a matrix:

mv(x, y) = A(x, y)MVT
A (8)

Electronics 2023, 12, 3414 4 of 15

A(x, y) =
[

(1− x
W−1)

x
W−1

y
W−1 − y

W−1
− y

W−1
y

W−1 (1− x
W−1)

x
W−1

]
(9)

MVA = [mvh
1 mvh

2 mvv
1 mvv

2] (10)

The six-parameter affine motion model has one more CPMV than the four-parameter
affine model. The motion vectors of the current coding block of the six-parameter affine
motion model are derived in a similar way to that of the four-parameter affine motion
model. The formula for calculating the motion vector centered on the current block (x, y) is
as follows: mvh

(x,y) =
mvh

2−mvh
1

W−1 x +
mvv

3−mvv
1

H−1 y + mvh
1

mvv
(x,y) =

mvv
2−mvv

1
W−1 x +

mvh
3−mvh

1
H−1 y + mvv

1

(11)

where mvv
3 and mvh

3 represent the motion vectors in the horizontal and vertical directions
motion vectors, H is the height of the block, and (H − 1) is the distance between Control-
point 1 and Control-point 3. This formula can also be rewritten in matrix form. The mv1x,
mv2x, mv3x in Figure 2 represent mvh

1, mvh
2, mvh

3, and mv1y, mv2y, mv3y in Figure 2 represent
mvv

1, mvv
2, mvv

3.
mv(x, y) = A(x, y)MVT

A (12)

A(x, y) =
[

1− x
W−1 −

y
H−1

x
W−1

y
H−1 0 0 0

0 0 0 1− x
W−1 −

y
H−1

x
W−1

y
H−1

]
(13)

MVA =
[

mvh
1 mvh

2 mvh
3 mvv

1 mvv
2 mvv

3
]

(14)

CPMV2

(mv2x , mv2y)

(a) (b)

W

H

(x,y)

CPMV1

(mv1x , mv1y)

W

H

(x,y)

CPMV1

(mv1x , mv1y)
CPMV2

(mv2x , mv2y)

CPMV3

(mv3x , mv3y)

MV

(mvx , mvy)
MV

(mvx , mvy)

Figure 2. Affine motion model: (a) four-parameter affine model, (b) six-parameter affine model.

Introducing an affine motion estimation model in VVC can effectively describe com-
plex video content and improve the performance of the encoder. However, the compu-
tational complexity of AME is high, and the motion estimation algorithm in the inter-
prediction module takes up a long encoding time [14]. To achieve better encoding gain
while reducing its computational complexity, many researchers have attempted to reduce
its computational complexity in traditional affine motion estimation modules [15–21]. How-
ever, there is still little work in the inter-frame prediction affine motion estimation module
of VVC and there is still a large optimization space.

Electronics 2023, 12, 3414 5 of 15

This paper proposes a fast gradient iterative affine motion estimation algorithm based
on edge detection that can effectively accelerate the affine motion estimation process of
inter-frame prediction and achieve the goal of shortening the overall encoding time of the
encoder. This method consists of two steps. The first process is to set judging conditions
in the candidate set of affine motion vectors and achieve the goal of skipping redundant
judging when the candidate set meets the conditions. The second process is to use the
Canny edge detection operator in the affine motion estimation to obtain the gradient,
thereby accelerating the gradient iteration. While ensuring the coding performance and
image quality, it accelerates the time for the affine motion estimation part of inter-frame
prediction and reduces the overall encoding time of the encoder.

The arrangement of the entire article is as follows: Section 2 reviews the relevant
research achievements and progress, Section 3 provides a detailed introduction to the fast
affine motion estimation algorithm proposed in this paper, Section 4 provides experimental
analysis and results, and Section 5 provides the conclusion of this paper.

2. Related Work

Modern multimedia applications have increasingly high requirements for video en-
coders, requiring both high coding efficiency and low computational complexity to ensure
low latency and high transmission speed in real-time applications. To meet this demand,
researchers are committed to designing efficient and low-complexity video encoders. Al-
though there has been some research work on reducing the computational complexity of
VVC encoders, most of the research has focused on accelerating early decision making in the
partitioning process [15–21]. Reference [15] proposed a fast partitioning algorithm for intra
and inter-frame encoding. For intra-frame encoding, the Canny edge detection algorithm
is used to extract the features of image encoding and the features are used to determine
whether to skip vertical or horizontal partitioning, achieving the goal of early termination.
For inter-frame encoding, the three-frame difference method is used to determine whether
an object is a moving target. Reference [16] proposes a fast texture-based CU partitioning
method that evaluates the complexity of the current CU to determine whether to skip sub-
sequent partitioning. At the same time, an improved Canny operator is used to extract edge
information to exclude horizontal or vertical partitioning patterns. Reference [17] analyzes
the probability of affine motion estimation mode in bidirectional prediction, explores the
mutual exclusion between skip mode and affine mode, and proposes a VVC fast affine
motion estimation mode based on near coding information. Reference [18] studied a fast
motion estimation algorithm for the early termination of partial blocks in the CU, using
skip mode for the CU that does not require affine changes. In reference [19], Zhao et al.
extracted the standard deviation and edge ratio to accelerate the division of the CU. The CU
split information and the time position of the encoded frame are used for low-complexity
encoders [20]. Reference [21] checks whether the optimal prediction mode of the current
encoding block is skip mode. If it is, it skips the entire affine motion estimation process and
checks the direction of the optimal prediction. The detection results determine whether
to reduce the size of the reference sequence, thereby reducing computational complexity.
Reference [22] proposes an adaptive affine four-parameter and six-parameter encoding
architecture where the encoder can adaptively select between two affine motion models.
Reference [23] proposes an affine motion estimation model that iteratively searches for
affine motion vectors and a method for constructing an affine advanced motion vector
prediction candidate (AAMVP) list, which has been adopted by the H.266/VVC standard.
Reference [14] proposes an affine motion compensation based on feature matching that can
further improve the efficiency of video coding. Reference [24] carries out affine motion esti-
mation through block division and predicts each pixel using a reference coordinate system
to achieve the purpose of predicting affine transformation. Reference [25] proposes an affine
motion estimation scheme that does not require additional alternating segmentation and
estimation, described by applying a segmented function of the parameter field, and derives
a specific splitting optimization scheme at close range. Reference [26] proposes a method of

Electronics 2023, 12, 3414 6 of 15

using rate-distortion theory and displacement estimation error to determine the minimum
bit rate required for the information transmission of prediction error in the coding process.
Reference [27] proposes a method for solving the problem of relative pose estimation by
using the affine transformation between feature points. Reference [28] proposes a motion
compensation scheme for three-zone segmentation. Based on segmentation information,
three motion compensation regions are divided, namely the edge region, foreground region,
and background region. By using the information from these three regions, the accuracy
and encoding efficiency of motion compensation are improved. Reference [29] proposes
a method of edge video compression texture synthesis based on a generative adversarial
network to obtain the most authentic texture information. Reference [30] proposes an affine
parameter model that utilizes matching algorithms to discover and extract feature point
pairs from edges within consecutive frames and selects the optimal set of three sets of point
pairs to describe global motion. Reference [31] proposes linear applications of traditional
intra-prediction modes based on a pattern correlation processing sequence, region-based
template matching prediction methods, and neural-network-based intra-prediction modes.
Reference [32] proposes a context-based inter-mode judging method that skips affine modes
by determining whether radial motion estimation is performed during the rate-distortion
optimization process of the optimal CU mode decision. Reference [33] adds momentum
parameters to accelerate the iterative process based on the symmetry of the affine motion
estimation iterative process.

Overall, most of the current research work is focused on the skip judging of the
affine motion estimation module. However, there have not been many improvements
and optimizations to the architecture of the affine motion itself. In H.266/VVC, the affine
motion estimation algorithm obtains the optimal radiative motion vector through gradient
iteration. However, in the current research, the gradient iteration method adopts the
traditional traversal algorithm to obtain gradient information through traversing images.
This approach is not suitable for scenarios where there is a large amount of affine motion in
high-definition video, resulting in the high computational complexity and complexity of
the affine motion estimation module itself not being well addressed. This is what current
research work needs to achieve.

3. Materials and Methods

Affine motion estimation is located in the inter-prediction module of the H.266/VVC
encoder, which uses a method similar to the inter-prediction motion estimation in
H.265/HEVC to search for motion vectors. The affine motion estimation of the VVC
encoder first uses affine advanced motion vector prediction technology (AAMVP) to obtain
the starting candidate list of affine motion vectors for the current encoding block. Then,
a set of optimal candidate running vectors is selected as the starting search points in the list,
and the optimal motion vector combination for the current encoding block is determined
through iterative search.

3.1. Affine Advanced Motion Vector Prediction

The AAMVP technology is used in the inter-frame prediction of VVC to construct
a candidate list of starting vector groups while using judging conditions to select the
optimal set of vector combinations as the starting position for the iterative search. In VVC,
the candidate length of AAMVP is defined as two, and the candidate list is established for
each predicted image. Each list only contains unidirectional motion information. Figure 3
is the AAMVP candidate list build diagram. The encoder first checks the inheritance of
available information adjacent to the current encoding unit in the order of bottom left,
bottom, top right, and top left. If affine motion estimation mode is used in adjacent blocks,
the affine information of adjacent encoded blocks is directly inherited. If the candidate set of
the previous operation is not filled, adjacent blocks at the motion vectors of the three control
points of the current encoding block are checked separately, and the motion vectors are
combined using the first nonaffine motion mode translation motion vector at each CPMV.

Electronics 2023, 12, 3414 7 of 15

If it is still not satisfied, the time-domain translation motion vector and zero-value MV are
combined to fill the candidate list. It can be seen that the candidate list of AAMVP adopts
five steps to construct motion vector combinations, namely: spatial adjacent affine mode
CU inheritance; translation construction of adjacent CU in airspace; translated MV filling
of adjacent CU in airspace; time domain translation MV filling; zero-value MV padding.

Current CU

A

C

E

F

G

B D

H

W

CPMV1 CPMV2

CPMV3

Figure 3. Affine advanced motion vector prediction list.

In the process of constructing the candidate list for AAMVP, the adjacent blocks of
adjacent affine modes in the spatial domain need to meet three conditions: first, they must
be in inter-frame encoding mode, then in affine encoding mode, and, finally, the reference
image must be the same as the current CU reference image. The translation construction
of the adjacent CU in the same spatial domain also needs to meet three conditions: first,
the inter-frame encoding mode, then the nonaffine encoding mode, and, finally, the refer-
ence image must be the same as the reference image of the current CU. We define the first
condition as Condition_1. The second condition is Condition_2. When the conditions are
not met, the judging of the current neighboring block is skipped in advance, and there is no
need to perform other complex condition calculations and judging. At the same time, in the
process of constructing the candidate set, after each step, a judging is made on whether
the candidate set is filled. If the candidate set has already been filled in the current step,
the subsequent judging steps are skipped, which can achieve the early termination of the
candidate list construction process and reduce the computational burden of the encoder in
this step. Figure 4 below is the optimization flowchart of AMMVP.

Electronics 2023, 12, 3414 8 of 15

NO

Start

Condition_1

YES

NO

YES

Condition_2

End
NO

Translated MV filling

of adjacent CU in

airspace

NO

Time domain

translation

MV filling

Zero value

MV padding

YES

YES

YES

YES

NO

NO

Affine_numCand

 == 2?

Affine_numCand

== 2?

Affine_numCand

== 2?

Affine_numCand

== 2?

Translation construction

of adjacent CU in

airspace

spatial adjacent affine

mode CU inheritance

Figure 4. Affine advanced motion vector prediction condition.

3.2. The Iterative Search of Affine Motion Vectors

In the VVC standard, the encoder uses the AAMVP technique from the previous step
to obtain the optimal affine motion vector combination as the starting search motion vector
group and obtains the optimal affine motion vector combination for the current encoding
block through iterative search. Fast affine motion estimation needs to calculate a set of
optimal affine motion vectors, usually two or three, so the VVC encoder uses mean squared
error (MSE) as the matching criterion. The formula definition for MSE is as follows:

MSE =
1

w× h ∑
(x,y)∈Cur

∣∣∣Pcur(x, y)− Pre f ((x, y) + mv(x, y))
∣∣∣2 (15)

where w and h are the width and height of the current encoding block, Pcur(x, y) is the
image where the current encoding block is located, and Pre f (x, y) is the reference image for
the current encoding block.

Define the change in motion vector after the ith iteration as di
MV . The expression of

the motion vector at the ith iteration can be defined as follows:

mvi
(x,y) = A(x, y)((mvi−1

(x,y))
T + (di

MV)
T) = mvi−1

(x,y) + A(x, y)(di
MV)

T (16)

where (x, y) represents the position of the current encoding block, and the change in the
motion vector di

MV is a row matrix. Now, its transpose is given as follows:

Electronics 2023, 12, 3414 9 of 15

(di
MV)

T =

dh

MV1
dh

MV2
dv

MV1
dv

MV2

 =

mvih

1 −mv(i−1)h
1

mvih
2 −mv(i−1)h

2

mviv
1 −mv(i−1)v

1

mviv
2 −mv(i−1)v

2

 (17)

After i iterations, the pixel values of the current reference point can be obtained
as follows:

Pre f ((x, y) + mv(x,y)) = Pre f ((xi−1, yi−1) + A(x, y)(di
MV)

T) (18)

where (xi−1, yi−1) is the position of the matching block during the previous iteration search,
and Taylor polynomial expansion is performed on Formula (13) while ignoring higher-order
polynomials to obtain Formula (14):

Pref((xi−1, yi−1) + A(x, y)(di
MV)

T) ≈ Pref(xi−1, yi−1) + P′ref(xi−1, yi−1)A(x, y)(di
MV)

T (19)

To minimize the value of MSE during the iteration process, the pixel value Pre f (x, y) of
the reference point needs to be as close as possible to the original pixel value Pcur(x, y). Set
the relative gradient of the relative change di

MV of the motion vector to zero. If the value is
zero during the iteration process, it indicates that the current reference pixel value is closest
to the original pixel value and is the best-matched result. In the encoder model of VVC,
the Sobel operator is used to convolute the pixel matrix to obtain the gradient. The formula
is as follows:

gh =

 −1 0 1
−2 0 2
−1 0 1

×
 Pi−1,j−1 Pi−1,j Pi−1,j+1

Pi,j−1 Pi,j Pi,j+1
Pi+1,j−1 Pi+1,j Pi+1,j+1

gv =

 −1 −2 −1
0 0 0
1 2 1

×
 Pi−1,j−1 Pi−1,j Pi−1,j+1

Pi,j−1 Pi,j Pi,j+1
Pi+1,j−1 Pi+1,j Pi+1,j+1

 (20)

Considering the complexity of high-definition video content, using the Sobel operator
to traverse images to obtain gradients greatly increases computational complexity, and the
encoder has a high time consumption. This article uses the Canny edge detection algorithm
to optimize the operation of traversing images. In affine motion models, the Canny edge
detection algorithm is more efficient than simply using the Sobel algorithm to obtain the
gradient changes of motion vector groups. However, the computational complexity of the
Canny edge detection algorithm is higher. Considering that the affine motion estimation
model is only used in the inter-prediction module of the VVC encoder, the affine motion
model is only used when it meets specific conditions. Therefore, when the encoder chooses
to use the affine motion mode, the Canny edge detection algorithm is activated. At the
same time, when performing affine motion estimation, the Canny algorithm performs
global gradient calculation during the processing of the first frame image and then makes
corresponding marks. When processing subsequent images, it detects whether the current
encoding block has already been calculated as a gradient in the first frame image. If it has
already been calculated, the gradient value is directly read from the cache without the need
for global calculations. The purpose of this operation is to skip the image area with an
unchanged background and focus the image processing on the changing area, which is the
calculation of motion vectors. Algorithm 1 is the C++ Pseudocode proposed for gradient
calculation. The specific steps of Algorithm 1 are as follows:

• Obtain the original data of the image, initialize the variable, cache, and mark the image
with calculated edges.

Electronics 2023, 12, 3414 10 of 15

• By traversing each pixel of the image, calculate the gradient and error at each pixel
position. If isCannyComputed is false, it indicates that the Canny edge image needs
to be recalculated for the first time; otherwise, skip.

• Traverse the image and repeat the calculation.

Algorithm 1: xAffineMotionEstimation.

Input : origBuf: Original buffer of pixel values;
predBuf: Predicted buffer of pixel values;
bufStride: Stride of the original buffer;
predBufStride; Stride of the predicted buffer;
Output : piError : Array of prediction errors;
pdDerivateX(Y): Array of horizontal(vertical) derivatives;

1 Initialize variables:;
2 pOrg = origBuf.Y().buf; pPred = predBuf.Y().buf; isCannyComputed = false;
3 for j from 0 to height− 1 do
4 for i from 0 to width− 1 do
5 if i > 0 and i < width− 1 and j > 0 and j < height− 1 then
6 if isCannyComputed is false then
7 Compute Canny edge image (predMat, cannyEdges);
8 Set isCannyComputed to true;
9 end

10 Calculate horizontal gradient using Canny edges;
11 Calculate vertical gradient using Canny edges;
12 end
13 Set pdDerivateX[i + j×width] to dx;
14 Set pdDerivateY[i + j×width] to dy;
15 Calculate prediction error: piError[i + j×width] = pOrg[i]− pPred[i];
16 end
17 Update pointers: pOrg = pOrg + bufStride, pPred = pPred + predBufStride;
18 end
19 if isCannyComputed is false then
20 Compute gradient using Canny edges;
21 Update motion vectors using gradient;
22 Set isCannyComputed to true;
23 end

4. Experiments and Results Analysis
4.1. Simulation Setup

In order to analyze and evaluate the performance of the algorithm proposed in this
paper, the official testing software VTM10.0 of H.266/VVC was used as the anchor for test-
ing, and the algorithm proposed in this article was implemented using JVET Common Test
Condition (CTC) [34] configuration. The compiling environment is VS 2019, and Microsoft
Windows 10 64-bit Bitwise operation operating system was adopted. The configuration file
in the experiment uses low latency P-frames, and the quantization parameters (QP) are 22,
27, 32, 37. Table 1 shows the experimental environment parameters.

Electronics 2023, 12, 3414 11 of 15

Table 1. The environments and conditions of simulation.

Items Descriptions

Software VTM-10.0
Configuration file encoder_lowdelay_P_vtm.cfg

Number of frames to be coded 30
Quantization parameter 22, 27, 32, 37

Search range 64
CU size/depth 64/4

Sampling of luminance to chrominance 4:2:0

4.2. Performance and Analysis

At the same time, the evaluation index uses the Bjøntegard delta bitrate (BDBR) [35] to
measure the encoding performance of the proposed algorithm and the original algorithm
on bitrate. A negative number of data indicates that the proposed algorithm can save
the corresponding data volume, while a negative number indicates an increase in data
volume and poor performance. In addition, the Bjøntegard delta peak signal-to-noise rate
(BD-PSNR) was used to evaluate the performance index of the proposed algorithm and the
original algorithm in encoding image quality. A positive value represents an enhancement
of the processed image quality, while a negative value indicates significant distortion and
poor performance compared to the original image. Table 2 provides parameter information
for the test sequence.

Table 2. Detailed characteristics of the experimental video sequences.

Sequences Size Bit-Depth Frame Rate

BasketballDrive 1920 × 1080 8 50
Cactus 1920 × 1080 10 50

FourPeople 1280 × 720 8 60
KristenAndSara 1280 × 720 8 60
BasketballDrill 832 × 480 8 50

PartyScene 832 × 480 8 50
RaceHorses 416 × 240 8 30
BQSquare 416 × 240 8 60

BasketballPass 416 × 240 8 50

Firstly, VTM10.0 and the proposed algorithm are compared. In order to compare the
impact of the proposed algorithm and the algorithm in VTM10.0 on encoder encoding time,
a formula is defined to calculate the average time of each algorithm:

EncTall,a f f =
1
4 ∑

QPi∈{37,32,27,22}
(

Torg(QPi)
− Tpro(QPi)

Torg(QPi)
× 100%) (21)

where EncTall,a f f represents the overall encoding time of the encoder or the affine motion
estimation encoding time. Due to the corresponding changes in the algorithm testing time
based on changes in QP, the method of taking the average value is adopted for evaluation
and measurement. Table 3 shows the experimental results of the algorithm proposed in
this article. In the improved algorithm, the overall encoding time of the encoder was saved
by 6.22%, and the encoding time in the affine motion estimation module was reduced
by an average of 24.79%. Among them, the reduction in encoding time for sequences
BasketballPass, BQSquare, and KristenAndSara affine motion estimation was all over
30%, indicating that the improved algorithm has a good optimization effect on processing
video sequences with a large amount of affine motion, effectively reducing the encoding
time of the encoder. On the contrary, the bitrate of the Basketball Drive video sequence
increased too significantly, indicating a large amount of data when processing certain
high-definition videos.

Electronics 2023, 12, 3414 12 of 15

Table 3. The proposed method compared to the original VVC experimental results.

Sequences BDBR/% BD-PSNR/dB EncTall/% EncTaff/%

BasketballPass 0.34 −0.063 11.12 31.80
BQSquare 0.84 −0.115 9.05 32.11

RaceHorses 0.83 −0.037 8.23 23.59
PartyScene 0.93 −0.040 6.92 18.96

BasketballDrill 0.50 −0.019 3.27 15.39
KristenAndSara 1.06 −0.028 4.81 32.98

FourPeople 0.39 −0.018 4.33 27.13
Cactus 0.51 −0.012 4.36 20.47

BasketballDrive 1.50 −0.030 3.89 20.66

Average 0.76 −0.040 6.22 24.79

In order to further compare the performance of the algorithm proposed in this article,
we will conduct a comparative analysis between the algorithm proposed in this article
and the current research methods for related work. As shown in Table 4, compared with
Ren et al. [33], the algorithm proposed in this paper has a better effect in reducing the
overall encoding time of VVC encoders, with little loss in BDPSNR and little increase in
bitrate. The method proposed by Ren et al. [33]. effectively reduces the computational
complexity of affine motion estimation, but when the CU adopts affine mode, the process
of affine motion estimation still needs to be executed, although momentum parameters are
added to accelerate the iteration process.

Table 4. The proposed method compared to the state-of-the-art experimental results.

Sequence Name
Ren et al. [33] Proposed

BDBR/% SavTall/% BDBR/% SavTall/%

BasketballDrive 0.08 5.00 1.50 3.89
Cactus 0.11 6.00 0.51 4.36

BasketballDrill 0.06 3.00 0.50 3.27
PartyScene 0.26 4.00 0.93 6.92
RaceHorses 0.08 5.00 0.83 8.23

BasketballPass 0.08 2.00 0.34 11.12
Average 0.11 4.16 0.77 6.30

At the same time, Figure 5 shows the reconstructed and original frames of the video se-
quence processed by the algorithm in this paper. From the subjective naked eye observation,
the distortion of the image is almost invisible. In summary, the algorithm proposed in this
article can shorten the encoding time while ensuring video quality and bitrate. In order to
more intuitively observe the compression and distortion degree of the proposed algorithm
on video images, Figure 6 shows the RD curves of the test sequences KristenAndSara and
Cactus. From the RD curve, it can be seen that the method proposed in this paper coincides
with the algorithm curve in the official testing sequence VTM10.0 of VVC. This means that
the algorithm proposed in this article greatly shortens the encoding time required by the
encoder while maintaining an almost constant video quality and bit rate.

Electronics 2023, 12, 3414 13 of 15

(a) (b)

Figure 5. Video sequence: (a) original frame; (b) reconstructed frame.

� ��� ���� ���� ���� ���� ����

��

��

��

��

��

��

��

PS
NR

(dB
)

b i t r a t e / k b p s

�V T M 1 0 . 0
�P r o p o s e d

(a)

� ���� ����� ����� �����
��

��

��

��

��

�	

�

��

PS
NR

(dB
)

 b i t r a t e / k b p s

 V T M 1 0 . 0
 P r o p o s e d

(b)

Figure 6. RD curves: (a) KristenAndSara RD curve; (b) Cactus RD curve.

5. Conclusions

Due to the complexity of high-definition video content and the addition of multiple
optimization algorithms to the encoder, the processing of affine motion estimation in
VVC inter-frame prediction needs to be optimized. To address the above issues, this
paper proposes a fast affine motion algorithm based on edge detection to accelerate the
encoder’s processing of affine motion patterns. By adding pre-judging conditions in the
process of constructing affine candidate lists, unnecessary judging steps are skipped to
achieve acceleration. In the iterative search process of affine motion vectors, the Canny
edge detection algorithm is used to accelerate the iterative gradient, making full use of
the readily calculated image gradient, avoiding repeated calculations, and making the
calculation process more efficient. The experimental results show that BDBR only increases
by 0.76% and BDPSNR only loses 0.04 db. Compared with the anchor algorithm, the overall
coding time of the proposed algorithm is reduced by 6.22%, and the coding time of the
affine motion estimation part of the inter-frame prediction part is reduced by 24.79%. In
future research work, we will focus on the overall model of affine motion estimation, which
can be combined with hardware to achieve the goal of saving more encoding time.

Author Contributions: Z.D. conceived the idea and J.H. conducted the analyses and writing. X.Z.,
N.S. and P.C. contributed to the writing and revisions. P.C. provided funding support. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the General Project of National Natural Science
Foundation of China under Grant 61972042 and in part by the Discipline Construction Project of
Beijing Institute of Graphic Communication under Grant 21090123009.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationships that could have appeared to influence the work reported in this paper.

Electronics 2023, 12, 3414 14 of 15

References
1. Bross, B.; Chen, J.; Liu, S. Versatile Video Coding (Draft 1). In Proceedings of the 10th JVET Meeting, San Diego, CA, USA, 10–20

April 2018.
2. Bross, B.; Chen, J.; Ohm, J.R.; Sullivan, G.J.; Wang, Y.K. Developments in international video coding standardization after avc,

with an overview of versatile video coding (vvc). Proc. IEEE 2021, 109, 1463–1493. [CrossRef]
3. Hamidouche, W.; Biatek, T.; Abdoli, M.; François, E.; Pescador, F.; Radosavljević, M.; Menard, D.; Raulet, M. Versatile video

coding standard: A review from coding tools to consumers deployment. IEEE Consum. Electron. Mag. 2022, 11, 10–24. [CrossRef]
4. Sidaty, N.; Hamidouche, W.; Déforges, O.; Philippe, P.; Fournier, J. Compression performance of the versatile video coding:

HD and UHD visual quality monitoring. In Proceedings of the 2019 Picture Coding Symposium (PCS), Ningbo, China, 12–15
November 2019; pp. 1–5.

5. Li, X.; Chuang, H.; Chen, J.; Karczewicz, M.; Zhang, L.; Zhao, X.; Said, A. Multi-type-tree, document JVET-D0117. In Proceedings
of the 4th JVET Meeting, Chengdu, China, 17–21 October 2016.

6. Schwarz, H.; Nguyen, T.; Marpe, D.; Wiegand, T. Hybrid video coding with trellis-coded quantization. In Proceedings of the 2019
Data Compression Conference (DCC), Snowbird, UT, USA, 26–29 March 2019; pp. 182–191.

7. Zhao, X.; Chen, J.; Karczewicz, M.; Said, A.; Seregin, V. Joint separable and non-separable transforms for next-generation video
coding. IEEE Trans. Image Process. 2018, 27, 2514–2525. [CrossRef] [PubMed]

8. Sethuraman, S. CE9: Results of dmvr related tests CE9. 2.1 and CE9. 2.2. Jt. Video Expert. Team (JVET) ITU-T SG 2019, 16, 9–18.
9. Xiu, X.; He, Y.; Ye, Y.; Luo, J. Complexity Reduction and Bit-Width Control for Bi-Directional Optical Flow. U.S. Patent 11,470,308,

11 October 2022.
10. Kato, Y.; Toma, T.; Abe, K. Simplification of BDOF, document JVET-O0304. In Proceedings of the 15th JVET Meeting, Gothenburg,

Sweden, 1–9 October 2019; pp. 3–12.
11. Lin, S.; Chen, H.; Zhang, H.; Maxim, S.; Yang, H.; Zhou, J. Affine transform prediction for next generation video coding, document

COM16-C1016. In Proceedings of the Huawei Technologies, International Organisation for Standardisation Organisation
Internationale De Normalisation ISO/IEC JTC1/SC29/WG11 Coding of Moving Pictures and Audio, ISO/IEC JTC1/SC29/WG11
MPEG2015/m37525, Geneva, Switzerland, 1 January 2017.

12. Chen, J.; Karczewicz, M.; Huang, Y.W.; Choi, K.; Ohm, J.R.; Sullivan, G.J. The joint exploration model (JEM) for video compression
with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 1208–1225. [CrossRef]

13. Zhao, X.; Seregin, V.; Said, A.; Zhang, K.; Egilmez, H.E.; Karczewicz, M. Low-complexity intra prediction refinements for video
coding. In Proceedings of the 2018 Picture Coding Symposium (PCS), San Francisco, CA, USA, 24–27 June 2018; pp. 139–143.

14. Zhang, X.; Ma, S.; Wang, S.; Zhang, X.; Sun, H.; Gao, W. A joint compression scheme of video feature descriptors and visual
content. IEEE Trans. Image Process. 2016, 26, 633–647. [CrossRef]

15. Tang, N.; Cao, J.; Liang, F.; Wang, J.; Liu, H.; Wang, X.; Du, X. Fast CTU partition decision algorithm for VVC intra and inter
coding. In Proceedings of the 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Bangkok, Thailand, 11–14
November 2019; pp. 361–364.

16. Zhang, Q.; Zhao, Y.; Jiang, B.; Huang, L.; Wei, T. Fast CU partition decision method based on texture characteristics for H.
266/VVC. IEEE Access 2020, 8, 203516–203524. [CrossRef]

17. Li, X.; He, J.; Li, Q.; Chen, X. An Adjacency Encoding Information-Based Fast Affine Motion Estimation Method for Versatile
Video Coding. Electronics 2022, 11, 3429. [CrossRef]

18. Guan, X.; Sun, X. VVC fast ME algorithm based on spatial texture features and time correlation. In Proceedings of the 2021
International Conference on Digital Society and Intelligent Systems (DSInS), Chengdu, China, 3–4 December 2021; pp. 371–377.

19. Zhao, J.; Wu, A.; Zhang, Q. SVM-based fast CU partition decision algorithm for VVC intra coding. Electronics 2022, 11, 2147.
[CrossRef]

20. Khan, S.N.; Muhammad, N.; Farwa, S.; Saba, T.; Khattak, S.; Mahmood, Z. Early Cu depth decision and reference picture selection
for low complexity Mv-Hevc. Symmetry 2019, 11, 454. [CrossRef]

21. Park, S.H.; Kang, J.W. Fast affine motion estimation for versatile video coding (VVC) encoding. IEEE Access 2019, 7, 158075–158084.
[CrossRef]

22. Zhang, K.; Chen, Y.W.; Zhang, L.; Chien, W.J.; Karczewicz, M. An improved framework of affine motion compensation in video
coding. IEEE Trans. Image Process. 2018, 28, 1456–1469. [CrossRef] [PubMed]

23. Li, L.; Li, H.; Liu, D.; Li, Z.; Yang, H.; Lin, S.; Chen, H.; Wu, F. An efficient four-parameter affine motion model for video coding.
IEEE Trans. Circuits Syst. Video Technol. 2017, 28, 1934–1948. [CrossRef]

24. Kordasiewicz, R.C.; Gallant, M.D.; Shirani, S. Affine motion prediction based on translational motion vectors. IEEE Trans. Circuits
Syst. Video Technol. 2007, 17, 1388–1394. [CrossRef]

25. Fortun, D.; Storath, M.; Rickert, D.; Weinmann, A.; Unser, M. Fast piecewise-affine motion estimation without segmentation.
IEEE Trans. Image Process. 2018, 27, 5612–5624. [CrossRef]

26. Meuel, H.; Ostermann, J. Analysis of affine motion-compensated prediction in video coding. IEEE Trans. Image Process. 2020,
29, 7359–7374. [CrossRef]

27. Guan, B.; Zhao, J.; Li, Z.; Sun, F.; Fraundorfer, F. Relative pose estimation with a single affine correspondence. IEEE Trans. Cybern.
2021, 52, 10111–10122. [CrossRef]

http://doi.org/10.1109/JPROC.2020.3043399
http://dx.doi.org/10.1109/MCE.2022.3144545
http://dx.doi.org/10.1109/TIP.2018.2802202
http://www.ncbi.nlm.nih.gov/pubmed/29994420
http://dx.doi.org/10.1109/TCSVT.2019.2945830
http://dx.doi.org/10.1109/TIP.2016.2629447
http://dx.doi.org/10.1109/ACCESS.2020.3036858
http://dx.doi.org/10.3390/electronics11213429
http://dx.doi.org/10.3390/electronics11142147
http://dx.doi.org/10.3390/sym11040454
http://dx.doi.org/10.1109/ACCESS.2019.2950388
http://dx.doi.org/10.1109/TIP.2018.2877355
http://www.ncbi.nlm.nih.gov/pubmed/30346285
http://dx.doi.org/10.1109/TCSVT.2017.2699919
http://dx.doi.org/10.1109/TCSVT.2007.903777
http://dx.doi.org/10.1109/TIP.2018.2856399
http://dx.doi.org/10.1109/TIP.2020.3001734
http://dx.doi.org/10.1109/TCYB.2021.3069806

Electronics 2023, 12, 3414 15 of 15

28. Wang, Z.; Wang, S.; Zhang, X.; Wang, S.; Ma, S. Three-zone segmentation-based motion compensation for video compression.
IEEE Trans. Image Process. 2019, 28, 5091–5104. [CrossRef]

29. Zhu, C.; Xu, J.; Feng, D.; Xie, R.; Song, L. Edge-based video compression texture synthesis using generative adversarial network.
IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 7061–7076. [CrossRef]

30. Huang, J.C.; Hsieh, W.S. Automatic feature-based global motion estimation in video sequences. IEEE Trans. Consum. Electron.
2004, 50, 911–915. [CrossRef]

31. Pfaff, J.; Schwarz, H.; Marpe, D.; Bross, B.; De-Luxán-Hernández, S.; Helle, P.; Helmrich, C.R.; Hinz, T.; Lim, W.Q.; Ma, J.; et al.
Video compression using generalized binary partitioning, trellis coded quantization, perceptually optimized encoding, and
advanced prediction and transform coding. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 1281–1295. [CrossRef]

32. Jung, S.; Jun, D. Context-based inter mode decision method for fast affine prediction in versatile video coding. Electronics 2021,
10, 1243. [CrossRef]

33. Ren, W.; He, W.; Cui, Y. An improved fast affine motion estimation based on edge detection algorithm for VVC. Symmetry 2020,
12, 1143. [CrossRef]

34. Bossen, F.; Boyce, J.; Li, X.; Seregin, V.; Sühring, K. JVET common test conditions and software reference configurations for SDR
video. In Proceedings of the Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 10th
Meeting, San Diego, CA, USA, 10–20 April 2018; Volume 16, pp. 19–27.

35. Gisle, B. Improvements of the BD-PSNR model. In Proceedings of the ITUT SG16/Q6, 34th VCEG Meeting, Berlin, Germany,
16–18 July 2008.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIP.2019.2910382
http://dx.doi.org/10.1109/TCSVT.2022.3169951
http://dx.doi.org/10.1109/TCE.2004.1341699
http://dx.doi.org/10.1109/TCSVT.2019.2945918
http://dx.doi.org/10.3390/electronics10111243
http://dx.doi.org/10.3390/sym12071143

	Introduction
	Related Work
	Materials and Methods
	Affine Advanced Motion Vector Prediction
	The Iterative Search of Affine Motion Vectors

	Experiments and Results Analysis
	Simulation Setup
	Performance and Analysis

	Conclusions
	References

